Research article

Semi-compatible mappings and common fixed point theorems of an implicit relation via inverse $ C- $class functions

  • Received: 25 October 2020 Accepted: 17 December 2020 Published: 29 December 2020
  • MSC : 47H10, 54H25

  • In this paper, we prove some common fixed point theorems by exploring a new kind of generalized semi-compatibility and an implicit relation via inverse $ C- $class functions. The results generalize, extend and improve the main results of [19, 21, 22, 23]. Moreover, some examples are given to illustrate the validity of our results.

    Citation: Mi Zhou, Mukesh Kumar Jain, Mohammad Saeed Khan, Nicolae Adrian Secelean. Semi-compatible mappings and common fixed point theorems of an implicit relation via inverse $ C- $class functions[J]. AIMS Mathematics, 2021, 6(3): 2636-2652. doi: 10.3934/math.2021160

    Related Papers:

  • In this paper, we prove some common fixed point theorems by exploring a new kind of generalized semi-compatibility and an implicit relation via inverse $ C- $class functions. The results generalize, extend and improve the main results of [19, 21, 22, 23]. Moreover, some examples are given to illustrate the validity of our results.



    加载中


    [1] S. Banach, Sur les operations dans les ensembles abstraits et leur application aux quations intgrales, Fund. Math., 3 (1922), 133–183. doi: 10.4064/fm-3-1-133-181
    [2] S. Sessa, On a weak commutativity condition of mappings in fixed point considerations, Publ. Inst. Math., 32 (1982), 149–153.
    [3] G. Jungck, Compatible mappings and common fixed points, Int. J. Math. Math. Sci., 9 (1986), 771–779. doi: 10.1155/S0161171286000935
    [4] G. Jungck, Common fixed points for non-continuous non-self maps on non-metric spaces, Far East J. Math. Sci., 4 (1996), 199–215.
    [5] M. Abbas, D. Gopal, S. Radenović, A note on recent introduced commutative conditions, Indian J. Math., 55 (2012), 195–202.
    [6] G. Jungck, P. P. Murthy, Y. J. Cho, Compatible mappings of type $(A)$ and common fixed points, Math. Japonica, 36 (1993), 381–390.
    [7] H. K. Pathak, M. S. Khan, Compatible mappings of type $(B)$ and common fixed point theorems of Greguš type, Czechoslovak Math. J., 45 (1995), 685–698. doi: 10.21136/CMJ.1995.128555
    [8] H. K. Pathak, Y. J. Cho, S. M. Kang, B. Madharia, Compatible mappings of type $(C)$ and common fixed point theorem of Greguš type, Demonstr. Math., 31 (1998), 499–517.
    [9] H. K. Pathak, S. S. Chang, Y. J. Cho, Fixed point theorems for compatible mappings of type $(P)$, Indian J. Math., 36 (1994), 151–166.
    [10] B. Singh, S. Jain, Semi-compatibility, compatibility and fixed point theorems in fuzzy metric spaces, J. Chungcheong Math. Soc., 18 (2005), 1–22.
    [11] A. S. Saluja, M. K. Jain, P. K. Jhade, Weak semi-compatibility and fixed point theorems, Bull. Int. Math. Virt. Inst., 2 (2012), 205–217.
    [12] A. S. Saluja, M. K. Jain, Fixed point theorems under conditional semicompatibility with control function, Adv. Fixed Point Theory, 3 (2013), 648–666.
    [13] R. K. Bisht, N. Shahzad, Faintly compatibel mappings and common fixed points, Fixed Point Theory Appl., (2013), Article ID: 156.
    [14] M. A. Al-Thagafi, N. Shahzad, Generalized $I$-nonexpansive self maps and invariant proximations, Acta Math. Sinica, 24 (2008), 867–876. doi: 10.1007/s10114-007-5598-x
    [15] D. Dorić, Z. Kadelburg, S. Radenović, A note on occasionally weakly compatible mappings and common fixed points, Fixed Point Theory, 13 (2012), 475–480.
    [16] N. Hussain, S. M. Hussain, S. Radenović, Fixed points of weakly contractions through occasionally weak compatibility, J. Comput. Anal. Appl., 13 (2011), 532–543.
    [17] S. Ivković, On Various Generalizations of Semi- $\mathcal{A}$-Fredholm Operators, Complex Anal. Oper. Theory, 14 (2020), Article No. 41.
    [18] M. A. Alghamdi, S. Radenović, N. Shahzad, On Some Generalizations of Commuting Mappings, Abstr. Appl. Anal., 2012 (2012), Article ID: 952052.
    [19] M. R. Singh, Y. M. Singh, On various type of compatible mappings and common fixed point theorems for non-continuous mappings, Hacet. J. Math. Stat., 40 (2011), 503–513.
    [20] R. P. Pant, A common fixed point theorem under a new condition, Indian J. Pure Appl. Math., 30 (1999), 147–152.
    [21] A. H. Ansari, V. Popa, Y. M. Singh, M. S. Khan, Fixed point theorems of an implicit relation via $C-$class function in metric spaces, J. Adv. Math. Stud., 13 (2020), 1–10.
    [22] A. Djoudi, A unique common fixed point for compatible mappings of type $(B)$ satisfying an implicit relation, Demonstratio Math., 36 (2003), 763–770.
    [23] A. Djoudi, General fixed point theorems for weakly compatible maps, Demonstratio Math., 38 (2005), 197–206.
    [24] M. R. Singh, Y. M. Singh, Compatible mappings of type $(E)$ and common fixed point theorems of Meir-Keeler type, Int. J. Math. Sci. Eng. Appl., 1 (2007), 299–315.
    [25] R. P. Pant, R. K. Bisht, D. Arora, Weak reciprocal continuity and fixed point theorems, Ann. Univ. Ferrara, 57 (2011), 181–190. doi: 10.1007/s11565-011-0119-3
    [26] N. Saleem, A. H. Ansari, M. K. Jain, Some fixed point theorems of inverse $C-$class function under weak semi-compatibility, J. Fixed Point Theory, 2018 (2018), 9. doi: 10.1186/s13663-018-0634-3
    [27] A. H. Ansari, Note on "$\varphi-\psi-$ contractive type mappings and related fixed point", The 2nd regional conference on Mathematics and Applications, Payame Noor University, 2014,377–380.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1514) PDF downloads(46) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog