In this paper, we prove some common fixed point theorems by exploring a new kind of generalized semi-compatibility and an implicit relation via inverse $ C- $class functions. The results generalize, extend and improve the main results of [
Citation: Mi Zhou, Mukesh Kumar Jain, Mohammad Saeed Khan, Nicolae Adrian Secelean. Semi-compatible mappings and common fixed point theorems of an implicit relation via inverse $ C- $class functions[J]. AIMS Mathematics, 2021, 6(3): 2636-2652. doi: 10.3934/math.2021160
In this paper, we prove some common fixed point theorems by exploring a new kind of generalized semi-compatibility and an implicit relation via inverse $ C- $class functions. The results generalize, extend and improve the main results of [
[1] | S. Banach, Sur les operations dans les ensembles abstraits et leur application aux quations intgrales, Fund. Math., 3 (1922), 133–183. doi: 10.4064/fm-3-1-133-181 |
[2] | S. Sessa, On a weak commutativity condition of mappings in fixed point considerations, Publ. Inst. Math., 32 (1982), 149–153. |
[3] | G. Jungck, Compatible mappings and common fixed points, Int. J. Math. Math. Sci., 9 (1986), 771–779. doi: 10.1155/S0161171286000935 |
[4] | G. Jungck, Common fixed points for non-continuous non-self maps on non-metric spaces, Far East J. Math. Sci., 4 (1996), 199–215. |
[5] | M. Abbas, D. Gopal, S. Radenović, A note on recent introduced commutative conditions, Indian J. Math., 55 (2012), 195–202. |
[6] | G. Jungck, P. P. Murthy, Y. J. Cho, Compatible mappings of type $(A)$ and common fixed points, Math. Japonica, 36 (1993), 381–390. |
[7] | H. K. Pathak, M. S. Khan, Compatible mappings of type $(B)$ and common fixed point theorems of Greguš type, Czechoslovak Math. J., 45 (1995), 685–698. doi: 10.21136/CMJ.1995.128555 |
[8] | H. K. Pathak, Y. J. Cho, S. M. Kang, B. Madharia, Compatible mappings of type $(C)$ and common fixed point theorem of Greguš type, Demonstr. Math., 31 (1998), 499–517. |
[9] | H. K. Pathak, S. S. Chang, Y. J. Cho, Fixed point theorems for compatible mappings of type $(P)$, Indian J. Math., 36 (1994), 151–166. |
[10] | B. Singh, S. Jain, Semi-compatibility, compatibility and fixed point theorems in fuzzy metric spaces, J. Chungcheong Math. Soc., 18 (2005), 1–22. |
[11] | A. S. Saluja, M. K. Jain, P. K. Jhade, Weak semi-compatibility and fixed point theorems, Bull. Int. Math. Virt. Inst., 2 (2012), 205–217. |
[12] | A. S. Saluja, M. K. Jain, Fixed point theorems under conditional semicompatibility with control function, Adv. Fixed Point Theory, 3 (2013), 648–666. |
[13] | R. K. Bisht, N. Shahzad, Faintly compatibel mappings and common fixed points, Fixed Point Theory Appl., (2013), Article ID: 156. |
[14] | M. A. Al-Thagafi, N. Shahzad, Generalized $I$-nonexpansive self maps and invariant proximations, Acta Math. Sinica, 24 (2008), 867–876. doi: 10.1007/s10114-007-5598-x |
[15] | D. Dorić, Z. Kadelburg, S. Radenović, A note on occasionally weakly compatible mappings and common fixed points, Fixed Point Theory, 13 (2012), 475–480. |
[16] | N. Hussain, S. M. Hussain, S. Radenović, Fixed points of weakly contractions through occasionally weak compatibility, J. Comput. Anal. Appl., 13 (2011), 532–543. |
[17] | S. Ivković, On Various Generalizations of Semi- $\mathcal{A}$-Fredholm Operators, Complex Anal. Oper. Theory, 14 (2020), Article No. 41. |
[18] | M. A. Alghamdi, S. Radenović, N. Shahzad, On Some Generalizations of Commuting Mappings, Abstr. Appl. Anal., 2012 (2012), Article ID: 952052. |
[19] | M. R. Singh, Y. M. Singh, On various type of compatible mappings and common fixed point theorems for non-continuous mappings, Hacet. J. Math. Stat., 40 (2011), 503–513. |
[20] | R. P. Pant, A common fixed point theorem under a new condition, Indian J. Pure Appl. Math., 30 (1999), 147–152. |
[21] | A. H. Ansari, V. Popa, Y. M. Singh, M. S. Khan, Fixed point theorems of an implicit relation via $C-$class function in metric spaces, J. Adv. Math. Stud., 13 (2020), 1–10. |
[22] | A. Djoudi, A unique common fixed point for compatible mappings of type $(B)$ satisfying an implicit relation, Demonstratio Math., 36 (2003), 763–770. |
[23] | A. Djoudi, General fixed point theorems for weakly compatible maps, Demonstratio Math., 38 (2005), 197–206. |
[24] | M. R. Singh, Y. M. Singh, Compatible mappings of type $(E)$ and common fixed point theorems of Meir-Keeler type, Int. J. Math. Sci. Eng. Appl., 1 (2007), 299–315. |
[25] | R. P. Pant, R. K. Bisht, D. Arora, Weak reciprocal continuity and fixed point theorems, Ann. Univ. Ferrara, 57 (2011), 181–190. doi: 10.1007/s11565-011-0119-3 |
[26] | N. Saleem, A. H. Ansari, M. K. Jain, Some fixed point theorems of inverse $C-$class function under weak semi-compatibility, J. Fixed Point Theory, 2018 (2018), 9. doi: 10.1186/s13663-018-0634-3 |
[27] | A. H. Ansari, Note on "$\varphi-\psi-$ contractive type mappings and related fixed point", The 2nd regional conference on Mathematics and Applications, Payame Noor University, 2014,377–380. |