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1. Introduction and preliminaries

The study of metric fixed point theory is playing an important role in linear and nonlinear analysis.
In 1922, Stephen Banach [1] laid the foundation of metric fixed point theory and gave a very fruitful
concept of contraction mapping. Since then, many researchers studied that field in many directions. It
was indeed a turning point in fixed point theory when Sessa [2] introduced the notion of weak
commutativity. Later, this concept was executed by several researchers in considerable amounts.
Further, the generalization of weak commutativity came to exist in 1986 when Jungck [3] firstly
introduced compatible mappings. Definitely, this research had opened some new directions in fixed
point theory for many researchers. Later, in 1996 Jungck generalized his own concept by new class of
compatible mappings, named weak compatible mappings [4], and through various examples he had
shown that each of these generalizations of commutativity are proper extensions of previous
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definitions. Abbas eal. [5] pointed out that weakly compatible maps remains a minimal commutativity
condition for the existence of unique common fixed of contractive type maps. In the last few decades
many generalizations came to exist like compatible mapping of type (A) [6], compatible mapping of
type (B) [7], compatible mapping of type (C) [8], compatible mapping of type (P) [9],
semi-compatible mappings [10], weak semi-compatible mappings [11], conditional semi-compatible
mappings [12], faintly compatible mappings [13], occasionally weakly compatible mappings [14–16]
and other types of mappings [17, 18]. In 2011, Singh et al. [19] gave brief discussion of various types
of mappings as compatible mappings of type (A), type (B), type (C) and type (P) and compared these
mappings with compatible mappings of type (E). He introduced new concepts of S−compatible
mappings of type (E) and S−reciprocal continuous mappings by splitting the concepts of compatible
mappings of type (E) and reciprocal continuous mappings [20], and moreover, obtained some
common fixed point theorems for non-continuous self-mappings on metric spaces. Recently, Ansari et
al. [21] used the concept of compatibility of type (E) and reciprocal continuity and obtained some
fixed point results by using an implicit relation via C−class functions.

In this paper, we introduce a new concept of semi-compatible mappings and establish some common
fixed point results by using an implicit relation introduced by Djoudi [22, 23] via inverse C−class
functions on metric spaces.

Throughout the paper, we will denote by N, R, R+ and N0 the set of natural numbers (positive
integers), real numbers, positive real numbers and N ∪ {0}, respectively.

Definition 1.1. [24] A pair of self-mappings ( f , g) on a metric space (X, d) is said to be compatible
of type (E), if

lim
n→+∞

f f xn = lim
n→+∞

f gxn = gt and lim
n→+∞

ggxn = lim
n→+∞

g f xn = f t,

whenever {xn} is a sequence in X such that lim
n→+∞

f xn = lim
n→+∞

gxn = t, for some t ∈ X.
Definition 1.2. [19] A pair of self-mappings ( f , g) on a metric space (X, d) is said to be

f−compatible of type (E), if

lim
n→+∞

f f xn = lim
n→+∞

f gxn = gt,

whenever {xn} is a sequence in X such that lim
n→+∞

f xn = lim
n→+∞

gxn = t, for some t ∈ X.
Definition 1.3. [19] A pair of self-mappings ( f , g) on a metric space (X, d) is said to be

g−compatible of type (E), if

lim
n→+∞

ggxn = lim
n→+∞

g f xn = f t,

whenever {xn} is a sequence in X such that lim
n→+∞

f xn = lim
n→+∞

gxn = t, for some t ∈ X.
It is easy to see that the compatibility of type (E) implies both f− and g− compatibility of type

(E), however the f− or g−compatibility of type (E) do not imply the compatibility of type (E) (See
Example 2.10 [19]).

Definition 1.4. [10] A pair of self-mappings ( f , g) on a metric space (X, d) is said to be semi-
compatible, if lim

n→+∞
f gxn = gt, whenever {xn} is a sequence in X such that lim

n→+∞
f xn = lim

n→+∞
gxn = t, for

some t ∈ X.
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A simple but genuine question rises: “Does semi-compatibility of ( f , g) imply the
semi-compatibility of (g, f )?” That is lim

n→+∞
g f xn = f t, whenever {xn} is a sequence in X such that

lim
n→+∞

f xn = lim
n→+∞

gxn = t, for some t ∈ X. Actually they are two different notions. We give the
following example to verify it.

Example 1.1. Let X = [0,+∞) endowed with usual metric d. Define a self-mappings f , g on X as
follows:

f x =

 x, x ∈ [0, 1
2 )

1, x ∈ [ 1
2 ,+∞)

,

and g = IX (the identity mapping). If we consider the sequence xn = 1
2 − εn, where εn > 0, εn → 0 as

n→ +∞, then lim
n→+∞

f xn = lim
n→+∞

gxn = 1
2 , f (1

2 ). So (g, f ) is not semi-compatible. Also, for a sequence
{xn} such that xn → x0 and f xn → x0, we have

lim
n→+∞

f gxn = lim
n→+∞

f xn = x0 = g(x0).

Then ( f , g) is semi-compatible.
In the following we do a modification of the definition of semi-compatibility.
Definition 1.5. A pair ( f , g) of self-mappings on a metric space (X, d) is said to be semi-compatible

of type (A), if lim
n→+∞

f gxn = gt and lim
n→+∞

g f xn = f t, whenever {xn} is a sequence in X such that lim
n→+∞

f xn =

lim
n→+∞

gxn = t, for some t ∈ X.
We give an example to demonstrate it as follows.
Example 1.2. Let X = [1,+∞) endowed with the usual metric d and f , g : X 7→ X be the self-

mappings defined by

f x =

2x + 1, x ∈ [1, 3)
x, x ∈ [3,+∞)

, gx =

2 + x, x ∈ [1, 3)
3, x ∈ [3,+∞)

.

If we consider the sequence xn = 1 + εn, where εn > 0, εn → 0 as n → +∞, then lim
n→+∞

f xn =

lim
n→+∞

gxn = 3. Also lim
n→+∞

f gxn = 3 = g(3) and lim
n→+∞

g f xn = 3 = f (3). Moreover, if xn = 3 + εn,
where εn > 0, εn → 0 as n → +∞, then lim

n→+∞
f xn = lim

n→+∞
gxn = 3. Also lim

n→+∞
f gxn = 3 = g(3) and

lim
n→+∞

g f xn = 3 = f (3).
Before proving our main results we introduce some definitions by splitting the concept of semi-

compatibility of type (A).
Definition 1.6. A pair ( f , g) of self-mappings on a metric space (X, d) is said to be

f−semi-compatible, if lim
n→+∞

f gxn = gt, whenever {xn} is a sequence in X such that
lim

n→+∞
f xn = lim

n→+∞
gxn = t, for some t ∈ X.

Definition 1.7. A pair ( f , g) of self-mappings on a metric space (X, d) is said to be
g−semi-compatible, if lim

n→+∞
g f xn = f t, whenever {xn} is a sequence in X such that

lim
n→+∞

f xn = lim
n→+∞

gxn = t, for some t ∈ X.
It is obvious from the above definitions that semi-compatibility of type (A) implies

f−semi-compatibility and g−semi-compatibility of a pair ( f , g), however the converse is not true.
Moreover, f−semi-compatibility and g−semi-compatibility coincide with the semi-compatibility of
the pair ( f , g) and semi-compatibility of the pair (g, f ) introduced by Singh et al. [10], respectively.
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Definition 1.8. [20] A pair ( f , g) of self-mappings on a metric space (X, d) is said to be reciprocal
continuous, if lim

n→+∞
f gxn = f t and lim

n→+∞
g f xn = gt, whenever {xn} is a sequence in X such that lim

n→+∞
f xn =

lim
n→+∞

gxn = t, for some t ∈ X.
We introduce some definitions by splitting the concept of reciprocal continuity of a pair ( f , g) of

self-mappings as follows.
Definition 1.9. A pair ( f , g) of self-mappings on a metric space (X, d) is said to be f−reciprocal

continuous, if lim
n→+∞

f gxn = f t, whenever {xn} is a sequence in X such that lim
n→+∞

f xn = lim
n→+∞

gxn = t, for
some t ∈ X.

Definition 1.10. A pair ( f , g) of self-mappings on a metric space (X, d) is said to be g−reciprocal
continuous, if lim

n→+∞
g f xn = gt, whenever {xn} is a sequence in X such that lim

n→+∞
f xn = lim

n→+∞
gxn = t, for

some t ∈ X.
The notion of f−reciprocal continuity or g−reciprocal continuity coincides with the concept of

weak reciprocal continuity introduced by Pant et al. [25].
It is obvious that f−semi-compatibility and g−semi-compatibility are independent notions with

respect to f−reciprocal continuity and g−reciprocal continuity, respectively. It is noticed that
compatibility of type (E) implies semi-compatibility of type (A) but implication is not reversible.

We now provide two examples to verify above discussion and also show the comparison between
semi-compatible mappings of type (A) and reciprocal continuous mappings (compatible mappings of
type (E)).

Example 1.3. Let us consider X = [0,+∞) endowed with the usual metric. Define f , g : X 7→ X by

f x =

 1, x ∈ [0, 1]
x, x ∈ (1,+∞)

, gx =

 2, x ∈ [0, 1)
1
x , x ∈ [1,+∞)

.

Then the pair of mappings ( f , g) is semi-compatible of type (A) and reciprocal continuous. However,
the pair ( f , g) is not compatible mapping of type (E).

It is easy to see that xn = 1 + εn, where εn > 0, εn → 0 as n → +∞, is the only sequences which
satisfy the conditions

lim
n→+∞

f xn = lim
n→+∞

gxn = 1.

One has
lim

n→+∞
f gxn = 1 = g(1),

lim
n→+∞

g f xn = 1 = f (1).

Hence ( f , g) is semi-compatible of type (A).
The other sentences follow from the following relations

lim
n→+∞

f gxn = lim
n→+∞

f (
1

1 + εn
) = 1 = f (1),

lim
n→+∞

g f xn = lim
n→+∞

g(1 + εn) = 1 = g(1),

lim
n→+∞

f f xn = lim
n→+∞

f (1 + εn) = 1 = lim
n→+∞

f gxn = g(1),

lim
n→+∞

ggxn = lim
n→+∞

g(
1

1 + εn
) = 2 , lim

n→+∞
g f xn = f (1).
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Example 1.4. Let X = [0, 1] with usual metric. Define f , g : X 7→ X by

f x =

1, x ∈ [0, 1
2 )

1 − x, x ∈ [ 1
2 , 1]

, gx =

 1
2 , x ∈ [0, 1

2 )
x, x ∈ [ 1

2 , 1]
.

We consider the sequence xn = 1
2 + εn, where εn > 0, εn → 0 as n→ +∞. Then

lim
n→+∞

f xn = lim
n→+∞

gxn =
1
2
.

Also, we have

lim
n→+∞

f gxn = lim
n→+∞

f (
1
2

+ εn) =
1
2

= f (
1
2

) = g(
1
2

) , lim
n→+∞

f f xn = 1.

and
lim

n→+∞
g f xn = lim

n→+∞
g(

1
2
− εn) =

1
2

= f (
1
2

) = g(
1
2

) = lim
n→+∞

ggxn.

Therefore the pair of mappings ( f , g) is not only semi-compatible of type (A), but it is also reciprocal
continuous, even g−compatible of type (E). However, it is not compatible of type (E).

According to the previous examples and Singh [19], we have the following proposition.
Proposition 1.1. Let f and g be self-mappings on a metric space (X, d). Suppose that {xn} is a

sequence in X such that lim
n→+∞

f xn = lim
n→+∞

gxn = t, for some t ∈ X. If one of the following conditions is
satisfied:

(i) ( f , g) is f−semi-compatible and f−reciprocal continuous,
(ii) ( f , g) is g−semi-compatible and g−reciprocal continuous,

Then
(a) f t = gt and
(b) if there exists u ∈ X such that f u = gu = t, then f gu = g f u.
Proof. Follows immediately.
Remark 1.1. By the above, it follows that each of condition of Proposition 1.1 implies the weak

compatibility of pair ( f , g), introduced by Jungck in [4], however, the inverse is not applicable.
Definition 1.11. [26] A continuous function F : [0,+∞)× [0,+∞) 7→ R is called an inverse C−class

function, if for every s, t ∈ [0,+∞), the following conditions hold:

(i) F(s, t) ≥ s,
(ii) F(s, t) = s implies that either s = 0 or t = 0.

We will denote by Cinv the class of all inverse C−class functions. In the following we will provide
some examples (for further details, one should refer [26]).

Example 1.5. The following functions F : [0,+∞) × [0,+∞) 7→ R belong to Cinv, for all s, t ∈
[0,+∞):

1. F(s, t) = s + t, F(s, t) = s implies t = 0.
2. F(s, t) = ms, for some m ∈ (1,+ +∞), F(s, t) = s implies s = 0.
3. F(s, t) = s(1 + t)r, for some r ∈ (0,+∞), F(s, t) = s implies s = 0 or t = 0.
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4. F(s, t) = loga[(t + as)(1 + t)], for some a > 1, F(s, t) = s implies t = 0.
5. F(s, t) = ϑ(s), ϑ : (0,+∞) × (0,+∞) 7→ R is a generalized Mizoguchi-Takahashi type function,

F(s, t) = s implies s = 0.

Definition 1.12. [27] A function ϕ : [0,+∞) 7→ [0,+∞) is called an ultra-altering distance if ϕ
is continuous, and ϕ(0) = 0, ϕ(t) > 0, t > 0. We denote by Φu the set of all ultra-altering distance
functions.

An implicit relation, introduced by Djoudi [22, 23], is stated as follows.
Let G be the set of all continuous functions G(t1, . . . , t6) : R+ × R+ × · · · × R+︸                  ︷︷                  ︸

6

7→ R satisfying the

following conditions:

(G1) : G is non-decreasing in variables t5 and t6.
(G2) : there exists h ∈ (1,+∞) such that, for every u, v ≥ 0 with

Ga : G(u, v, u, v, u + v, 0) ≥ 0, or
Gb : G(u, v, v, u, 0, u + v) ≥ 0,
we have u ≥ hv.

(G3) : G(u, u, 0, 0, u, u) < 0, for all u > 0.

We now provide some examples of G ∈ G (for more details, one can refer Djoudi [22, 23]).
Example 1.6. Let G(t1, . . . , t6) : R+ × R+ × · · · × R+︸                  ︷︷                  ︸

6

7→ R be defined by

G(t1, . . . , t6) =
a
t2
−

b
max{t2, t3, t4, t5 + t6}

,

where a, b > 0 with b > 2a.
(G1): It is clear.
(Ga): Let u, v ∈ R+. Suppose that G(u, v, u, v, u + v, 0) = a

v −
b

max{v,u,v,u+v} ≥ 0. Then u ≥ (b−a
a )v = hv,

where h = b−a
a ∈ (1,+∞).

(Gb) : Let u, v ∈ R+. Suppose that G(u, v, v, u, 0, u + v) = a
v −

b
max{v,u,v,u+v} ≥ 0. Then u ≥ ( b−a

a )v = hv,
where h = b−a

a ∈ (1,+∞). Thus, (G2) is satisfied when h = b−a
a .

(G3): G(u, u, 0, 0, u, u) = a
u −

b
2u = 2a−b

2u < 0, for all u > 0.
Example 1.7. Let G(t1, . . . , t6) : R+ × R+ × · · · × R+︸                  ︷︷                  ︸

6

7→ R be defined by

G(t1, . . . , t6) = at2
1 − bt2

2 +
ct5t6

dt2
3 + et2

4 + 1
,

where c, d, e ≥ 0, a > 0 and b > a + c.
(G1) : It is clear.
(Ga) : Let u, v ∈ R+ and suppose that G(u, v, u, v, u + v, 0) = au2 − bv2 ≥ 0. Then u ≥ ( b

a )
1
2 v = hv, where

h = (b
a )

1
2 .

(Gb) : Let u, v ∈ R+ and suppose that G(u, v, v, u, 0, u + v) = au2 − bv2 ≥ 0. Then u ≥ ( b
a )

1
2 v = hv, where

h = (b
a )

1
2 . Thus (G2) is satisfied when h = ( b

a )
1
2 .

(G3) : G(u, u, 0, 0, u, u) = au2 − bu2 + cu2 = u2(a − b + c) < 0, for all u > 0.
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We generalize the implicit relation of Djoudi [22,23] by using the inverse C−class functions. Let Gc

be the set of all continuous functions G(t1, . . . , t6) : R+ × R+ × · · · × R+︸                  ︷︷                  ︸
6

7→ R satisfying the following

conditions:

(G′1) : G is non decreasing in variables t5 and t6.
(G′2) : there exists h ∈ (1,+∞) such that for every u, v ≥ 0 with

Ga′: G(u, v, u, v, u + v, 0) ≥ 0, or
Gb′: G(u, v, v, u, 0, u + v) ≥ 0,
we have u ≥ hF(v, ϕ(v)), where F ∈ Cinv and ϕ ∈ Φu.

(G′3) : G(u, u, 0, 0, u, u) < 0, for all u > 0.

It is easy to obtain that G ⊆ Gc.
In the following we provide some examples of functions G ∈ Gc.
Example 1.8. Let G(t1, . . . , t6) : R+ × R+ × · · · × R+︸                  ︷︷                  ︸

6

7→ R be given by

G(t1, . . . , t6) = t1 − m[at2 +
bt3 + ct4

t5t6 + 1
],

where a > 1, 0 < b < mb < 1, 0 < c < mc < 1.
Define F ∈ Cinv by F(s, t) = ms,m > 1 and ϕ ∈ Φu as ϕ(t) = 2t, for all t ≥ 0.
(G′1): It is clear.
(Ga′): Let u, v ∈ R+. Suppose that G(u, v, u, v, u + v, 0) = u − m[av + bu + cv] ≥ 0. Then u ≥ h1mv =

h1F(v, ϕ(v)), where h1 = a+c
1−mb ∈ (1,+∞).

(Gb′) : Let u, v ∈ R+. Suppose that G(u, v, v, u, 0, u + v) = u − m[av + bv + cu] ≥ 0. Then u ≥ h2mv =

h2F(v, ϕ(v)), where h2 = a+b
1−mc ∈ (1,+∞). So (G′2) is satisfied.

(G′3): G(u, u, 0, 0, u, u) = u − mau = (1 − ma)u < 0, for all u > 0.
Example 1.9. Let G(t1, . . . , t6) : R+ × R+ × · · · × R+︸                  ︷︷                  ︸

6

7→ R be given by

G(t1, . . . , t6) = t1 − [atp
2 + btp

3 + ctp
4 ]1/p + d

√
t5t6,

where a > (1 + d)p, d ≥ 0 (in particular a > 2p if d = 1), 0 ≤ c, b < 1, p ∈ N.
Define F ∈ Cinv as F(s, t) = a

1
p s with a > (1 + d)p, d ≥ 0 (in particular a > 2p if d = 1) and ϕ ∈ Φu as

ϕ(t) = t, for all t ≥ 0.
(G′1) : It is clear.
(Ga′) : Let u, v ∈ R+. Suppose that G(u, v, u, v, u+v, 0) = u− [avp +bup +cvp]

1
p ≥ 0, then u ≥ ( a+c

1−b )
1
p v =

θ1F(v, ϕ(v)) = θ1av, where θ1 = ( a+c
a(1−b) )

1
p > 1.

(Gb′) : Let u, v ∈ R+. Suppose that G(u, v, v, u, 0, u+v) = u− [avp +bvp +cup]
1
p ≥ 0; then u ≥ (a+b

1−c )
1
p v =

θ2F(v, ϕ(v)) = θ2av, where θ2 = ( a+b
a(1−c) )

1
p > 1. Hence (G′2) hold for θ = min{θ1, θ2}. Thus, (G′2) is

satisfied.
(G′3) : G(u, u, 0, 0, u, u) = u − (aup)

1
p + du = (1 − (a)

1
p + d)u < 0, for all u > 0.

Example 1.10. Let G(t1, . . . , t6) : R+ × R+ × · · · × R+︸                  ︷︷                  ︸
6

7→ R be given by

G(t1, . . . , t6) = at1 − bt2 + c(t3 + t4) − d min{t3, t5t6},
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where
√

b−c
a+c > 1 such that 0 < c < b−a

2 and a, d > 0.
Define F ∈ Cinv by F(s, t) = hs with h ∈ (1,+∞) and ϕ ∈ Φu by ϕ(t) = t, for all t ≥ 0.
(G′1) : It is clear.
(Ga′) : Let u, v ∈ R+. Suppose that G(u, v, u, v, u + v, 0) = au − bv + c(u + v) − d min{u, 0} = au − bv +

cu + cv ≥ 0. Then u ≥ F(v, ϕ(v)) = h2v, where h =

√
b−c
a+c > 1.

(Gb′) : Let u, v ∈ R+. Suppose that G(u, v, v, u, 0, u + v) = au − bv + c(v + u) − d min{v, 0} = au − bv +

cu + cv ≥ 0. Then u ≥ F(v, ϕ(v)) = h2v, where h =

√
b−c
a+c > 1. Thus (G′2) is satisfied.

(G′3) : G(u, u, 0, 0, u, u) = au − bu < 0, for all u > 0.
Example 1.11. Let G(t1, . . . , t6) : R+ × R+ × · · · × R+︸                  ︷︷                  ︸

6

7→ R be given by

G(t1, . . . , t6) = 1 −
t2(h2 + 1)

max{t1, t2, t3, t4, t5 + t6}
,

where h ∈ (1,+∞).
Define F ∈ Cinv by F(s, t) = hs and ϕ ∈ Φu by ϕ(t) = t, for all t ≥ 0.
(G′1) : It is clear.
(Ga′) : Let u, v ∈ R+. Suppose that G(u, v, u, v, u + v, 0) = 1 − v(h2+1)

max{u,v,u,v,u+v} ≥ 0, that is 1 − v(h2+1)
u+v ≥ 0.

Then, we have
u − h2v ≥ 0,

which implies u ≥ hF(v, ϕ(v)) = h2v.
(Gb′) : Let u, v ∈ R+. Suppose that G(u, v, v, u, 0, u + v) = 1 − v(h2+1)

max{u,v,v,u,u+v} ≥ 0, that is 1 − v(h2+1)
u+v ≥ 0.

Then, we have
u − h2v ≥ 0,

which implies u ≥ hF(v, ϕ(v)) = h2v. Thus (G′2) is satisfied.
(G′3) : G(u, u, 0, 0, u, u) = 1 − u(h2+1)

max{u,u,0,0,2u} = 1 − h2+1
2 < 0, for all u > 0.

2. Main results

In this section we prove some common fixed point theorems of a kind of implicit relation via inverse
C−class functions.

Theorem 2.1. Let G ∈ Gc and let A, B, S and T be four self-mappings on a complete metric space
(X, d) satisfying the following conditions:

(i) S and T are surjective,
(ii) for every x, y ∈ X,

G(d(S x,Ty), d(Ax, By), d(Ax, S x), d(By,Ty), d(By, S x), d(Ax,Ty)) ≥ 0,

(iii) the pair (A, S ) is A-semi-compatible and A-reciprocal continuous and the pair (B,T ) is B-semi-
compatible and B-reciprocal continuous.
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Then A, B, S and T have a unique common fixed point.
Proof. Let any x0 ∈ X. Condition (i) assures that one can construct the sequences {xn} and {yn} in

X such that y2n = Ax2n = T x2n+1; y2n+1 = Bx2n+1 = S x2n+2, where n ∈ N0. Using condition (ii) with
x = x2n, y = x2n+1, we obtain

G(d(S x2n,T x2n+1), d(Ax2n, Bx2n+1), d(Ax2n, S x2n),
d(Bx2n+1,T x2n+1), d(Bx2n+1, S x2n), d(Ax2n,T x2n+1))

= G(d(y2n−1, y2n), d(y2n, y2n+1), d(y2n, y2n−1), d(y2n+1, y2n), d(y2n+1, y2n−1), d(y2n, y2n))
= G(d(y2n−1, y2n), d(y2n, y2n+1), d(y2n, y2n−1), d(y2n+1, y2n), d(y2n+1, y2n−1), 0)
≥ 0.

By (G′1), we have

G(d(y2n−1, y2n), d(y2n, y2n+1), d(y2n, y2n−1), d(y2n+1, y2n), d(y2n−1, y2n) + d(y2n, y2n+1), 0) ≥ 0.

From (G′a), we deduce

d(y2n−1, y2n) ≥ hF(d(y2n, y2n+1)), ϕ((d(y2n, y2n+1)))
≥ hd(y2n, y2n+1),

that is

d(y2n, y2n+1) ≤
1
h

d(y2n−1, y2n).

Repeating the previous argument and using (ii) and (G′b) leads to

d(y2n−1, y2n) ≤
1
h

d(y2n−2, y2n−1).

Consequently, we have

d(y2n, y2n+1) ≤
1

h2n d(y0, y1) and d(y2n−1, y2n) ≤
1

h2n−1 d(y0, y1),

where h ∈ (1,+∞). Hence lim
n→+∞

d(yn, yn+1) = 0.
We will now show that {yn} is a Cauchy sequence. For any integer p > 0, we get

d(yn, yn+p) ≤ d(yn, yn+1) + d(yn+1, yn+2) + · · · + d(yn+p−1, yn+p)

≤
1
hn d(y0, y1) +

1
hn+1 d(y0, y1) + · · · +

1
hn+p−1 d(y0, y1)

=
1
hn [1 +

1
h

+
1
h2 + · · ·

1
hp−1 ]d(y0, y1)

≤ kn 1
1 − k

d(y0, y1),

where k = 1
h ∈ (0, 1). Letting n, p → +∞, we obtain d(yn, yn+p) → 0. Therefore {yn} is a Cauchy

sequence. Using the completeness of X one can find t ∈ X such that lim
n→+∞

yn = t. Consequently all
subsequences {Ax2n}, {Bx2n+1}, {S x2n} and {T x2n+1} converge to t, i.e.,

lim
n→+∞

Ax2n = t, lim
n→+∞

Bx2n+1 = t, lim
n→+∞

S x2n = t, lim
n→+∞

T x2n+1 = t.
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Condition (i) implies that t = S u = Tv for some u, v ∈ X.
We now prove that Au = t. From (ii), we have

G(d(S u,T x2n+1), d(Au, Bx2n+1), d(Au, S u), d(Bx2n+1,T x2n+1),
d(Bx2n+1, S u), d(Au,T x2n+1)) ≥ 0.

Taking limit in the above inequality as n→ +∞, one obtains

G(0, d(Au, t), d(Au, t), 0, 0, d(Au, t)) ≥ 0.

Using (Gb′), we get Au = t and S u = Au = t.
Next, we also claim that Bv = t. To see this, note that by condition (ii) with x = x2n, y = v, we have

G(d(S x2n,Tv), d(Ax2n, Bv), d(Ax2n, S x2n), d(Bv,Tv), d(Bv, S x2n), d(Ax2n,Tv))
= G(0, d(t, Bv), 0, d(Bv, t), d(Bv, t), 0)
≥ 0.

From (Ga′), we deduce Bv = t, that is Bv = Tv = t. Hence Au = S u = Bv = Tv = t.
From (iii), A−semi-compatibility of the pair (A, S ) yields lim

n→+∞
AS x2n = S t and A−reciprocally

continuity of the pair (A, S ) yields lim
n→+∞

AS x2n = At. These both yield At = S t.
Again, B−semi-compatibility of and B−reciprocal continuity pair (B,T ) yield BTv = T Bv or Bt = Tt.

In the following, we prove Bt = At.
From (ii), we have

G(d(S t,Tt), d(At, Bt), d(At, S t), d(Bt,Tt), d(Bt, S t), d(At,Tt))
= G(d(At, Bt), d(At, Bt), 0, 0, d(At, Bt), d(At, Bt))
≥ 0,

which is a contradiction to (G′3), so Bt = At. Therefore At = Bt = S t = Tt.

Finally, we show that t is a fixed point of A. Indeed, on the contrary, condition (ii) implies

G(d(S t,Tv), d(At, Bv), d(At, S t), d(Bv,Tv), d(Bv, S t), d(At,Tv))
= G(d(At, t), d(At, t), 0, 0, d(At, t), d(At, t))
≥ 0,

which contradicts (G′3). Hence At = t. Accordingly At = Bt = S t = Tt = t, that is t is a common fixed
point of A, B, S and T .

To prove uniqueness, we suppose that t′ is another common fixed point of A, B, S and T . Then
At′ = Bt′ = S t′ = Tt′ = t′. Now, from condition (ii) with x = t, y = t′, we have

G(d(S t,Tt′), d(At, Bt′), d(At, S t), d(Bt′,Tt′), d(Bt′, S t), d(At,Tt′))
= G(d(t, t′), d(t, t′), 0, 0, d(t, t′), d(t, t′))
≥ 0,
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which contradicts (G′3). Consequently t = t′.
Remark 2.1. Theorem 2.1 holds true if we suppose that the pair (A, S ) is S−semi-compatible and

S−reciprocal continuous and the pair (B,T ) is T−semi-compatible and T−reciprocal continuous.
Corollary 2.1. Let G ∈ Gc and let A, B, S and T be four self-mappings on a complete metric space

(X, d) satisfying the following conditions:

(i) S and T are surjective,
(ii) for every x, y ∈ X,

G(d(S x,Ty), d(Ax, By), d(Ax, S x), d(By,Ty), d(By, S x), d(Ax,Ty)) ≥ 0,

(iii) the pairs (A, S ) and (B,T ) are semi-compatible of type (A)(or compatible of type (E)) and
reciprocal continuous.

Then A, B, S and T have a unique common fixed point.
Proof. Since the semi-compatibility of type (A) (or compatibility of type (E)) and the reciprocally

continuity of the pairs (A, S ) and (B,T ) imply the A−(B−) semi-compatibility and the A−(B−)
reciprocally continuity of the pairs (A, S ) and (B,T ), respectively, then the conclusion follows from
the proof of Theorem 2.1.

We now present some examples which verify the validity of Theorem 2.1.
Example 2.1. Let X = [1,+∞) and x, y ∈ X(y ≥ x) with usual metric d. We define the maps

A, B, S ,T : X → X by,
A(x) = B(x) = 1, ∀x ∈ [1,+∞).

S (x) = T (x) = x, ∀x ∈ [1,+∞).

It is obvious that S , T are surjective. Taking the sequence xn = {1 + εn}, where εn > 0, εn → 0 as
n→ +∞, one can verify that the pair (A, S ) is A−semi-compatible and A−reciprocal continuous. Also
(B,T ) is B−semi-compatible and B−reciprocal continuous. Define now an implicit function G ∈ Gc,
G(t1, . . . , t6) : R+6

7→ R as in Example 1.10:

G (t1, . . . , t6) = at1 − bt2 + c(t3 + t4) − d min{t3, t5t6},

where
√

b−c
a+c > 1 such that 0 < c < b−a

2 and a, d > 0.
Define F ∈ Cinv as F(s, t) = hs with h ∈ (1,+∞) and ϕ ∈ Φu.
For all x, y ∈ [1,+∞), we have

a|x − y| − b · 0 + c(|1 − x| + |1 − y|) − d min{|1 − x|, |1 − y| × |1 − x|}

= a|y − x| + c(x + y − 2) − d(x − 1).

Choosing a = 1, b = 4, c = 1 and d = 2, one has 0 < c < b−a
2 and

a|y − x| + c(x + y − 2) − d(x − 1) =

2(y − x) if x ≤ y

0 if x > y
.
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Therefore all the conditions in Theorem 2.1 are satisfied and 1 is the common fixed point of A, B, S
and T .

Example 2.2. Let X = [1,+∞) and x, y ∈ X with usual metric d. We define maps A, B, S ,T : X 7→ X
such that,

S x = x, x ∈ [1,+∞),

T x = x2 x ∈ [1,+∞),

Ax =

1, x ∈ [1, 2)
x−1

3 , x ∈ [2,+∞)
,

Bx =

1, x ∈ [1, 2)
x2−1

3 , x ∈ [2,+∞)
.

It is obvious from the example that mappings S and T are surjective. On taking sequence {xn} =

1 + εn, where εn → 0 as n → +∞, then it is easy to show that pair (A, S ) is A−Semi compatible and
A−reciprocal continuous. Also pair (B,T ) is B−semi compatible and B−reciprocal continuous.
Now we define G(t1, . . . , t6) : R+ × R+ × · · · × R+︸                  ︷︷                  ︸

6

7→ R as in Example 1.11:

G(t1, . . . , t6) = 1 −
t2(h2 + 1)

max{t1, t2, t3, t4, t5 + t6}
,

where h ∈ (1,+∞).
Define F ∈ Cinv and F(s, t) = hs for all h ∈ (1,+∞) and ϕ ∈ Φu.
Now for all x, y ∈ [1, 2), we have

(h2 + 1)d(Ax, By)
= (h2 + 1)|Ax − By|

≤ d(S x,Ty),

which shows that

(h2 + 1)d(Ax, By) ≤ max{d(S x,Ty), d(Ax, By), d(Ax, S x), d(By,Ty), d(By, S x) + d(Ax,Ty)}.

Thus,

1 −
(h2 + 1)d(Ax, By)

max{d(S x,Ty), d(Ax, By), d(Ax, S x), d(By,Ty), d(By, S x) + d(Ax,Ty)}
≥ 0.

Now for all x, y ∈ [2,+∞), we have

(h2 + 1)d(Ax, By)
= (h2 + 1)|Ax − By|

= (h2 + 1)|
x − 1

3
−

y2 − 1
3
|.

Taking h =
√

2, we get

(h2 + 1)d(Ax, By)
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= |x − y2|

= d(S x,Ty)
≤ max{d(S x,Ty), d(Ax, By), d(Ax, S x), d(By,Ty), d(By, S x) + d(Ax,Ty)},

which implies that

1 −
(h2 + 1)d(Ax, By)

max{d(S x,Ty), d(Ax, By), d(Ax, S x), d(By,Ty), d(By, S x) + d(Ax,Ty)}
≥ 0.

Therefore all the conditions of Theorem 2.1 hold and 1 is the unique common fixed point of A, B, S
and T .

Setting A = A2n, B = A2n+1, S = B2n and T = B2n+1, for n ∈ N0, in Theorem 2.1, we obtain the
following result for two infinite families of self-mappings.

Theorem 2.2. Let G ∈ Gc and let {Ai}i∈N0 and {Bi}i∈N0 be two sequences of self-mappings on a
complete metric space (X, d) satisfying condition (ii) of Theorem 2.1. Assume that, for every n ∈ N0,
the following properties are satisfied:

(i) A2n(X) ⊆ B2n+1(X) and A2n+1(X) ⊆ B2n(X),
(ii) (A2n, B2n) is A2n−semi-compatible and A2n−reciprocal continuous,

(iii) (A2n+1, B2n+1) is A2n+1−semi-compatible and A2n+1−reciprocal continuous.

Then {Ai}i∈N0 and {Bi}i∈N0 have a unique common fixed point.
Proof. Fix k ∈ N0. From hypothesis, we deduce that A2k, A2k+1, B2k and B2k+1 satisfy the inequality

G(d(B2kx, B2k+1y), d(A2kx, A2k+1y), d(B2kx, A2kx), d(B2k+1y, A2k+1y),
d(B2k+1y, A2kx), d(B2kx, A2k+1y)) ≥ 0.

for all x, y ∈ X, where G ∈ Gc. Therefore all the conditions of Theorem 2.1 are satisfied. So
A2n, A2n+1, B2n and B2n+1 have a common fixed point in X.

For the uniqueness, suppose that, for some t, t′ ∈ X, t , t′, one has A2nt = B2nt = A2n+1t = B2n+1t = t
and A2mt′ = B2mt′ = A2m+1t′ = B2m+1t′ = t′, for all n,m ∈ N0. Using condition (ii) of Theorem 2, we
obtain

G(d(B2nt, B2m+1t′), d(A2nt, A2m+1t′), d(B2nt, A2nt), d(B2m+1t′, A2m+1t′),
d(B2m+1t′, A2nt), d(B2nt, A2m+1t′)) ≥ 0,

that is

G(d(t, t′), d(t, t′), 0, 0, d(t, t′), d(t, t′)) ≥ 0.

which contradicts (G′3). Therefore t = t′ and so the sequences of maps {Ai}i∈N0 and {Bi}i∈N0 have a
unique fixed point.

Remark 2.2. According to [19, Remark 3.9], one can verify the followings:

(i) Theorems 2.1 improves Theorems 3.7, 3.8 in [19] by exploring new kind of semi-compatibility
in lieu of responding compatibility of type (E).
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(ii) Under the assumptions of Theorems 2.1, the main results of Theorems 3.1, 3.2 in [21] are still
validate, respectively.

Theorem 2.3. Let G ∈ Gc and let A, B and S be three self-mappings on a complete metric space
(X, d) satisfying the following conditions:

(i) S is surjective,
(ii) for all x, y ∈ X,

G(d(S x, S y), d(Ax, By), d(Ax, S x), d(By, S y), d(By, S x), d(Ax, S y)) ≥ 0,

(iii) the pair (A, S ) is A−semi-compatible and A−reciprocal continuous and the pair (B, S ) is B−semi-
compatible and B−reciprocal continuous.

Then A, B and S have a unique common fixed point.
Proof. Follows immediately in a similar way to that in the proof of Theorem 2.1.
Theorem 2.4. Let G ∈ Gc and let A, B and {gi}i∈N be self-mappings on a complete metric space

(X, d) satisfying the following conditions:

(i) {gi}i∈N are surjective,
(ii) for all x, y ∈ X and i ∈ N,

G(d(gix, gi+1y), d(Ax, By), d(Ax, gi+1x), d(By, giy), d(By, gix), d(Ax, giy)) ≥ 0,

(iii) the pair (A, gi) is A−semi-compatible and A−reciprocal continuous and the pair (B, gi+1) is
B−semi-compatible and B−reciprocal continuous, for all i ∈ N.

Then A, B and {gi}i∈N have a unique common fixed point.
Proof. Letting i = 1 in the inequality of condition (ii), we get exactly the hypothesis of Theorem

2.1 for the mappings A, B, g1 and g2 and so they have a unique common fixed point t. Indeed, if t′ is
another fixed point for A, B, g1, g2 with t′ , t, then using (ii) for i = 1, we have

G(d(g1t′, g2t), d(At′, Bt), d(At′, g2t′), d(Bt, g1t), d(Bt, g1t′), d(At′, g1t))
= G(d(t′, t), d(t′, t), 0, 0, d(t′, t), d(t, t′)) ≥ 0,

which contradicts (G′3), hence t′ = t.
By letting now i = 2, we get the hypothesis of Theorem 2.1 for the mappings A, B, g2 and g3, and

consequently they have a unique common fixed point t′′. Thus t = t′′. In this way, we clearly see that t
is the required point.

Remark 2.3. Theorem 2.4 generalizes Theorem 4.3 in [23] by reducing weak compatibility to
certain semi-compatibility and reciprocal continuity.

Corollary 2.2. Let A, B, S and T be four self-mappings on a complete metric space (X, d) satisfying
conditions (i), (iii) of Theorem 2.1. Suppose that, for all x, y ∈ X, we have the following inequality:

dp(S x,Ty) ≥ adp(Ax, By) + bdp(Ax, S x) + cdp(By,Ty),

where a > 1, 0 ≤ c, b < 1, p ∈ N. Then A, B, S and T have a unique common fixed point.
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Proof. Take a function G ∈ Gc as in Example 1.9 with d = 0. We have

G(d(S x,Ty), d(Ax, By), d(Ax, S x), d(By,Ty), d(By, S x), d(Ax,Ty))

= d(S x,Ty) − [adp(Ax, By) + bdp(Ax, S x) + cdp(By,Ty)]
1
p ≥ 0.

The conclusion follows from Theorem 2.1.
Remark 2.4. Corollary 2.2 is an improved result of Corollary 1 in [22] and Corollary 4.1 in [23] in

the following aspects:

(i) compatibility of type (B) in [22] and weak compatibility in [23] are replaced by
semi-compatibility and reciprocal continuity,

(ii) the requirement of continuity of mappings in [22] are relaxed.

Theorem 2.5. Let G ∈ Gc and let A and S be two self-mappings on a complete metric space (X, d)
satisfying the following conditions:

(i) A(X) ⊆ S (X) or A and S are surjective,
(ii) for every x, y ∈ X,

G(d(S x, S y), d(Ax, Ay), d(Ax, S x), d(Ay, S y), d(Ax, S y), d(Ay, S x)) ≥ 0,

(iii) the pair (A, S ) is A-semi-compatible and A-reciprocal continuous or the pair (A, S ) is S -semi-
compatible and S -reciprocal continuous.

Then A and T have unique common fixed point.
Proof. Follows immediately using similar arguments as in the proof of Theorem 2.1.

3. Conclusion

Based on the notions of semi-compatibility and reciprocal continuity of a pair of self-mappings
( f , g), we introduce some new types of a pair of self-mappings ( f , g), called semi-compatibility of type
(A), f−semi-compatibility of type (A), g−semi-compatibility of type (A), f−reciprocal continuity and
g−reciprocal continuity, which are extensions of the corresponding notions. Some valid examples are
set up to demonstrate the comparisons between these conceptions. Moreover, by using the inverse
C−class functions, we provide a new kind of implicit relations Gc which is a generalization of the
implicit relations G introduced by Djoudi. The achievement of this paper is to extend and improve
the results of [19, 21–23] by using general implicit relations, weakening compatibility and dropping
continuity.
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18. M. A. Alghamdi, S. Radenović, N. Shahzad, On Some Generalizations of Commuting Mappings,
Abstr. Appl. Anal., 2012 (2012), Article ID: 952052.

19. M. R. Singh, Y. M. Singh, On various type of compatible mappings and common fixed point
theorems for non-continuous mappings, Hacet. J. Math. Stat., 40 (2011), 503–513.

20. R. P. Pant, A common fixed point theorem under a new condition, Indian J. Pure Appl. Math., 30
(1999), 147–152.

21. A. H. Ansari, V. Popa, Y. M. Singh, M. S. Khan, Fixed point theorems of an implicit relation via
C−class function in metric spaces, J. Adv. Math. Stud., 13 (2020), 1–10.

22. A. Djoudi, A unique common fixed point for compatible mappings of type (B) satisfying an implicit
relation, Demonstratio Math., 36 (2003), 763–770.

23. A. Djoudi, General fixed point theorems for weakly compatible maps, Demonstratio Math., 38
(2005), 197–206.

24. M. R. Singh, Y. M. Singh, Compatible mappings of type (E) and common fixed point theorems of
Meir-Keeler type, Int. J. Math. Sci. Eng. Appl., 1 (2007), 299–315.

25. R. P. Pant, R. K. Bisht, D. Arora, Weak reciprocal continuity and fixed point theorems, Ann. Univ.
Ferrara, 57 (2011), 181–190.

26. N. Saleem, A. H. Ansari, M. K. Jain, Some fixed point theorems of inverse C−class function under
weak semi-compatibility, J. Fixed Point Theory, 2018 (2018), 9.

27. A. H. Ansari, Note on “ϕ − ψ− contractive type mappings and related fixed point”, The 2nd
regional conference on Mathematics and Applications, Payame Noor University, 2014, 377–380.

c© 2021 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 6, Issue 3, 2636–2652.

http://creativecommons.org/licenses/by/4.0

	Introduction and preliminaries
	Main results
	Conclusion

