The main goal of this paper is to develop a fast and effective meshless method by using radial basis function (RBF) for the time domain model equations of electromagnetic wave concentration device. This is mainly because the complex model equations involve different partial differential equations in different subdomains, which makes the meshless method very attractive and also very challenging. In order to simulate the propagation of electromagnetic waves in the electromagnetic concentrator, perfect matching layer technology was used to reduce an unbounded domain problem into a bounded domain problem. Borrowing the idea of the leap-frog finite-difference time-domain scheme, I develop the leap-frog RBF meshless method to solve the coupled complex modeling equations. The numerical results obtained by using a multiquadric RBF and Gaussian RBF demonstrate that our RBF method is very effective.
Citation: Bin He. Developing a leap-frog meshless methods with radial basis functions for modeling of electromagnetic concentrator[J]. AIMS Mathematics, 2022, 7(9): 17133-17149. doi: 10.3934/math.2022943
The main goal of this paper is to develop a fast and effective meshless method by using radial basis function (RBF) for the time domain model equations of electromagnetic wave concentration device. This is mainly because the complex model equations involve different partial differential equations in different subdomains, which makes the meshless method very attractive and also very challenging. In order to simulate the propagation of electromagnetic waves in the electromagnetic concentrator, perfect matching layer technology was used to reduce an unbounded domain problem into a bounded domain problem. Borrowing the idea of the leap-frog finite-difference time-domain scheme, I develop the leap-frog RBF meshless method to solve the coupled complex modeling equations. The numerical results obtained by using a multiquadric RBF and Gaussian RBF demonstrate that our RBF method is very effective.
[1] | V. A. Bokil, N. L. Gibson, Analysis of spatial high-order fnite difference methods for Maxwelli's equations in dispersive media, IMA J. Numer. Anal., 32 (2012), 926–956. https://doi.org/10.1093/imanum/drr001 doi: 10.1093/imanum/drr001 |
[2] | W. Chen, Z. J. Fu, C. S. Chen, Recent advances in radial basis function collocation methods, Berlin, Heidelberg: Springer, 2014. https://doi.org/10.1007/978-3-642-39572-7 |
[3] | R. Cavoretto, A. De Rossi, M. S. Mukhametzhanov, Y. D. Sergeyev, On the search of the shape parameter in radial basis functions using univariate global optimization methods, J. Glob. Optim., 79 (2021), 305–327. https://doi.org/10.1007/s10898-019-00853-3 doi: 10.1007/s10898-019-00853-3 |
[4] | Y. L. Chen, S. Gottlieb, A. Heryudono, A. Narayan, A reduced radial basis function method for partial differential equations on irregular domains, J. Sci. Comput., 66 (2016), 67–90. https://doi.org/10.1007/s10915-015-0013-8 doi: 10.1007/s10915-015-0013-8 |
[5] | H. Y. Chen, C. T. Chen, Electromagnetic wave manipulation by layered systems using the transformation media concept, Phys. Rev. B., 78 (2008), 054204. https://doi.org/10.1103/PhysRevB.78.054204 doi: 10.1103/PhysRevB.78.054204 |
[6] | H. Y. Chen, B. Hou, S. Y. Chen, X. Y. Ao, W. J. Wen, C. T. Chan, Design and experimental realization of a broadband transformationmedia field rotator atmicrowave frequencies, Phys. Rev. Lett., 102 (2009), 183903. https://doi.org/10.1103/PhysRevLett.102.183903 doi: 10.1103/PhysRevLett.102.183903 |
[7] | G. Castaldi, S. Savoia, V. Galdi, A. Alu, N. Engheta, PT metamaterials via complexcoordinate transformation optics, Phys. Rev. Lett., 110 (2013), 173901. https://doi.org/10.1103/PhysRevLett.110.173901 doi: 10.1103/PhysRevLett.110.173901 |
[8] | M. Cassier, P. Joly, M. Kachanovska, Mathematical models for dispersive electromagnetic waves: An overview, Comput. Math. Appl., 74 (2017), 2792–2830. https://doi.org/10.1016/j.camwa.2017.07.025 doi: 10.1016/j.camwa.2017.07.025 |
[9] | M. Dehghan, M. Abbaszadeh, Error analysis and numerical simulation of magnetohydrodynamics (MHD) equation based on the interpolating element free Galerkin (IEFG) method, Appl. Numer. Math., 137 (2019), 252–273. https://doi.org/10.1016/j.apnum.2018.10.004 doi: 10.1016/j.apnum.2018.10.004 |
[10] | M. Dehghan, M. Abbaszadeh, The solution of nonlinear Green-Naghdi equation arising in water sciences via a meshless method which combines moving kriging interpolation shape functions with the weighted essentially non-oscillatory method, Commun. Nonlinear Sci., 68 (2019), 220–239. https://doi.org/10.1016/j.cnsns.2018.07.029 doi: 10.1016/j.cnsns.2018.07.029 |
[11] | M. Dehghan, V. Mohammadi, A numerical scheme based on radial basis function finite difference (RBF-FD) technique for solving the high-dimensional nonlinear Schrdinger equations using an explicit time discretization: Runge-Kutta method, Comput. Phys. Commun., 217 (2017), 23–34. https://doi.org/10.1016/j.cpc.2017.03.012 doi: 10.1016/j.cpc.2017.03.012 |
[12] | M. Dehghan, M. Abbaszadeh, The use of proper orthogonal decomposition (POD) meshless RBF-FD technique to simulate the shallow water equations, J. Comput. Phys., 351 (2017), 478–510. https://doi.org/10.1016/j.jcp.2017.09.007 doi: 10.1016/j.jcp.2017.09.007 |
[13] | M. Dehghan, M. Haghjoo-Saniji, The local radial point interpolation meshless method for solving Maxwell equations, Eng. Comput.-Germany, 33 (2017), 897–918. https://doi.org/10.1007/s00366-017-0505-2 doi: 10.1007/s00366-017-0505-2 |
[14] | M. Dehghan, R. Salehi, A meshless local Petrov-Galerkin method for the time-dependent Maxwell equations, J. Comput. Appl. Math., 268 (2014), 93–110. https://doi.org/10.1016/j.cam.2014.02.013 doi: 10.1016/j.cam.2014.02.013 |
[15] | B. Fornberg, N. Flyer, Solving PDEs with radial basis functions, Acta Numer., 24 (2015), 215–258. https://doi.org/10.1017/S0962492914000130 doi: 10.1017/S0962492914000130 |
[16] | B. Fornberg, N. Flyer, A primer on radial basis functions with applications to the geosciences, Philadelphia, PA, Society for Industrial and Applied Mathematics, 2015, 39–90. https://doi.org/10.1137/1.9781611974041.ch3 |
[17] | G. E. Fasshauer, J. G. Zhang, On choosing "optimal" shape parameters for RBF approximation, Numer. Algor., 45 (2007), 345–368. https://doi.org/10.1007/s11075-007-9072-8 doi: 10.1007/s11075-007-9072-8 |
[18] | A. Greenleaf, Y. Kurylev, M. Lassas, G. Uhlmann, Cloaking devices, electromagnetic wormholes, and transformation optics, SIAM Rev., 51 (2009), 3–33. https://doi.org/10.1137/080716827 doi: 10.1137/080716827 |
[19] | J. Y. Guo, J. H. Jung, A RBF-WENO finite volume method for hyperbolic conservation laws with the monotone polynomial interpolation method, Appl. Numer. Math., 112 (2017), 27–50. https://doi.org/10.1016/j.apnum.2016.10.003 doi: 10.1016/j.apnum.2016.10.003 |
[20] | W. W. Gao, Z. M. Wu, Solving time-dependent differential equations by multiquadric trigonometric quasi-binterpolation, Appl. Math. Comput., 253 (2015), 377–386. https://doi.org/10.1016/j.amc.2014.12.008 doi: 10.1016/j.amc.2014.12.008 |
[21] | Y. C. Hon, K. F. Cheung, X. Z. Mao, E. J. Kansa, Multiquadric solution for shallow water equations, J. Hydraul. Eng., 125 (1999), 524–533. https://doi.org/10.1061/(ASCE)0733-9429(1999)125:5(524) doi: 10.1061/(ASCE)0733-9429(1999)125:5(524) |
[22] | Y. Q. Huang, J. C. Li, Numerical analysis of a finite element method for the electromagnetic concentrator model, Adv. Comput. Math., 46 (2020), 77. https://doi.org/10.1007/s10444-020-09817-8 doi: 10.1007/s10444-020-09817-8 |
[23] | E. J. Kansa, Multiquadrics–A scattered data approximation scheme with applications to computational fluid dynamics, part II–solutions to parabolic, hyperbolic and elliptic partial differential equations, Comput. Math. Appl., 19 (1990), 147–161. https://doi.org/10.1016/0898-1221(90)90271-K doi: 10.1016/0898-1221(90)90271-K |
[24] | J. C. Li, C. K. Shi, C. W. Shu, Optimal non-dissipative discontinuous Galerkin methods for Maxwelli's equations in Drude metamaterials, Comput. Math. Appl., 73 (2017), 1760–1780. https://doi.org/10.1016/j.camwa.2017.02.018 doi: 10.1016/j.camwa.2017.02.018 |
[25] | J. C. Li, Y. Q. Huang, W. Yang, A. Wood, Mathematical analysis and time-domain finite element simulation of carpet cloak, SIAM J. Appl. Math., 74 (2014), 1136–1151. https://doi.org/10.1137/140959250 doi: 10.1137/140959250 |
[26] | J. C. Li, Y. T. Chen, Computational partial differential equations using MATLAB, 2Eds., Boca Raton: CRC Press, 2019,422. https://doi.org/10.1201/9780429266027 |
[27] | J. C. Li, Y. Q. Huang, Time-domain finite element methods for Maxwelli's equations in metamaterials, Berlin, Heidelberg: Springer, 2013. https://doi.org/10.1007/978-3-642-33789-5 |
[28] | J. C. Li, J. S. Hesthaven, Analysis and application of the nodal discontinuous Galerkin method for wave propagation in metamaterials, J. Comput. Phys., 258 (2014), 915–930. https://doi.org/10.1016/j.jcp.2013.11.018 doi: 10.1016/j.jcp.2013.11.018 |
[29] | J. C. Li, B. Nan, Simulating backward wave propagation in metamaterial with radial basis functions, Res. Appl. Math., 2 (2019), 100009. https://doi.org/10.1016/j.rinam.2019.100009 doi: 10.1016/j.rinam.2019.100009 |
[30] | J. C. Li, A. H. D. Cheng, C. S. Chen, A comparison of effciency and error convergence of multiquadric collocation method and finite element method, Eng. Anal. Bound. Elem., 27 (2003), 251–257. https://doi.org/10.1016/S0955-7997(02)00081-4 doi: 10.1016/S0955-7997(02)00081-4 |
[31] | J. C. Li, Mixed methods for fourth-order elliptic and parabolic problems using radial basis functions, Adv. Comput. Math., 23 (2005), 21–30. https://doi.org/10.1007/s10444-004-1807-7 doi: 10.1007/s10444-004-1807-7 |
[32] | Y. Y. Qiao, J. P. Zhao, X. L. Feng, A compact integrated RBF method for time fractional convection-diffusion-reaction equations, Comput. Math. Appl., 77 (2019), 2263–2278. https://doi.org/10.1016/j.camwa.2018.12.017 doi: 10.1016/j.camwa.2018.12.017 |
[33] | M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, J. B. Pendry, Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwelli's equations, Photonic. Nanostruct., 6 (2008), 87–95. https://doi.org/10.1016/j.photonics.2007.07.013 doi: 10.1016/j.photonics.2007.07.013 |
[34] | D. H. Werner, D.H. Kwon, Transformation electromagnetics and metamaterials: Fundamental principles and applications, London: Springer, 2014. https://doi.org/10.1007/978-1-4471-4996-5 |
[35] | S. C. Yang, Y. Q. Yu, Z. Z. Chen, S. Ponomarenko, A time-domain collocation meshless method with local radial basis functions for electromagnetic transient analysis, IEEE T. Antenn. Propag., 62 (2014), 5334–5338. https://doi.org/10.1109/TAP.2014.2342220 doi: 10.1109/TAP.2014.2342220 |
[36] | W. Yang, J. C. Li, Y. Q. Huang, B. He, Developing finite element methods for simulating transformation optics devices with metamaterials, Commun. Comput. Phys., 25 (2019), 135–154. https://doi.org/10.4208/cicp.OA-2017-0225 doi: 10.4208/cicp.OA-2017-0225 |
[37] | W. Yang, J. C. Li, Y. Q. Huang, Time-domain finite element method and analysis for modeling of surface plasmon polaritons, Comput. Method. Appl. M., 372 (2020), 113349. https://doi.org/10.1016/j.cma.2020.113349 doi: 10.1016/j.cma.2020.113349 |
[38] | H. Zheng, G. M. Yao, L. H. Kuo, X. X. Li, On the selection of a good shape parameter of the localized method of approximated particular solutions, Adv. Appl. Math. Mech., 10 (2018), 896–911. https://doi.org/10.4208/aamm.OA-2017-0167 doi: 10.4208/aamm.OA-2017-0167 |
[39] | X. Zhou, Y. C. Hon, J. C. Li, Overlapping domain decomposition method by radial basis functions, Appl. Numer. Math., 44 (2003), 241–255. https://doi.org/10.1016/S0168-9274(02)00107-1 doi: 10.1016/S0168-9274(02)00107-1 |
[40] | Y. Zhang, D. D. Nguyen, K. W. Du, J. Xu, S. Zhao, Time-domain numerical solutions of Maxwell interface problems with discontinuous electromagnetic waves, Adv. Appl. Math. Mech., 8 (2016), 353–385. https://doi.org/10.4208/aamm.2014.m811 doi: 10.4208/aamm.2014.m811 |