In this work, by introducing a scalar matrix $ \alpha I $, we transform the complex symmetric indefinite linear systems $ (W+i T)x = b $ into a block two-by-two complex equations equivalently, and propose an efficient relaxed shift-splitting (ERSS) preconditioner. By adopting the relaxation technique, the ERSS preconditioner is not only a computational advantage but also closer to the original two-by-two of complex coefficient matrix. The eigenvalue distributions of the preconditioned matrix are analysed. An efficient and practical formula for computing the parameter value $ \alpha $ is also derived by computing the Frobenius norm of symmetric indefinite matrix $ T $. Numerical examples on a few model problems are illustrated to verify the performances of the ERSS preconditioner.
Citation: Qian Li, Qianqian Yuan, Jianhua Chen. An efficient relaxed shift-splitting preconditioner for a class of complex symmetric indefinite linear systems[J]. AIMS Mathematics, 2022, 7(9): 17123-17132. doi: 10.3934/math.2022942
In this work, by introducing a scalar matrix $ \alpha I $, we transform the complex symmetric indefinite linear systems $ (W+i T)x = b $ into a block two-by-two complex equations equivalently, and propose an efficient relaxed shift-splitting (ERSS) preconditioner. By adopting the relaxation technique, the ERSS preconditioner is not only a computational advantage but also closer to the original two-by-two of complex coefficient matrix. The eigenvalue distributions of the preconditioned matrix are analysed. An efficient and practical formula for computing the parameter value $ \alpha $ is also derived by computing the Frobenius norm of symmetric indefinite matrix $ T $. Numerical examples on a few model problems are illustrated to verify the performances of the ERSS preconditioner.
[1] | O. Axelsson, Optimality properties of a square block matrix preconditioner with applications, Comput. Math. Appl., 80 (2020), 286–294. https://doi.org/10.1016/j.camwa.2019.09.024 doi: 10.1016/j.camwa.2019.09.024 |
[2] | O. Axelsson, S. Farouq, M. Neytcheva, Comparison of preconditioned Krylov subspace iteration methods for PDE-constrained optimization problems, Numer. Algorithms, 73 (2016), 631–663. https://doi.org/10.1007/s11075-016-0111-1 doi: 10.1007/s11075-016-0111-1 |
[3] | O. Axelsson, J. Karátson, Superior properties of the PRESB preconditioner for operators on two-by-two block form with square blocks, Numer. Math., 146 (2020), 335–368. https://doi.org/10.1007/s00211-020-01143-x doi: 10.1007/s00211-020-01143-x |
[4] |
O. Axelsson, A. Kucherov, Real valued iterative methods for solving complex symmetric linear systems, Numer. Linear Algebr. Appl., 7 (2000), 197–218. https://doi.org/10.1002/1099-1506(200005)7:4<197::AID-NLA194>.0.CO;2-S doi: 10.1002/1099-1506(200005)7:4<197:: |
[5] | O. Axelsson, M. Neytcheva, B. Ahmad, A comparison of iterative methods to solve complex valued linear algebraic systems, Numer. Algorithms, 66 (2014), 811–841. https://doi.org/10.1007/s11075-013-9764-1 doi: 10.1007/s11075-013-9764-1 |
[6] | Z. Z. Bai, On preconditioned iteration methods for complex linear systems, J. Eng. Math., 93 (2015), 41–60. https://doi.org/10.1007/s10665-013-9670-5 doi: 10.1007/s10665-013-9670-5 |
[7] | Z. Z. Bai, M. Benzi, F. Chen, Modified HSS iteration methods for a class of complex symmetric linear systems, Computing, 87 (2010), 93–111. https://doi.org/10.1007/s00607-010-0077-0 doi: 10.1007/s00607-010-0077-0 |
[8] | Z. Z. Bai, M. Benzi, F. Chen, On preconditioned MHSS iteration methods for complex symmetric linear systems, Numer. Algorithms, 56 (2011), 297–317. https://doi.org/10.1007/s11075-010-9441-6 doi: 10.1007/s11075-010-9441-6 |
[9] | Z. Z. Bai, G. H. Golub, M. K. Ng, Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems, SIAM J. Matrix Anal. A., 24 (2003), 603–626. https://doi.org/10.1137/S0895479801395458 doi: 10.1137/S0895479801395458 |
[10] | M. Benzi, D. Bertaccini, Block preconditioning of real-valued iterative algorithms for complex linear systems, IMA J. Numer. Anal., 28 (2008), 598–618. https://doi.org/10.1093/imanum/drm039 doi: 10.1093/imanum/drm039 |
[11] | M. Benzi, G. H. Golub, J. Liesen, Numerical solution of saddle point problems, Acta Numer., 14 (2005), 1–137. https://doi.org/10.1017/S0962492904000212 doi: 10.1017/S0962492904000212 |
[12] | M. Benzi, M. K. Ng, Q. Niu, Z. Wang, A relaxed dimensional factorization preconditioner for the incompressible Navier-Stokes equations, J. Comput. Phys., 230 (2011), 6185–6202. https://doi.org/10.1016/j.jcp.2011.04.001 doi: 10.1016/j.jcp.2011.04.001 |
[13] | Y. Cao, J. Du, Q. Niu, Shift-splitting preconditioners for saddle point problems, J. Comput. Appl. Math., 272 (2014), 239–250. https://doi.org/10.1016/j.cam.2014.05.017 doi: 10.1016/j.cam.2014.05.017 |
[14] | F. Chen, T. Y. Li, K. Y. Lu, G. V. Muratova, Modified QHSS iteration methods for a class of complex symmetric linear systems, Appl. Numer. Math., 164 (2021), 3–14. https://doi.org/10.1016/j.apnum.2020.01.018 doi: 10.1016/j.apnum.2020.01.018 |
[15] | V. E. Howle, S. A.Vavasis, An iterative method for solving complex-symmetric systems arising in electrical power modeling, SIAM J. Matrix Anal. A., 26 (2005), 1150–1178. https://doi.org/10.1137/S0895479800370871 doi: 10.1137/S0895479800370871 |
[16] | Y. M. Huang, A practical formula for computing optimal parameters in the HSS iteration methods, J. Comput. Appl. Math., 255 (2014), 142–149. https://doi.org/10.1016/j.cam.2013.01.023 doi: 10.1016/j.cam.2013.01.023 |
[17] | C. L. Li, C. F. Ma, On Euler preconditioned SHSS iterative method for a class of complex symmetric linear systems, ESAIM-Math. Model. Num., 53 (2019), 1607–1627. https://doi.org/10.1051/m2an/2019029 doi: 10.1051/m2an/2019029 |
[18] | A. Shirilord, M. Dehghan, Double parameter splitting (DPS) iteration method for solving complex symmetric linear systems, Appl. Numer. Math., 171 (2022), 176–192. https://doi.org/10.1016/j.apnum.2021.08.010 doi: 10.1016/j.apnum.2021.08.010 |
[19] | S. L. Wu, Several splittings of the Hermitian and skew-Hermitian splitting method for a class of complex symmetric linear systems, Numer. Linear Algebr., 22 (2015), 338–356. https://doi.org/10.1002/nla.1952 doi: 10.1002/nla.1952 |
[20] | A. L. Yang, Scaled norm minimization method for computing the parameters of the HSS and the two-parameter HSS preconditioners, Numer. Linear Algebr., 25 (2018), e2169. https://doi.org/10.1002/nla.2169 doi: 10.1002/nla.2169 |
[21] | J. H. Zhang, H. Dai, A new splitting preconditioner for the iterative solution of complex symmetric indefinite linear systems, Appl. Math. Lett., 49 (2015), 100–106. https://doi.org/10.1016/j.aml.2015.05.006 doi: 10.1016/j.aml.2015.05.006 |
[22] | J. H. Zhang, H. Dai, A new block preconditioner for complex symmetric indefinite linear systems, Numer. Algorithms, 74 (2017), 889–903. https://doi.org/10.1007/s11075-016-0175-y doi: 10.1007/s11075-016-0175-y |
[23] | J. L. Zhang, H. T. Fan, C. Q. Gu, An improved block splitting preconditioner for complex symmetric indefinite linear systems, Numer. Algorithms, 72 (2018), 451–478. https://doi.org/10.1007/s11075-017-0323-z doi: 10.1007/s11075-017-0323-z |
[24] | Z. Zheng, F. L. Huang, Y. C. Peng, Double-step scale splitting iteration method for a class of complex symmetric linear systems, Appl. Math. Lett., 73 (2017), 91–97. https://doi.org/10.1016/j.aml.2017.04.017 doi: 10.1016/j.aml.2017.04.017 |
[25] | Z. Zheng, M. L. Zeng, G. F. Zhang, A variant of PMHSS iteration method for a class of complex symmetric indefinite linear systems, Numer. Algorithms, 2022, 1–18. https://doi.org/10.1007/s11075-022-01262-6 |