In this article, we introduced the concept of neutrosophic metric-like spaces and obtained some fixed point results in the sense of neutrosophic metric-like spaces. Our results are improvements of recent results in the existing literature. For the validity of these results some non-trivial examples are imparted.
Citation: Fahim Ud Din, Khalil Javed, Umar Ishtiaq, Khalil Ahmed, Muhammad Arshad, Choonkil Park. Existence of fixed point results in neutrosophic metric-like spaces[J]. AIMS Mathematics, 2022, 7(9): 17105-17122. doi: 10.3934/math.2022941
[1] | Muhammad Riaz, Umar Ishtiaq, Choonkil Park, Khaleel Ahmad, Fahim Uddin . Some fixed point results for ξ-chainable neutrosophic and generalized neutrosophic cone metric spaces with application. AIMS Mathematics, 2022, 7(8): 14756-14784. doi: 10.3934/math.2022811 |
[2] | Fahim Uddin, Umar Ishtiaq, Naeem Saleem, Khaleel Ahmad, Fahd Jarad . Fixed point theorems for controlled neutrosophic metric-like spaces. AIMS Mathematics, 2022, 7(12): 20711-20739. doi: 10.3934/math.20221135 |
[3] | Umar Ishtiaq, Aftab Hussain, Hamed Al Sulami . Certain new aspects in fuzzy fixed point theory. AIMS Mathematics, 2022, 7(5): 8558-8573. doi: 10.3934/math.2022477 |
[4] | Hasanen A. Hammad, Maryam G. Alshehri . Generalized Ξ-metric-like space and new fixed point results with an application. AIMS Mathematics, 2023, 8(2): 2453-2472. doi: 10.3934/math.2023127 |
[5] | Muhammad Suhail Aslam, Mohammad Showkat Rahim Chowdhury, Liliana Guran, Isra Manzoor, Thabet Abdeljawad, Dania Santina, Nabil Mlaiki . Complex-valued double controlled metric like spaces with applications to fixed point theorems and Fredholm type integral equations. AIMS Mathematics, 2023, 8(2): 4944-4963. doi: 10.3934/math.2023247 |
[6] | Umar Ishtiaq, Khaleel Ahmad, Muhammad Imran Asjad, Farhan Ali, Fahd Jarad . Common fixed point, Baire's and Cantor's theorems in neutrosophic 2-metric spaces. AIMS Mathematics, 2023, 8(2): 2532-2555. doi: 10.3934/math.2023131 |
[7] | Afrah. A. N. Abdou . Fixed points of Kannan maps in modular metric spaces. AIMS Mathematics, 2020, 5(6): 6395-6403. doi: 10.3934/math.2020411 |
[8] | Mohammed Shehu Shagari, Saima Rashid, Khadijah M. Abualnaja, Monairah Alansari . On nonlinear fuzzy set-valued Θ-contractions with applications. AIMS Mathematics, 2021, 6(10): 10431-10448. doi: 10.3934/math.2021605 |
[9] | A. M. Zidan, Z. Mostefaoui . Double controlled quasi metric-like spaces and some topological properties of this space. AIMS Mathematics, 2021, 6(10): 11584-11594. doi: 10.3934/math.2021672 |
[10] | Gunaseelan Mani, Arul Joseph Gnanaprakasam, Vidhya Varadharajan, Fahd Jarad . Solving an integral equation vian orthogonal neutrosophic rectangular metric space. AIMS Mathematics, 2023, 8(2): 3791-3825. doi: 10.3934/math.2023189 |
In this article, we introduced the concept of neutrosophic metric-like spaces and obtained some fixed point results in the sense of neutrosophic metric-like spaces. Our results are improvements of recent results in the existing literature. For the validity of these results some non-trivial examples are imparted.
The notion of fuzzy sets was given by Zadeh [9], and this gave a new direction to this research field. A large number of researchers doing work in this direction due to its wide range of applications in science. In this connectedness, Kramosil and Michalek [10] initiated the concept of fuzzy metric spaces by generalizing the notion of probabilistic metric spaces to fuzzy metric spaces. George and Veeramani [11] derived a Hausdorff topology initiated by fuzzy metric to modify the notion of fuzzy metric spaces. Fixed point theory enriched with many generalizations and playing an important role to find the existence of solution. Garbiec [12] displayed the fuzzy version of Banach contraction principle in fuzzy metric spaces. In [13,14], a great job has been done by authors in extending contraction results. In recent times, Harandi [7] originated the notion of metric-like spaces, which generalized the concept of metric spaces in beautiful manners. In this connectedness, Shukla and Abbas [8] generalized the notion of metric-like spaces and introduced fuzzy metric-like spaces. The approach of intuitionistic fuzzy metric spaces was tossed by Park in [2]. Kirişci and Simsek [1] generalized the approach of intuitionistic fuzzy metric spaces and tossed the approach of neutrosophic metric spaces. Simsek, and Kirişci [5] and Sowndrarajan et al. [6] proved some fixed point results in the setting of neutrosophic metric spaces. In [3,4,15,16,17] proved several fixed point results for contractive mappings.
In this article, we introduced the notion of neutrosophic metric-like spaces and established some fixed point results with non-trivial examples.
First, we give some basic definitions that are helpful for readers to understand main section.
Definition 2.1. [8] A 3-tuple (β,ψ,∗) is said to be a fuzzy metric-like space if β≠⏀ is a random set, ∗ is a continuous t-norm and ψ is a fuzzy set on β×β×(0,∞) meet the points below for all π,λ,μ∈β,t,s>0:
(FL1) ψ(π,λ,t)>0;
(FL2) If ψ(π,λ,t)=1, then π=λ;
(FL3) ψ(π,λ,t)=ψ(λ,π,t);
(FL4) ψ(π,μ,t+s)≥ψ(π,λ,t)∗ψ(λ,μ,s);
(FL5) ψ(π,λ,⋅):(0,+∞)→[0,1] is continuous.
Example 2.2. [8] Let β=R+, k∈R+ and m>0. Define continuous t-norm by g∗h=gh and the fuzzy set ψ on β×β×(0,+∞) by
ψ(π,λ,t)=ktkt+m(max{π,λ}),forallπ,λ∈β,t>0. |
Then (β,ψ,∗) is a fuzzy metric-like space.
Definition 2.3. [1] Suppose β≠∅, assume a six tuple (β,ψ,φ,ϸ,∗,∘) where * is a continuous t-norm, ∘ is a continuous t-conorm, ψ,φandϸ neutrosophic sets on β×β×(0,+∞). If (β,ψ,φ,ϸ,∗,∘) meet the below circumstances for all π,λ,μ∈βandt,s>0:
(NS1) ψ(π,λ,t)+φ(π,λ,t)+ϸ(π,λ,t)≤3,
(NS2) 0≤ψ(π,λ,t)≤1,
(NS3) ψ(π,λ,t)=1⇔π=λ,
(NS4) ψ(π,λ,t)=ψ(λ,π,t),
(NS5) ψ(π,μ,(t+s))≥ψ(π,λ,t)*ψ(λ,μ,s),
(NS6) ψ(π,λ,⋅):[0,+∞)→[0,1] is a continuous,
(NS7) limt→+∞ψ(π,λ,t)=1,
(NS8) 0≤φ(π,λ,t)≤1,
(NS9) φ(π,λ,t)=0⇔π=λ,
(NS10) φ(π,λ,t)=φ(λ,π,t),
(NS11) φ(π,μ,(t+s))≤φ(π,λ,t)∘φ(λ,μ,s),
(NS12) φ(π,λ,⋅):[0,+∞)→[0,1] is a continuous,
(NS13) limt→+∞φ(π,λ,t)=0,
(NS14) 0≤ϸ(π,λ,t)≤1,
(NS15) ϸ(π,λ,t)=0⇔π=λ,
(NS16) ϸ(π,λ,t)=ϸ(λ,π,t),
(NS17) ϸ(π,μ,(t+s))≤ϸ(π,λ,t)∘ϸ(λ,μ,s),
(NS18) ϸ(π,λ,⋅):[0,+∞)→[0,1] is a continuous,
(NS19) limt→+∞ϸ(π,λ,t)=0,
(NS20) If t≤0 then ψ(π,λ,t)=0,φ(π,λ,t)=1,ϸ(π,λ,t)=1.
Then, (β,ψ,φ,ϸ) is a neutrosophic metric on βand (β,ψ,φ,ϸ,∗,∘) be a neutrosophic metric space.
In this section, we introduce the concept of neutrosophic metric-like spaces and prove some fixed point results.
Definition 3.1. Suppose β≠∅, assume a six tuple (β,ψ,φ,ϸ,∗,∘) where * is a continuous t-norm, ∘ is a continuous t-conorm, ψ,φandϸ neutrosophic sets on β×β×(0,+∞). If (β,ψ,φ,ϸ,∗,∘) meets the below circumstances for all π,λ,μ∈βandt,s>0:
(NL1) ψ(π,λ,t)+φ(π,λ,t)+ϸ(π,λ,t)≤3,
(NL2) 0≤ψ(π,λ,t)≤1,
(NL3) ψ(π,λ,t)=1impliesπ=λ,
(NL4) ψ(π,λ,t)=ψ(λ,π,t),
(NL5) ψ(π,μ,t+s)≥ψ(π,λ,t)*ψ(λ,μ,s),
(NL6) ψ(π,λ,⋅):[0,+∞)→[0,1] is a continuous,
(NL7) limt→+∞ψ(π,λ,t)=1,
(NL8) 0≤φ(π,λ,t)≤1,
(NL9) φ(π,λ,t)=0impliesπ=λ,
(NL10) φ(π,λ,t)=φ(λ,π,t),
(NL11) φ(π,μ,(t+s))≤φ(π,λ,t)∘φ(λ,μ,s),
(NL12) φ(π,λ,⋅):[0,+∞)→[0,1] is a continuous,
(NL13) limt→+∞φ(π,λ,t)=0,
(NL14) 0≤ϸ(π,λ,t)≤1,
(NL15) ϸ(π,λ,t)=0impliesπ=λ,
(NL16) ϸ(π,λ,t)=ϸ(λ,π,t),
(NL17) ϸ(π,μ,(t+s))≤ϸ(π,λ,t)∘ϸ(λ,μ,s),
(NL18) ϸ(π,λ,⋅):[0,+∞)→[0,1] is a continuous,
(NL19) limt→+∞ϸ(π,λ,t)=0,
(NL20) If t≤0 then ψ(π,λ,t)=0,φ(π,λ,t)=1,ϸ(π,λ,t)=1.
Then, (β,ψ,φ,ϸ) be a neutrosophic metric-like on β and (β,ψ,φ,ϸ,∗,∘) be a neutrosophic metric-like space.
Remark 3.2. In the above definition, a set β is endowed a neutrosophic metric-like space with a continuous t-norm (∗) and continuous t-conorm (∘). A neutrosophic metric space does not satisfy the (NL3), (NL9) and (NL15) conditions of neutrosophic metric-like space, that is, the self-distance may not be equal to 1 and 0, i.e., ψ(π,π,t)≠1,φ(π,π,t)≠0andϸ(π,π,t)≠0 for all t>0, for some or may be for all π∈β. But, all other conditions are the same.
Proposition 3.3. Let (β,σ) be any metric-like space. Then (β,ψ,φ,ϸ,∗,∘) is a neutrosophic metric-like space, where '*' is defined g∗h=gh and '∘' is defined by g∘h=max{g,h} and NSs ψ,φandϸ are given by
ψ(π,λ,t)=ktnktn+mσ(π,λ)forallπ,λ∈β,t>0, |
φ(π,λ,t)=mσ(π,λ)ktn+mσ(π,λ)forallπ,λ∈β,t>0, |
ϸ(π,λ,t)=mσ(π,λ)ktnforallπ,λ∈β,t>0. |
Where, k∈R+,m>0 and n≥1.
Remark 3.4. Note that the above proposition also holds for continuous t-norm g∗h=min{g,h} and continuous t-conorm g∘h=max{g,h}.
Remark 3.5. The proposition (3.3) shows that every metric-like space induces a neutrosophic metric-like space. For k=n=m=1 the induced neutrosophic metric-like space (β,ψ,φ,ϸ,∗,∘) is called the standard neutrosophic metric-like space, where k∈R+
ψ(π,λ,t)=tt+σ(π,λ)forallπ,λ∈β,t>0, |
φ(π,λ,t)=σ(π,λ)t+σ(π,λ)forallπ,λ∈β,t>0, |
ϸ(π,λ,t)=σ(π,λ)tforallπ,λ∈β,t>0. |
Example 3.6. Let β=R+, k∈R+ and m>0. Define * by g∗h=ghand∘ by g∘h=max{g,h} and neutrosophic sets ψ,φ and ϸ in β×β×(0,+∞) by
ψ(π,λ,t)=ktkt+m(max{π,λ})forallπ,λ∈β,t>0, |
φ(π,λ,t)=m(max{π,λ})kt+m(max{π,λ})forallπ,λ∈β,t>0, |
ϸ(π,λ,t)=m(max{π,λ})ktforallπ,λ∈β,t>0. |
Then, since σ(π,λ)=max{π,λ}forallπ,λ∈β is a metric-like space on β. Therefore, by proposition (3.2) (β,ψ,φ,ϸ,∗,∘) is a neutrosophic metric-like space, but it is not a neutrosophic metric space.
As,
ψ(π,π,t)=ktkt+mπ≠1forallπ,λ∈β,t>0, |
φ(π,π,t)=mπkt+mπ≠0forallπ,λ∈β,t>0, |
ϸ(π,π,t)=mπkt≠0forallπ,λ∈β,t>0. |
Definition 3.7. A sequence {πn} is neutrosophic metric-like space (β,ψ,φ,ϸ,∗,∘) is said to be convergent to π∈β if
limn→+∞ψ(πn,π,t)=ψ(π,π,t)forallt>0, |
limn→+∞φ(πn,π,t)=φ(π,π,t)forallt>0, |
and
limn→+∞ϸ(πn,π,t)=ϸ(π,π,t)forallt>0. |
Definition 3.8. A sequence {πn} in a neutrosophic metric-like space (β,ψ,φ,ϸ,∗,∘) is said to be Cauchy sequence if
limn→+∞ψ(πn,πn+p,t), |
limn→+∞φ(πn,πn+p,t), |
and
limn→+∞ϸ(πn,πn+p,t) |
for all t≥0,p≥1 exist and is finite.
Definition 3.9. A neutrosophic metric-like space (β,ψ,φ,ϸ,∗,∘) is said to be complete if every Cauchy sequence {πn} in β converge to some π∈β such that
limn→+∞ψ(πn,π,t)=ψ(π,π,t)=limn→+∞ψ(πn,πn+p,t) for allt≥0,p≥1,limn→+∞φ(πn,π,t)=φ(π,π,t)=limn→+∞φ(πn,πn+p,t)for allt≥0,p≥1, |
and
limn→+∞ϸ(πn,π,t)=ϸ(π,π,t)=limn→+∞ϸ(πn,πn+p,t)for allt≥0,p≥1. |
Remark 3.10. In neutrosophic metric-like space, the limit of a convergent sequence may not be unique for instance, for a neutrosophic metric-like space (β,ψ,φ,ϸ,∗,∘) given in proposition (3.3) with σ(π,λ)=max{π,λ} and n=k=m=1. Define a sequence {πn} in β by πn=1−1n,foralln∈N. If π≥1 then
limn→+∞ψ(πn,π,t)=limn→+∞tt+max{πn,π}=tt+max{π,π}=ψ(π,π,t)forallt>0, |
limn→+∞φ(πn,π,t)=limn→+∞max{πn,π}t+max{πn,π}=max{π,π}t+max{π,π}=φ(π,π,t)forallt>0, |
limn→+∞ϸ(πn,π,t)=limn→+∞max{πn,π}t=max{π,π}t=ϸ(π,π,t)forallt>0. |
Therefore, the sequence {πn} converge to all π∈β with π≥1.
Remark 3.11. In an neutrosophic metric-like space, a convergent sequence may not be Cauchy. Assume a neutrosophic metric-like space (β,ψ,φ,ϸ,∗,∘) given in above Remark 3.10. Define a sequence {πn} in β by πn=1+(−1)n,foralln∈N. If π≥2, then
limn→+∞ψ(πn,π,t)=limn→+∞tt+max{πn,π}=tt+max{π,π}=ψ(π,π,t)forallt>0, |
limn→+∞φ(πn,π,t)=limn→+∞max{πn,π}t+max{πn,π}=max{π,π}t+max{π,π}=φ(π,π,t)forallt>0, |
limn→+∞ϸ(πn,π,t)=limn→+∞max{πn,π}t=max{π,π}t=ϸ(π,π,t)forallt>0. |
Therefore, a sequence {πn} converge to all π∈β with π≥2, but it is not a Cauchy sequence as limn→+∞ψ(πn,πn+p,t),limn→+∞φ(πn,πn+p,t) and limn→+∞ϸ(πn,πn+p,t) does not exist.
Theorem 3.12. Let (β,ψ,φ,ϸ,∗,∘) be a complete neutrosophic metric-like space such that
limt→+∞ψ(π,λ,t)=1,limt→+∞φ(π,λ,t)=0andlimt→+∞φ(π,λ,t)=0 |
for all π,λ∈β,t>0 and F:β→β be a mapping satisfying the conditions
ψ(Fπ,Fλ,αt)≥ψ(π,λ,t),φ(Fπ,Fλ,αt)≤φ(π,λ,t)andϸ(Fπ,Fλ,αt)≤ϸ(π,λ,t), | (1) |
for all π,λ∈β,t>0, where α∈(0,1). Then F has a unique fixed point w∈β and
ψ(w,w,t)=1,φ(w,w,t)=0andϸ(w,w,t)=0forallt>0. |
Proof. Let (β,ψ,φ,ϸ,∗,∘) be a complete neutrosophic metric-like space. For an arbitrary π0∈β, define a sequence {πn} in β by
π1=Fπ0,π2=F2π0=Fπ1,…,πn=Fnπ0=Fπn−1for alln∈N. |
If πn=πn−1 for some n∈N then πn is a fixed point of F. We assume that πn≠πn−1 for all n∈N. For t>0 and n∈N, we get from (1) that
ψ(πn,πn+1,t)≥ψ(πn+1,πn,αt)=ψ(Fπn,Fπn−1,αt)≥ψ(πn,πn−1,t), |
φ(πn,πn+1,t)≤φ(πn+1,πn,αt)=φ(Fπn,Fπn−1,αt)≤φ(πn,πn−1,t) |
and
ϸ(πn,πn+1,t)≤ϸ(πn+1,πn,αt)=ϸ(Fπn,Fπn−1,αt)≤ϸ(πn,πn−1,t), |
for all n∈N and t>0. Therefore, by applying the above expression, we can deduce that
ψ(πn+1,πn,t)≥ψ(πn+1,πn,αt)=ψ(Fπn,Fπn−1,αt)≥ψ(πn,πn−1,t) |
=ψ(Fπn−1,Fπn−2,t)≥ψ(πn−1,πn−2,tα)≥⋯≥ψ(π1,π0,tαn), | (2) |
φ(πn+1,πn,t)≤φ(πn+1,πn,αt)=φ(Fπn,Fπn−1,αt)≤φ(πn,πn−1,t) |
=φ(Fπn−1,Fπn−2,t)≤φ(πn−1,πn−2,tα)≤⋯≤φ(π1,π0,tαn) | (3) |
and
ϸ(πn+1,πn,t)≤ϸ(πn+1,πn,αt)=ϸ(Fπn,Fπn−1,αt)≤ϸ(πn,πn−1,t) |
=ϸ(Fπn−1,Fπn−2,t)≤ϸ(πn−1,πn−2,tα)≤⋯≤ϸ(π1,π0,tαn) | (4) |
for all n∈N, p≥1 and t > 0. Thus, we have
ψ(πn,πn+p,t)≥ψ(πn,πn+1,t2)∗ψ(πn+1,πn+p,t2), |
φ(πn,πn+p,t)≤φ(πn,πn+1,t2)∘φ(πn+1,πn+p,t2) |
and
ϸ(πn,πn+p,t)≤ϸ(πn,πn+1,t2)∘ϸ(πn+1,πn+p,t2). |
Continuing in this way, we get
ψ(πn,πn+p,t)≥ψ(πn,πn+1,t2)∗ψ(πn+1,πn+2,t22)∗⋯∗ψ(πn+p−1,πn+p,t2p−1) |
and
φ(πn,πn+p,t)≤φ(πn,πn+1,t2)∘φ(πn+1,πn+2,t22)∘⋯∘φ(πn+p−1,πn+p,t2p−1), |
and
ϸ(πn,πn+p,t)≤ϸ(πn,πn+1,t2)∘ϸ(πn+1,πn+2,t22)∘⋯∘ϸ(πn+p−1,πn+p,t2p−1). |
Using (2)–(4) in the above inequality, we deduce
ψ(πn,πn+p,t)≥ψ(π0,π1,t2αn)∗ψ(π0,π1,t22αn+1)∗⋯∗ψ(π0,π1,t2p−1αn+p−1), | (5) |
φ(πn,πn+p,t)≤φ(π0,π1,t2αn)∘φ(π0,π1,t22αn+1)∘⋯∘φ(π0,π1,t2p−1αn+p−1), | (6) |
and
ϸ(πn,πn+p,t)≤ϸ(π0,π1,t2αn)∘ϸ(π0,π1,t22αn+1)∘⋯∘ϸ(π0,π1,t2p−1αn+p−1). | (7) |
We know that limn→+∞ψ(π,λ,t)=1,slimn→+∞φ(π,λ,t)=0,forallπ,λ∈β and t>0,α∈(0,1). So, from (5)–(7) we deduce that
limn→+∞ψ(πn,πn+p,t)=1∗1∗⋯∗1=1,forallt>0,p≥1, |
limn→+∞φ(πn,πn+p,t)=0∘0∘⋯∘0=0,forallt>0,p≥1, |
and
limn→+∞ϸ(πn,πn+p,t)=0∘0∘⋯∘0=0,forallt>0,p≥1, |
Hence, {πn} is a Cauchy sequence. The hypothesis of completeness of the neutrosophic metric-like space (β,ψ,φ,ϸ,∗,∘) ensures that there exists w∈β such that
limn→+∞ψ(πn,w,t)=limn→+∞ψ(πn,πn+p,t)=ψ(w,w,t)=1,forallt>0,p≥1, | (8) |
limn→+∞φ(πn,w,t)=limn→+∞φ(πn,πn+p,t)=φ(w,w,t)=0,forallt>0,p≥1, | (9) |
and
limn→+∞ϸ(πn,w,t)=limn→+∞ϸ(πn,πn+p,t)=ϸ(w,w,t)=0,forallt>0,p≥1. | (10) |
Now, we derive that w∈β is a fixed point of F. We have
ψ(w,Fw,t)≥ψ(w,πn+1,t2)∗ψ(πn+1,Fw,t2),forallt>0, |
=ψ(w,πn+1,t2)∗ψ(Fπn,Fw,t2)≥ψ(w,πn+1,t2)∗ψ(πn,w,t2α), |
φ(w,Fw,t)≤φ(w,πn+1,t2)∘φ(πn+1,Fw,t2),forallt>0, |
=φ(w,πn+1,t2)∘φ(Fπn,Fw,t2)≤φ(w,πn+1,t2)∘φ(πn,w,t2α) |
and
ϸ(w,Fw,t)≤ϸ(w,πn+1,t2)∘ϸ(πn+1,Fw,t2),forallt>0, |
=ϸ(w,πn+1,t2)∘ϸ(Fπn,Fw,t2)≤ϸ(w,πn+1,t2)∘ϸ(πn,w,t2α). |
Taking limit as n→+∞, and by (8)–(10), we get
ψ(w,Fw,t)=1∗1=1, |
φ(w,Fw,t)=0∘0=0, |
and
ϸ(w,Fw,t)=0∘0=0. |
Therefore, w is a fixed point of F,
ψ(w,w,t)=1,φ(w,w,t)=0andϸ(w,w,t)=0,forallt>0. |
Now, we investigate the uniqueness of fixed point. For this, assume that v and w are two fixed points of F, then by (1), we have
ψ(w,v,t)=ψ(Fw,Fv,t)≥ψ(w,v,tα), |
ψ(w,v,t)≥ψ(w,v,tα),forallt>0, |
φ(w,v,t)=φ(Fw,Fv,t)≤φ(w,v,tα), |
φ(w,v,t)≤φ(w,v,tα),forallt>0, |
and
ϸ(w,v,t)=ϸ(Fw,Fv,t)≤ϸ(w,v,tα), |
ϸ(w,v,t)≤ϸ(w,v,tα),forallt>0. |
We obtain
ψ(w,v,t)≥ψ(w,v,tαn),foralln∈N, |
φ(w,v,t)≤φ(w,v,tαn),foralln∈N, |
and
ϸ(w,v,t)≤ϸ(w,v,tαn),foralln∈N. |
Taking limit as n→+∞ and using the fact limt→+∞ψ(π,λ,t)=1andlimt→+∞φ(π,λ,t)=0andlimt→+∞ϸ(π,λ,t)=0, so w=v, hence the fixed point is unique.
Example 3.13. Let β=[0,1] and the continuous t-norm and continuous t-conorm respectively defined as g∗h=gh and g∘h=max{g,h}. Also, ψ,φandϸ are defined as
ψ(π,λ,t)=tt+max{π,λ}forallπ,λ∈β,t>0, |
φ(π,λ,t)=max{π,λ}t+max{π,λ}forallπ,λ∈β,t>0, |
ϸ(π,λ,t)=max{π,λ}tforallπ,λ∈β,t>0. |
Then (β,ψ,φ,ϸ,∗,∘) be a complete neutrosophic metric-like space. Define F:β→β by
Fπ={0,π∈[0,12]π8,π∈(12,1]. |
Now,
limt→+∞ψ(π,λ,t)=limt→+∞tt+max{π,λ}=1, |
limt→+∞φ(π,λ,t)=limt→+∞max{π,λ}t+max{π,λ}=0, |
limt→+∞ϸ(π,λ,t)=limt→+∞max{π,λ}t=0. |
For α∈[12,1), we have four cases:
Case1. If π,λ∈[0,12], then Fπ=Fλ=0.
Case 2. If π∈[0,12] and λ∈(12,1], then Fπ=0 and Fλ=λ8.
Case 3. If π,λ∈(12,1], then Fπ=π8 and Fλ=λ8.
Case4. If π∈(12,1] and λ∈[0,12], then Fπ=π8 and Fλ=0.
From all 4 cases, we obtain that
ψ(Fπ,Fλ,αt)≥ψ(π,λ,t), |
φ(Fπ,Fλ,αt)≤φ(π,λ,t), |
ϸ(Fπ,Fλ,αt)≤ϸ(π,λ,t). |
Hence all conditions of Theorem 3.12 are satisfied and 0 is the unique fixed point of F. Also,
ψ(w,w,t)=ψ(0,0,t)=1,forallt>0, |
φ(w,w,t)=φ(0,0,t)=0,forallt>0, |
ϸ(w,w,t)=ϸ(0,0,t)=0,forallt>0. |
Definition 3.14. Let (β,ψ,φ,ϸ,∗,∘) be an neutrosophic metric-like space. A mapping F:β→β is said to be neutrosophic metric-like contractive if k∈(0,1) such that
1ψ(Fπ,Fλ,t)−1≤k[1ψ(π,λ,t)−1],φ(Fπ,Fλ,t)≤kφ(π,λ,t)andϸ(Fπ,Fλ,t)≤kϸ(π,λ,t) | (11) |
for all π,λ∈β and t>0. Here, k is called the neutrosophic metric-like contractive constant of F.
Theorem 3.15. Let (β,ψ,φ,ϸ,∗,∘) be a complete neutrosophic metric-like space and F:β→β be a neutrosophic metric-like contractive mapping with a neutrosophic metric-like contractive constant k, then F has a unique fixed point w∈β so that ψ(w,w,t)=1, φ(w,w,t)=0 and ϸ(w,w,t)=0, for all t>0.
Proof. Let (β,ψ,φ,ϸ,∗,∘) be a complete neutrosophic metric-like space. For an arbitrary π0∈β, define a sequence {πn} in β by
π1=Fπ0,π2=F2π0=Fπ1,…,πn=Fnπ0=Fπn−1for alln∈N. |
If πn=πn−1 for some n∈N, then πn is a fixed point of F. We assume that πn≠πn−1 for all n∈N. For t>0 and n∈N, we get from (11)
1ψ(πn,πn+1,t)−1=1ψ(Fπn−1,Fπn,t)−1≤k[1ψ(πn−1,πn,t)−1]. |
We have
1ψ(πn,πn+1,t)≤kψ(πn−1,πn,t)+(1−k),forallt>0, |
=kψ(Fπn−2,Fπn−1,t)+(1−k) |
≤k2ψ(πn−2,πn−1,t)+k(1−k)+(1−k). |
Continuing in this way, we get
1ψ(πn,πn+1,t)≤knψ(π0,π1,t)+kn−1(1−k)+kn−2(1−k)+⋯+k(1−k)+(1−k) |
≤knψ(π0,π1,t)+(kn−1+kn−2+⋯+1)(1−k) |
≤knψ(π0,π1,t)+(1−kn). |
We have
1knψ(π0,π1,t)+(1−kn)≤ψ(πn,πn+1,t),forallt>0,n∈N. | (12) |
Now,
φ(πn,πn+1,t)=φ(Fπn−1,Fπn,t) |
≤kφ(πn−1,πn,t)=kφ(Fπn−2,Fπn−1,t) |
≤k2φ(πn−2,πn−1,t)≤⋯≤knφ(π0,π1,t) | (13) |
and
ϸ(πn,πn+1,t)=ϸ(Fπn−1,Fπn,t) |
≤kϸ(πn−1,πn,t)=kϸ(Fπn−2,Fπn−1,t) |
≤k2ϸ(πn−2,πn−1,t)≤⋯≤knϸ(π0,π1,t). | (14) |
Now, for p≥1 and n∈N, we have
ψ(πn,πn+p,t)≥ψ(πn,πn+1,t2)∗ψ(πn+1,πn+p,t2) |
≥ψ(πn,πn+1,t2)∗ψ(πn+1,πn+2,t22)∗ψ(πn+2,πn+p,t22). |
Continuing in this way, we get
ψ(πn,πn+p,t)≥ψ(πn,πn+1,t2)∗ψ(πn+1,πn+2,t22)∗⋯∗ψ(πn+p−1,πn+p,t2p−1), |
φ(πn,πn+p,t)≤φ(πn,πn+1,t2)∘φ(πn+1,πn+p,t2) |
≤φ(πn,πn+1,t2)∘φ(πn+1,πn+2,t22)∘φ(πn+2,πn+p,t22) |
and
ϸ(πn,πn+p,t)≤ϸ(πn,πn+1,t2)∘ϸ(πn+1,πn+p,t2) |
≤ϸ(πn,πn+1,t2)∘ϸ(πn+1,πn+2,t22)∘ϸ(πn+2,πn+p,t22). |
Continuing in this way, we get
ϸ(πn,πn+p,t)≤ϸ(πn,πn+1,t2)∘ϸ(πn+1,πn+2,t22)∘⋯∘ϸ(πn+p−1,πn+p,t2p−1). |
By using (12)–(14) in the above inequality, we have
ψ(πn,πn+p,t)≥1knψ(π0,π1,t2)+(1−kn)∗1kn+1ψ(π0,π1,t22)+(1−kn+1)∗⋯∗1kn+p−1ψ(π0,π1,t2p−1)+(1−kn+p−1) |
≥1knψ(π0,π1,t2)+1∗1kn+1ψ(π0,π1,t22)+1∗⋯∗1kn+p−1ψ(π0,π1,t2p−1)+1, |
φ(πn,πn+p,t)≤knφ(π0,π1,t2)∘kn+1φ(π1,π2,t22)∘⋯∘kn+p−1φ(π0,π1,t2p−1), |
and
ϸ(πn,πn+p,t)≤knϸ(π0,π1,t2)∘kn+1ϸ(π1,π2,t22)∘⋯∘kn+p−1ϸ(π0,π1,t2p−1). |
Here, k∈(0,1), we deduce from the above expression that
limn→+∞ψ(πn,πn+p,t)=1 for allt>0,p≥1,limn→+∞φ(πn,πn+p,t)=0forallt>0,p≥1, |
and
limn→+∞ϸ(πn,πn+p,t)=0forallt>0,p≥1. |
Therefore, {πn} is a Cauchy sequence in (β,ψ,φ,ϸ,∗,∘). By the completeness of (β,ψ,φ,ϸ,∗,∘). There is w∈β, such that
limn→+∞ψ(πn,w,t)=limn→+∞ψ(πn,πn+p,t)=limn→+∞ψ(w,w,t)=1,forallt>0,p≥1. | (15) |
limn→+∞φ(πn,w,t)=limn→+∞φ(πn,πn+p,t)=limn→+∞φ(w,w,t)=0,forallt>0,p≥1. | (16) |
and
limn→+∞ϸ(πn,w,t)=limn→+∞ϸ(πn,πn+p,t)=limn→+∞ϸ(w,w,t)=0,forallt>0,p≥1. | (17) |
Now, we prove that w is a fixed point for F. For this, we obtain from (11) that
1ψ(Fπn,Fw,t)−1≤k[1ψ(πn,w,t)−1]=kψ(πn,w,t)−k, |
1kψ(πn,w,t)+1−k≤ψ(Fπn,Fw,t). |
Using the above inequality, we obtain
ψ(w,Fw,t)≥ψ(w,πn+1,t2)∗ψ(πn+1,Fw,t2) |
=ψ(w,πn+1,t2)∗ψ(Fπn,Fw,t2)≥ψ(w,πn+1,t2)∗1kψ(πn,w,t2)+1−k, |
φ(w,Fw,t)≤φ(w,πn+1,t2)∘φ(πn+1,Fw,t2) |
=φ(w,πn+1,t2)∘φ(Fπn,Fw,t2)≤φ(w,πn+1,t2)∘kφ(πn,w,t2), |
and
ϸ(w,Fw,t)≤ϸ(w,πn+1,t2)∘ϸ(πn+1,Fw,t2) |
=ϸ(w,πn+1,t2)∘ϸ(Fπn,Fw,t2)≤ϸ(w,πn+1,t2)∘kϸ(πn,w,t2) |
Taking limit as n→+∞ and using (15)–(17) in the above expression, we get ψ(w,Fw,t)=1, φ(w,Fw,t)=0andϸ(w,Fw,t)=0, that is, Fw=w. Therefore, w is a fixed point of F and ψ(w,w,t)=1, φ(w,w,t)=0 and ϸ(w,w,t)=0 for all t>0.
Now, we investigate the uniqueness of the fixed point w of F. Let v be another fixed point of F, such that ψ(w,v, t)≠1,φ(w,v,t)≠0 and ϸ(w,v,t)≠0 for some t>0. It follows from (11) that
1ψ(w,v,t)−1=1ψ(Fw,Fv,t)−1≤k[1ψ(w,v,t)−1]<1ψ(w,v,t)−1, |
φ(w,v,t)=φ(Fw,Fv,t)≤kφ(w,v,t)<φ(w,v,t), |
and
ϸ(w,v,t)=ϸ(Fw,Fv,t)≤kϸ(w,v,t)<ϸ(w,v,t), |
a contradiction.
Therefore, we must have ψ(w,v,t)=1,φ(w,v,t)=0 and ϸ(w,v,t)=0, for all t>0, and hence w=v.
Corollary 3.16. Let (β,ψ,φ,ϸ,∗,∘) be a complete neutrosophic metric-like space and F:β→β be a mapping satisfying
1ψ(Fnπ,Fnλ,t)−1≤k[1ψ(π,λ,t)−1], |
φ(Fnπ,Fnλ,t)≤kφ(π,λ,t), |
and
ϸ(Fnπ,Fnλ,t)≤kϸ(π,λ,t) |
for some n∈N,forallπ,λ∈β,t>0, where 0<k<1. Then F has a unique fixed point w∈β and ψ(w,w,t)=1,φ(w,w,t)=0andϸ(w,w,t)=0forallt>0.
Proof. w∈β is the unique fixed point of Fn by using Theorem 3.15, and ψ(w,w,t)=1,φ(w,w,t)=0andϸ(w,w,t)=0forallt>0. Fw is also a fixed point of Fn as Fn(Fw)=Fw and from Theorem 3.15, Fw=w, w is the unique fixed point, since the unique fixed point of F is also the unique fixed point of Fn.
Example 3.17. Let β=[0,2] and the continuous t-norm and continuous t-conorm respectively defined as g∗h=gh and g∘h=max{g,h}, given ψ,φandϸ as
ψ(π,λ,t)=tt+max{π,λ}forallπ,λ∈β,t>0, |
φ(π,λ,t)=max{π,λ}t+max{π,λ}forallπ,λ∈β,t>0, |
ϸ(π,λ,t)=max{π,λ}tforallπ,λ∈β,t>0. |
for all π,λ∈β and t>0. Then (β,ψ,φ,ϸ,∗,∘) is a complete neutrosophic metric-like space. Define F:β→β as
Fπ={0,π=1π3,π∈[0,1)π7,π∈(1,2]. |
Then we have 8 cases:
Case 1. If π=λ=1, then Fπ=Fλ=0.
Case 2. If π=1 and λ∈[0,1), then Fπ=0 and Fλ=λ3.
Case 3. If π=1 and λ∈(1,2], then Fπ=0 and Fλ=λ7.
Case 4. If π∈[0,1) and λ∈(1,2], then Fπ=π3 and Fλ=λ7.
Case 5. If π∈[0,1) and λ∈[0,1), then Fπ=π3 and Fλ=λ3.
Case 6. If π∈[0,1) and λ=1, then Fπ=π3 and Fλ=0.
Case 7. If π∈(1,2] and λ=1, then Fπ=π7 and Fλ=0.
Case 8. If π∈(1,2] and λ∈(1,2], then Fπ=π7 and Fλ=λ7.
All above cases satisfy the neutrosophic metric-like contraction:
1ψ(Fπ,Fλ,t)−1≤k[1ψ(π,λ,t)−1], |
φ(Fπ,Fλ,t)≤kφ(π,λ,t), |
ϸ(Fπ,Fλ,t)≤kϸ(π,λ,t) |
with k∈[12,1) the neutrosophic metric-like contractive constant. Henc F is a neutrosophic metric-like contractive mapping with k∈[12,1). All conditions of Theorem 3.15 are satisfied. Also, 0 is the unique fixed point of F and ψ(0,0,t)=1,φ(0,0,t)=0andϸ(0,0,t)=0,forallt>0.
Theorem 3.18. Let (β,ψ,φ,ϸ,∗,∘) be a complete neutrosophic metric-like space and F:β→β be a NML contractive mapping with an neutrosophic metric-like space contractive constant k. Suppose that their exist w∈β, such that ψ(w,Fw,t)≥ψ(π,Fπ,t), φ(w,Fw,t)≤φ(π,Fπ,t) and ϸ(w,Fw,t)≤ϸ(π,Fπ,t) for all π∈βandt>0, we claim that ψ(w,Fw,t)=1, φ(w,Fw,t)=0 and ϸ(w,Fw,t)=0 for all w∈βandt>0, then F has a unique fixed point w∈β so that ψ(w,w,t)=1, φ(w,w,t)=0andφ(w,w,t)=0 for all t>0.
Proof. Let ψπ(t)=ψ(π,Fπ,t), φπ(t)=φ(π,Fπ,t) and ϸπ(t)=ϸ(π,Fπ,t) for all π∈βandt>0. Then by the assumption ψw(t)≥ψπ(t), φw(t)≤φπ(t) and ϸw(t)≤ϸπ(t) for all π∈βandt>0. We claim that ψ(w,Fw,t)=1, φ(w,Fw,t)=0 and ϸ(w,Fw,t)=0 for all t>0. Indeed, if ψw(t)=ψ(w,Fw,t)<1, φw(t)=φ(w,Fw,t)>0 and ϸw(t)=ϸ(w,Fw,t)>0 for some t>0, then it fellows from (11) that
1ψFw(t)−1=1ψ(Fw,FFw,t)−1≤k[1ψ(w,Fw,t)−1]=k[1ψw(t)−1]<[1ψw(t)−1], |
φFw(t)=φ(Fw,FFw,t)≤k[φ(w,Fw,t)]=k[φw(t)]<φw(t), |
ϸFw(t)=ϸ(Fw,FFw,t)≤k[ϸ(w,Fw,t)]=k[ϸw(t)]<ϸw(t). |
That is, ψw(t)≤ψFw(t),Fw∈β a contradiction. Therefore, we have ψπ(t)=ψ(w,Fwt)=1, φπ(t)=φ(w,Fwt)=0 and ϸπ(t)=ϸ(w,Fwt)=0 for all t>0, and so Fw=w. Following the similar argument as in Theorem 2.15, uniqueness of fixed point of F follows. If ψ(w,w,t)<1,φ(w,w,t)>0 and ϸ(w,w,t)>0 for some t>0, then from (11), we have
1ψ(w,w,t)−1=1ψ(Fw,Fw,t)−1≤k[1ψ(w,w,t)−1]<[1ψ(w,w,t)−1], |
φ(w,w,t)=φ(Fw,Fw,t)≤k[φ(w,w,t)]<φ(w,w,t), |
ϸ(w,w,t)=ϸ(Fw,Fw,t)≤k[ϸ(w,w,t)]<ϸ(w,w,t), |
a contradiction. Therefore, ψ(w,w,t)=1,φ(w,w,t)=0 and ϸ(w,w,t)=0.
Remark 3.19. In the above theorem it is shown that in an neutrosophic metric-like space, the self-neutrosophic distance of the fixed point of a neutrosophic metric-like contractive mapping with a neutrosophic metric-like contractive constant k, is always 1, 0. That is, the degree of self-nearness of the fixed point of a neutrosophic metric-like contractive mapping is perfect.
In this manuscript, we introduced the concept of neutrosophic metric like spaces and established some properties. Also, we established several fixed point results with non-trivial examples. As is well known, in recent years, the study of metric fixed point theory has been widely researched because of this theory has a fundamental role in various areas of mathematics, science and economic studies. This work can be extended in different generalized structures like, neutrosophic partial metric like spaces, neutrosophic b-metric like spaces.
The data used to support the findings of this study are available from the corresponding author upon request.
The authors declare that they have no competing interests regarding the publication of this paper.
[1] |
M. Kirişci, N. Simsek, Neutrosophic metric spaces, Math. Sci., 14 (2020), 241–248. https://doi.org/10.1007/s40096-020-00335-8 doi: 10.1007/s40096-020-00335-8
![]() |
[2] |
J. H. Park, Intuitionistic fuzzy metric spaces, Chaos Solitons Fract., 22 (2004), 1039–1046. https://doi.org/10.1016/j.chaos.2004.02.051 doi: 10.1016/j.chaos.2004.02.051
![]() |
[3] | M. Rafi, M. S. M. Noorani, Fixed theorems on intuitionistic fuzzy metric space, Iran. J. Fuzzy Syst., 3 (2006), 23–29. |
[4] | W. Sintunavarat, P. Kumam, Fixed point theorems for a generalized intuitionistic fuzzy contraction in intuitionistic fuzzy metric spaces, Thai J. Math., 10 (2012), 123–135. |
[5] | S. Sowndrarajan, M. Jeyarama, F. Smarandache, Fixed point results for contraction theorems in neutrosophic metric spaces, Neutrosophic Sets Syst., 36 (2020), 308–318. |
[6] | N. Simşek, M. Kirişci, Fixed point theorems in Neutrosophic metric spaces, Sigma J. Eng. Nat. Sci., 10 (2019), 221–230. |
[7] |
A Amini-Harandi, Metric-like paces, partial metric spaces and fixed point, Fixed Point Theory Appl., 2012 (2012), 204. https://doi.org/10.1186/1687-1812-2012-204 doi: 10.1186/1687-1812-2012-204
![]() |
[8] |
S. Shukla, M. Abbas, Fixed point results in fuzzy metric-like spaces, Iran. J. Fuzzy Syst., 11 (2014), 81–92. https://dx.doi.org/10.22111/ijfs.2014.1724 doi: 10.22111/ijfs.2014.1724
![]() |
[9] |
L. A. Zadeh, Fuzzy sets, Inf. Control, 3 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X
![]() |
[10] | I. Kramosil, J. Michálek, Fuzzy metric and statistical metric spaces, Kybernetika, 11 (1975), 336–344. |
[11] |
A. George, P. Veeramani, On some results of analysis for fuzzy metric spaces, Fuzzy Sets Syst., 90 (1997), 365–368. https://doi.org/10.1016/S0165-0114(96)00207-2 doi: 10.1016/S0165-0114(96)00207-2
![]() |
[12] |
M. Grabiec, Fixed points in fuzzy metric spaces, Fuzzy Sets Syst., 27 (1988), 385–389. https://doi.org/10.1016/0165-0114(88)90064-4 doi: 10.1016/0165-0114(88)90064-4
![]() |
[13] |
T. Došenović, A. Javaheri, S. Sedghi, N. Shobe, Coupled fixed point theorem in b-fuzzy metric spaces, Novi Sad J. Math., 47 (2017), 77–88. https://doi.org/10.30755/NSJOM.04361 doi: 10.30755/NSJOM.04361
![]() |
[14] | S. Sedghi, N. Shobe, Common fixed point theorem in b-fuzzy metric space, Nonlinear Funct. Anal. Appl., 17 (2012), 349–359. |
[15] |
K. Javed, F. Uddin, H. Aydi, M. Arshad, U. Ishtiaq, H. Alsamir, On fuzzy b-metric-like spaces, J. Funct. Spaces, 2021 (2021), 6615976. https://doi.org/10.1155/2021/6615976 doi: 10.1155/2021/6615976
![]() |
[16] |
K. Javed, F. Uddin, H. Aydi, A. Mukheimer, M. Arshad, Ordered-theoretic fixed point results in fuzzy b-metric spaces with an application, J. Math., 2021 (2021), 6663707. https://doi.org/10.1155/2021/6663707 doi: 10.1155/2021/6663707
![]() |
[17] |
S. H. Hadi, A. H. Ali, Integrable functions of fuzzy cone and ψ-fuzzy cone and their application in the fixed point theorem, J. Interdiscip. Math., 25 (2022), 247–258. https://doi.org/10.1080/09720502.2021.1881220 doi: 10.1080/09720502.2021.1881220
![]() |