Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

Existence of fixed point results in neutrosophic metric-like spaces

  • In this article, we introduced the concept of neutrosophic metric-like spaces and obtained some fixed point results in the sense of neutrosophic metric-like spaces. Our results are improvements of recent results in the existing literature. For the validity of these results some non-trivial examples are imparted.

    Citation: Fahim Ud Din, Khalil Javed, Umar Ishtiaq, Khalil Ahmed, Muhammad Arshad, Choonkil Park. Existence of fixed point results in neutrosophic metric-like spaces[J]. AIMS Mathematics, 2022, 7(9): 17105-17122. doi: 10.3934/math.2022941

    Related Papers:

    [1] Muhammad Riaz, Umar Ishtiaq, Choonkil Park, Khaleel Ahmad, Fahim Uddin . Some fixed point results for ξ-chainable neutrosophic and generalized neutrosophic cone metric spaces with application. AIMS Mathematics, 2022, 7(8): 14756-14784. doi: 10.3934/math.2022811
    [2] Fahim Uddin, Umar Ishtiaq, Naeem Saleem, Khaleel Ahmad, Fahd Jarad . Fixed point theorems for controlled neutrosophic metric-like spaces. AIMS Mathematics, 2022, 7(12): 20711-20739. doi: 10.3934/math.20221135
    [3] Umar Ishtiaq, Aftab Hussain, Hamed Al Sulami . Certain new aspects in fuzzy fixed point theory. AIMS Mathematics, 2022, 7(5): 8558-8573. doi: 10.3934/math.2022477
    [4] Hasanen A. Hammad, Maryam G. Alshehri . Generalized Ξ-metric-like space and new fixed point results with an application. AIMS Mathematics, 2023, 8(2): 2453-2472. doi: 10.3934/math.2023127
    [5] Muhammad Suhail Aslam, Mohammad Showkat Rahim Chowdhury, Liliana Guran, Isra Manzoor, Thabet Abdeljawad, Dania Santina, Nabil Mlaiki . Complex-valued double controlled metric like spaces with applications to fixed point theorems and Fredholm type integral equations. AIMS Mathematics, 2023, 8(2): 4944-4963. doi: 10.3934/math.2023247
    [6] Umar Ishtiaq, Khaleel Ahmad, Muhammad Imran Asjad, Farhan Ali, Fahd Jarad . Common fixed point, Baire's and Cantor's theorems in neutrosophic 2-metric spaces. AIMS Mathematics, 2023, 8(2): 2532-2555. doi: 10.3934/math.2023131
    [7] Afrah. A. N. Abdou . Fixed points of Kannan maps in modular metric spaces. AIMS Mathematics, 2020, 5(6): 6395-6403. doi: 10.3934/math.2020411
    [8] Mohammed Shehu Shagari, Saima Rashid, Khadijah M. Abualnaja, Monairah Alansari . On nonlinear fuzzy set-valued Θ-contractions with applications. AIMS Mathematics, 2021, 6(10): 10431-10448. doi: 10.3934/math.2021605
    [9] A. M. Zidan, Z. Mostefaoui . Double controlled quasi metric-like spaces and some topological properties of this space. AIMS Mathematics, 2021, 6(10): 11584-11594. doi: 10.3934/math.2021672
    [10] Gunaseelan Mani, Arul Joseph Gnanaprakasam, Vidhya Varadharajan, Fahd Jarad . Solving an integral equation vian orthogonal neutrosophic rectangular metric space. AIMS Mathematics, 2023, 8(2): 3791-3825. doi: 10.3934/math.2023189
  • In this article, we introduced the concept of neutrosophic metric-like spaces and obtained some fixed point results in the sense of neutrosophic metric-like spaces. Our results are improvements of recent results in the existing literature. For the validity of these results some non-trivial examples are imparted.



    The notion of fuzzy sets was given by Zadeh [9], and this gave a new direction to this research field. A large number of researchers doing work in this direction due to its wide range of applications in science. In this connectedness, Kramosil and Michalek [10] initiated the concept of fuzzy metric spaces by generalizing the notion of probabilistic metric spaces to fuzzy metric spaces. George and Veeramani [11] derived a Hausdorff topology initiated by fuzzy metric to modify the notion of fuzzy metric spaces. Fixed point theory enriched with many generalizations and playing an important role to find the existence of solution. Garbiec [12] displayed the fuzzy version of Banach contraction principle in fuzzy metric spaces. In [13,14], a great job has been done by authors in extending contraction results. In recent times, Harandi [7] originated the notion of metric-like spaces, which generalized the concept of metric spaces in beautiful manners. In this connectedness, Shukla and Abbas [8] generalized the notion of metric-like spaces and introduced fuzzy metric-like spaces. The approach of intuitionistic fuzzy metric spaces was tossed by Park in [2]. Kirişci and Simsek [1] generalized the approach of intuitionistic fuzzy metric spaces and tossed the approach of neutrosophic metric spaces. Simsek, and Kirişci [5] and Sowndrarajan et al. [6] proved some fixed point results in the setting of neutrosophic metric spaces. In [3,4,15,16,17] proved several fixed point results for contractive mappings.

    In this article, we introduced the notion of neutrosophic metric-like spaces and established some fixed point results with non-trivial examples.

    First, we give some basic definitions that are helpful for readers to understand main section.

    Definition 2.1. [8] A 3-tuple (β,ψ,) is said to be a fuzzy metric-like space if β is a random set, is a continuous t-norm and ψ is a fuzzy set on β×β×(0,) meet the points below for all π,λ,μβ,t,s>0:

    (FL1) ψ(π,λ,t)>0;

    (FL2) If ψ(π,λ,t)=1, then π=λ;

    (FL3) ψ(π,λ,t)=ψ(λ,π,t);

    (FL4) ψ(π,μ,t+s)ψ(π,λ,t)ψ(λ,μ,s);

    (FL5) ψ(π,λ,):(0,+)[0,1] is continuous.

    Example 2.2. [8] Let β=R+, kR+ and m>0. Define continuous t-norm by gh=gh and the fuzzy set ψ on β×β×(0,+) by

    ψ(π,λ,t)=ktkt+m(max{π,λ}),forallπ,λβ,t>0.

    Then (β,ψ,) is a fuzzy metric-like space.

    Definition 2.3. [1] Suppose β, assume a six tuple (β,ψ,φ,ϸ,,) where * is a continuous t-norm, is a continuous t-conorm, ψ,φandϸ neutrosophic sets on β×β×(0,+). If (β,ψ,φ,ϸ,,) meet the below circumstances for all π,λ,μβandt,s>0:

    (NS1) ψ(π,λ,t)+φ(π,λ,t)+ϸ(π,λ,t)3,

    (NS2) 0ψ(π,λ,t)1,

    (NS3) ψ(π,λ,t)=1π=λ,

    (NS4) ψ(π,λ,t)=ψ(λ,π,t),

    (NS5) ψ(π,μ,(t+s))ψ(π,λ,t)*ψ(λ,μ,s),

    (NS6) ψ(π,λ,):[0,+)[0,1] is a continuous,

    (NS7) limt+ψ(π,λ,t)=1,

    (NS8) 0φ(π,λ,t)1,

    (NS9) φ(π,λ,t)=0π=λ,

    (NS10) φ(π,λ,t)=φ(λ,π,t),

    (NS11) φ(π,μ,(t+s))φ(π,λ,t)φ(λ,μ,s),

    (NS12) φ(π,λ,):[0,+)[0,1] is a continuous,

    (NS13) limt+φ(π,λ,t)=0,

    (NS14) 0ϸ(π,λ,t)1,

    (NS15) ϸ(π,λ,t)=0π=λ,

    (NS16) ϸ(π,λ,t)=ϸ(λ,π,t),

    (NS17) ϸ(π,μ,(t+s))ϸ(π,λ,t)ϸ(λ,μ,s),

    (NS18) ϸ(π,λ,):[0,+)[0,1] is a continuous,

    (NS19) limt+ϸ(π,λ,t)=0,

    (NS20) If t0 then ψ(π,λ,t)=0,φ(π,λ,t)=1,ϸ(π,λ,t)=1.

    Then, (β,ψ,φ,ϸ) is a neutrosophic metric on βand (β,ψ,φ,ϸ,,) be a neutrosophic metric space.

    In this section, we introduce the concept of neutrosophic metric-like spaces and prove some fixed point results.

    Definition 3.1. Suppose β, assume a six tuple (β,ψ,φ,ϸ,,) where * is a continuous t-norm, is a continuous t-conorm, ψ,φandϸ neutrosophic sets on β×β×(0,+). If (β,ψ,φ,ϸ,,) meets the below circumstances for all π,λ,μβandt,s>0:

    (NL1) ψ(π,λ,t)+φ(π,λ,t)+ϸ(π,λ,t)3,

    (NL2) 0ψ(π,λ,t)1,

    (NL3) ψ(π,λ,t)=1impliesπ=λ,

    (NL4) ψ(π,λ,t)=ψ(λ,π,t),

    (NL5) ψ(π,μ,t+s)ψ(π,λ,t)*ψ(λ,μ,s),

    (NL6) ψ(π,λ,):[0,+)[0,1] is a continuous,

    (NL7) limt+ψ(π,λ,t)=1,

    (NL8) 0φ(π,λ,t)1,

    (NL9) φ(π,λ,t)=0impliesπ=λ,

    (NL10) φ(π,λ,t)=φ(λ,π,t),

    (NL11) φ(π,μ,(t+s))φ(π,λ,t)φ(λ,μ,s),

    (NL12) φ(π,λ,):[0,+)[0,1] is a continuous,

    (NL13) limt+φ(π,λ,t)=0,

    (NL14) 0ϸ(π,λ,t)1,

    (NL15) ϸ(π,λ,t)=0impliesπ=λ,

    (NL16) ϸ(π,λ,t)=ϸ(λ,π,t),

    (NL17) ϸ(π,μ,(t+s))ϸ(π,λ,t)ϸ(λ,μ,s),

    (NL18) ϸ(π,λ,):[0,+)[0,1] is a continuous,

    (NL19) limt+ϸ(π,λ,t)=0,

    (NL20) If t0 then ψ(π,λ,t)=0,φ(π,λ,t)=1,ϸ(π,λ,t)=1.

    Then, (β,ψ,φ,ϸ) be a neutrosophic metric-like on β and (β,ψ,φ,ϸ,,) be a neutrosophic metric-like space.

    Remark 3.2. In the above definition, a set β is endowed a neutrosophic metric-like space with a continuous t-norm () and continuous t-conorm (). A neutrosophic metric space does not satisfy the (NL3), (NL9) and (NL15) conditions of neutrosophic metric-like space, that is, the self-distance may not be equal to 1 and 0, i.e., ψ(π,π,t)1,φ(π,π,t)0andϸ(π,π,t)0 for all t>0, for some or may be for all πβ. But, all other conditions are the same.

    Proposition 3.3. Let (β,σ) be any metric-like space. Then (β,ψ,φ,ϸ,,) is a neutrosophic metric-like space, where '*' is defined gh=gh and '' is defined by gh=max{g,h} and NSs ψ,φandϸ are given by

    ψ(π,λ,t)=ktnktn+mσ(π,λ)forallπ,λβ,t>0,
    φ(π,λ,t)=mσ(π,λ)ktn+mσ(π,λ)forallπ,λβ,t>0,
    ϸ(π,λ,t)=mσ(π,λ)ktnforallπ,λβ,t>0.

    Where, kR+,m>0 and n1.

    Remark 3.4. Note that the above proposition also holds for continuous t-norm gh=min{g,h} and continuous t-conorm gh=max{g,h}.

    Remark 3.5. The proposition (3.3) shows that every metric-like space induces a neutrosophic metric-like space. For k=n=m=1 the induced neutrosophic metric-like space (β,ψ,φ,ϸ,,) is called the standard neutrosophic metric-like space, where kR+

    ψ(π,λ,t)=tt+σ(π,λ)forallπ,λβ,t>0,
    φ(π,λ,t)=σ(π,λ)t+σ(π,λ)forallπ,λβ,t>0,
    ϸ(π,λ,t)=σ(π,λ)tforallπ,λβ,t>0.

    Example 3.6. Let β=R+, kR+ and m>0. Define * by gh=ghand by gh=max{g,h} and neutrosophic sets ψ,φ and ϸ in β×β×(0,+) by

    ψ(π,λ,t)=ktkt+m(max{π,λ})forallπ,λβ,t>0,
    φ(π,λ,t)=m(max{π,λ})kt+m(max{π,λ})forallπ,λβ,t>0,
    ϸ(π,λ,t)=m(max{π,λ})ktforallπ,λβ,t>0.

    Then, since σ(π,λ)=max{π,λ}forallπ,λβ is a metric-like space on β. Therefore, by proposition (3.2) (β,ψ,φ,ϸ,,) is a neutrosophic metric-like space, but it is not a neutrosophic metric space.

    As,

    ψ(π,π,t)=ktkt+mπ1forallπ,λβ,t>0,
    φ(π,π,t)=mπkt+mπ0forallπ,λβ,t>0,
    ϸ(π,π,t)=mπkt0forallπ,λβ,t>0.

    Definition 3.7. A sequence {πn} is neutrosophic metric-like space (β,ψ,φ,ϸ,,) is said to be convergent to πβ if

    limn+ψ(πn,π,t)=ψ(π,π,t)forallt>0,
    limn+φ(πn,π,t)=φ(π,π,t)forallt>0,

    and

    limn+ϸ(πn,π,t)=ϸ(π,π,t)forallt>0.

    Definition 3.8. A sequence {πn} in a neutrosophic metric-like space (β,ψ,φ,ϸ,,) is said to be Cauchy sequence if

    limn+ψ(πn,πn+p,t),
    limn+φ(πn,πn+p,t),

    and

    limn+ϸ(πn,πn+p,t)

    for all t0,p1 exist and is finite.

    Definition 3.9. A neutrosophic metric-like space (β,ψ,φ,ϸ,,) is said to be complete if every Cauchy sequence {πn} in β converge to some πβ such that

    limn+ψ(πn,π,t)=ψ(π,π,t)=limn+ψ(πn,πn+p,t) for allt0,p1,limn+φ(πn,π,t)=φ(π,π,t)=limn+φ(πn,πn+p,t)for allt0,p1,

    and

    limn+ϸ(πn,π,t)=ϸ(π,π,t)=limn+ϸ(πn,πn+p,t)for allt0,p1.

    Remark 3.10. In neutrosophic metric-like space, the limit of a convergent sequence may not be unique for instance, for a neutrosophic metric-like space (β,ψ,φ,ϸ,,) given in proposition (3.3) with σ(π,λ)=max{π,λ} and n=k=m=1. Define a sequence {πn} in β by πn=11n,forallnN. If π1 then

    limn+ψ(πn,π,t)=limn+tt+max{πn,π}=tt+max{π,π}=ψ(π,π,t)forallt>0,
    limn+φ(πn,π,t)=limn+max{πn,π}t+max{πn,π}=max{π,π}t+max{π,π}=φ(π,π,t)forallt>0,
    limn+ϸ(πn,π,t)=limn+max{πn,π}t=max{π,π}t=ϸ(π,π,t)forallt>0.

    Therefore, the sequence {πn} converge to all πβ with π1.

    Remark 3.11. In an neutrosophic metric-like space, a convergent sequence may not be Cauchy. Assume a neutrosophic metric-like space (β,ψ,φ,ϸ,,) given in above Remark 3.10. Define a sequence {πn} in β by πn=1+(1)n,forallnN. If π2, then

    limn+ψ(πn,π,t)=limn+tt+max{πn,π}=tt+max{π,π}=ψ(π,π,t)forallt>0,
    limn+φ(πn,π,t)=limn+max{πn,π}t+max{πn,π}=max{π,π}t+max{π,π}=φ(π,π,t)forallt>0,
    limn+ϸ(πn,π,t)=limn+max{πn,π}t=max{π,π}t=ϸ(π,π,t)forallt>0.

    Therefore, a sequence {πn} converge to all πβ with π2, but it is not a Cauchy sequence as limn+ψ(πn,πn+p,t),limn+φ(πn,πn+p,t) and limn+ϸ(πn,πn+p,t) does not exist.

    Theorem 3.12. Let (β,ψ,φ,ϸ,,) be a complete neutrosophic metric-like space such that

    limt+ψ(π,λ,t)=1,limt+φ(π,λ,t)=0andlimt+φ(π,λ,t)=0

    for all π,λβ,t>0 and F:ββ be a mapping satisfying the conditions

    ψ(Fπ,Fλ,αt)ψ(π,λ,t),φ(Fπ,Fλ,αt)φ(π,λ,t)andϸ(Fπ,Fλ,αt)ϸ(π,λ,t), (1)

    for all π,λβ,t>0, where α(0,1). Then F has a unique fixed point wβ and

    ψ(w,w,t)=1,φ(w,w,t)=0andϸ(w,w,t)=0forallt>0.

    Proof. Let (β,ψ,φ,ϸ,,) be a complete neutrosophic metric-like space. For an arbitrary π0β, define a sequence {πn} in β by

    π1=Fπ0,π2=F2π0=Fπ1,,πn=Fnπ0=Fπn1for allnN.

    If πn=πn1 for some nN then πn is a fixed point of F. We assume that πnπn1 for all nN. For t>0 and nN, we get from (1) that

    ψ(πn,πn+1,t)ψ(πn+1,πn,αt)=ψ(Fπn,Fπn1,αt)ψ(πn,πn1,t),
    φ(πn,πn+1,t)φ(πn+1,πn,αt)=φ(Fπn,Fπn1,αt)φ(πn,πn1,t)

    and

    ϸ(πn,πn+1,t)ϸ(πn+1,πn,αt)=ϸ(Fπn,Fπn1,αt)ϸ(πn,πn1,t),

    for all nN and t>0. Therefore, by applying the above expression, we can deduce that

    ψ(πn+1,πn,t)ψ(πn+1,πn,αt)=ψ(Fπn,Fπn1,αt)ψ(πn,πn1,t)
    =ψ(Fπn1,Fπn2,t)ψ(πn1,πn2,tα)ψ(π1,π0,tαn), (2)
    φ(πn+1,πn,t)φ(πn+1,πn,αt)=φ(Fπn,Fπn1,αt)φ(πn,πn1,t)
    =φ(Fπn1,Fπn2,t)φ(πn1,πn2,tα)φ(π1,π0,tαn) (3)

    and

    ϸ(πn+1,πn,t)ϸ(πn+1,πn,αt)=ϸ(Fπn,Fπn1,αt)ϸ(πn,πn1,t)
    =ϸ(Fπn1,Fπn2,t)ϸ(πn1,πn2,tα)ϸ(π1,π0,tαn) (4)

    for all nN, p1 and t > 0. Thus, we have

    ψ(πn,πn+p,t)ψ(πn,πn+1,t2)ψ(πn+1,πn+p,t2),
    φ(πn,πn+p,t)φ(πn,πn+1,t2)φ(πn+1,πn+p,t2)

    and

    ϸ(πn,πn+p,t)ϸ(πn,πn+1,t2)ϸ(πn+1,πn+p,t2).

    Continuing in this way, we get

    ψ(πn,πn+p,t)ψ(πn,πn+1,t2)ψ(πn+1,πn+2,t22)ψ(πn+p1,πn+p,t2p1)

    and

    φ(πn,πn+p,t)φ(πn,πn+1,t2)φ(πn+1,πn+2,t22)φ(πn+p1,πn+p,t2p1),

    and

    ϸ(πn,πn+p,t)ϸ(πn,πn+1,t2)ϸ(πn+1,πn+2,t22)ϸ(πn+p1,πn+p,t2p1).

    Using (2)–(4) in the above inequality, we deduce

    ψ(πn,πn+p,t)ψ(π0,π1,t2αn)ψ(π0,π1,t22αn+1)ψ(π0,π1,t2p1αn+p1), (5)
    φ(πn,πn+p,t)φ(π0,π1,t2αn)φ(π0,π1,t22αn+1)φ(π0,π1,t2p1αn+p1), (6)

    and

    ϸ(πn,πn+p,t)ϸ(π0,π1,t2αn)ϸ(π0,π1,t22αn+1)ϸ(π0,π1,t2p1αn+p1). (7)

    We know that limn+ψ(π,λ,t)=1,slimn+φ(π,λ,t)=0,forallπ,λβ and t>0,α(0,1). So, from (5)–(7) we deduce that

    limn+ψ(πn,πn+p,t)=111=1,forallt>0,p1,
    limn+φ(πn,πn+p,t)=000=0,forallt>0,p1,

    and

    limn+ϸ(πn,πn+p,t)=000=0,forallt>0,p1,

    Hence, {πn} is a Cauchy sequence. The hypothesis of completeness of the neutrosophic metric-like space (β,ψ,φ,ϸ,,) ensures that there exists wβ such that

    limn+ψ(πn,w,t)=limn+ψ(πn,πn+p,t)=ψ(w,w,t)=1,forallt>0,p1, (8)
    limn+φ(πn,w,t)=limn+φ(πn,πn+p,t)=φ(w,w,t)=0,forallt>0,p1, (9)

    and

    limn+ϸ(πn,w,t)=limn+ϸ(πn,πn+p,t)=ϸ(w,w,t)=0,forallt>0,p1. (10)

    Now, we derive that wβ is a fixed point of F. We have

    ψ(w,Fw,t)ψ(w,πn+1,t2)ψ(πn+1,Fw,t2),forallt>0,
    =ψ(w,πn+1,t2)ψ(Fπn,Fw,t2)ψ(w,πn+1,t2)ψ(πn,w,t2α),
    φ(w,Fw,t)φ(w,πn+1,t2)φ(πn+1,Fw,t2),forallt>0,
    =φ(w,πn+1,t2)φ(Fπn,Fw,t2)φ(w,πn+1,t2)φ(πn,w,t2α)

    and

    ϸ(w,Fw,t)ϸ(w,πn+1,t2)ϸ(πn+1,Fw,t2),forallt>0,
    =ϸ(w,πn+1,t2)ϸ(Fπn,Fw,t2)ϸ(w,πn+1,t2)ϸ(πn,w,t2α).

    Taking limit as n+, and by (8)–(10), we get

    ψ(w,Fw,t)=11=1,
    φ(w,Fw,t)=00=0,

    and

    ϸ(w,Fw,t)=00=0.

    Therefore, w is a fixed point of F,

    ψ(w,w,t)=1,φ(w,w,t)=0andϸ(w,w,t)=0,forallt>0.

    Now, we investigate the uniqueness of fixed point. For this, assume that v and w are two fixed points of F, then by (1), we have

    ψ(w,v,t)=ψ(Fw,Fv,t)ψ(w,v,tα),
    ψ(w,v,t)ψ(w,v,tα),forallt>0,
    φ(w,v,t)=φ(Fw,Fv,t)φ(w,v,tα),
    φ(w,v,t)φ(w,v,tα),forallt>0,

    and

    ϸ(w,v,t)=ϸ(Fw,Fv,t)ϸ(w,v,tα),
    ϸ(w,v,t)ϸ(w,v,tα),forallt>0.

    We obtain

    ψ(w,v,t)ψ(w,v,tαn),forallnN,
    φ(w,v,t)φ(w,v,tαn),forallnN,

    and

    ϸ(w,v,t)ϸ(w,v,tαn),forallnN.

    Taking limit as n+ and using the fact limt+ψ(π,λ,t)=1andlimt+φ(π,λ,t)=0andlimt+ϸ(π,λ,t)=0, so w=v, hence the fixed point is unique.

    Example 3.13. Let β=[0,1] and the continuous t-norm and continuous t-conorm respectively defined as gh=gh and gh=max{g,h}. Also, ψ,φandϸ are defined as

    ψ(π,λ,t)=tt+max{π,λ}forallπ,λβ,t>0,
    φ(π,λ,t)=max{π,λ}t+max{π,λ}forallπ,λβ,t>0,
    ϸ(π,λ,t)=max{π,λ}tforallπ,λβ,t>0.

    Then (β,ψ,φ,ϸ,,) be a complete neutrosophic metric-like space. Define F:ββ by

    Fπ={0,π[0,12]π8,π(12,1].

    Now,

    limt+ψ(π,λ,t)=limt+tt+max{π,λ}=1,
    limt+φ(π,λ,t)=limt+max{π,λ}t+max{π,λ}=0,
    limt+ϸ(π,λ,t)=limt+max{π,λ}t=0.

    For α[12,1), we have four cases:

    Case1. If π,λ[0,12], then Fπ=Fλ=0.

    Case 2. If π[0,12] and λ(12,1], then Fπ=0 and Fλ=λ8.

    Case 3. If π,λ(12,1], then Fπ=π8 and Fλ=λ8.

    Case4. If π(12,1] and λ[0,12], then Fπ=π8 and Fλ=0.

    From all 4 cases, we obtain that

    ψ(Fπ,Fλ,αt)ψ(π,λ,t),
    φ(Fπ,Fλ,αt)φ(π,λ,t),
    ϸ(Fπ,Fλ,αt)ϸ(π,λ,t).

    Hence all conditions of Theorem 3.12 are satisfied and 0 is the unique fixed point of F. Also,

    ψ(w,w,t)=ψ(0,0,t)=1,forallt>0,
    φ(w,w,t)=φ(0,0,t)=0,forallt>0,
    ϸ(w,w,t)=ϸ(0,0,t)=0,forallt>0.

    Definition 3.14. Let (β,ψ,φ,ϸ,,) be an neutrosophic metric-like space. A mapping F:ββ is said to be neutrosophic metric-like contractive if k(0,1) such that

    1ψ(Fπ,Fλ,t)1k[1ψ(π,λ,t)1],φ(Fπ,Fλ,t)kφ(π,λ,t)andϸ(Fπ,Fλ,t)kϸ(π,λ,t) (11)

    for all π,λβ and t>0. Here, k is called the neutrosophic metric-like contractive constant of F.

    Theorem 3.15. Let (β,ψ,φ,ϸ,,) be a complete neutrosophic metric-like space and F:ββ be a neutrosophic metric-like contractive mapping with a neutrosophic metric-like contractive constant k, then F has a unique fixed point wβ so that ψ(w,w,t)=1, φ(w,w,t)=0 and ϸ(w,w,t)=0, for all t>0.

    Proof. Let (β,ψ,φ,ϸ,,) be a complete neutrosophic metric-like space. For an arbitrary π0β, define a sequence {πn} in β by

    π1=Fπ0,π2=F2π0=Fπ1,,πn=Fnπ0=Fπn1for allnN.

    If πn=πn1 for some nN, then πn is a fixed point of F. We assume that πnπn1 for all nN. For t>0 and nN, we get from (11)

    1ψ(πn,πn+1,t)1=1ψ(Fπn1,Fπn,t)1k[1ψ(πn1,πn,t)1].

    We have

    1ψ(πn,πn+1,t)kψ(πn1,πn,t)+(1k),forallt>0,
    =kψ(Fπn2,Fπn1,t)+(1k)
    k2ψ(πn2,πn1,t)+k(1k)+(1k).

    Continuing in this way, we get

    1ψ(πn,πn+1,t)knψ(π0,π1,t)+kn1(1k)+kn2(1k)++k(1k)+(1k)
    knψ(π0,π1,t)+(kn1+kn2++1)(1k)
    knψ(π0,π1,t)+(1kn).

    We have

    1knψ(π0,π1,t)+(1kn)ψ(πn,πn+1,t),forallt>0,nN. (12)

    Now,

    φ(πn,πn+1,t)=φ(Fπn1,Fπn,t)
    kφ(πn1,πn,t)=kφ(Fπn2,Fπn1,t)
    k2φ(πn2,πn1,t)knφ(π0,π1,t) (13)

    and

    ϸ(πn,πn+1,t)=ϸ(Fπn1,Fπn,t)
    kϸ(πn1,πn,t)=kϸ(Fπn2,Fπn1,t)
    k2ϸ(πn2,πn1,t)knϸ(π0,π1,t). (14)

    Now, for p1 and nN, we have

    ψ(πn,πn+p,t)ψ(πn,πn+1,t2)ψ(πn+1,πn+p,t2)
    ψ(πn,πn+1,t2)ψ(πn+1,πn+2,t22)ψ(πn+2,πn+p,t22).

    Continuing in this way, we get

    ψ(πn,πn+p,t)ψ(πn,πn+1,t2)ψ(πn+1,πn+2,t22)ψ(πn+p1,πn+p,t2p1),
    φ(πn,πn+p,t)φ(πn,πn+1,t2)φ(πn+1,πn+p,t2)
    φ(πn,πn+1,t2)φ(πn+1,πn+2,t22)φ(πn+2,πn+p,t22)

    and

    ϸ(πn,πn+p,t)ϸ(πn,πn+1,t2)ϸ(πn+1,πn+p,t2)
    ϸ(πn,πn+1,t2)ϸ(πn+1,πn+2,t22)ϸ(πn+2,πn+p,t22).

    Continuing in this way, we get

    ϸ(πn,πn+p,t)ϸ(πn,πn+1,t2)ϸ(πn+1,πn+2,t22)ϸ(πn+p1,πn+p,t2p1).

    By using (12)–(14) in the above inequality, we have

    ψ(πn,πn+p,t)1knψ(π0,π1,t2)+(1kn)1kn+1ψ(π0,π1,t22)+(1kn+1)1kn+p1ψ(π0,π1,t2p1)+(1kn+p1)
    1knψ(π0,π1,t2)+11kn+1ψ(π0,π1,t22)+11kn+p1ψ(π0,π1,t2p1)+1,
    φ(πn,πn+p,t)knφ(π0,π1,t2)kn+1φ(π1,π2,t22)kn+p1φ(π0,π1,t2p1),

    and

    ϸ(πn,πn+p,t)knϸ(π0,π1,t2)kn+1ϸ(π1,π2,t22)kn+p1ϸ(π0,π1,t2p1).

    Here, k(0,1), we deduce from the above expression that

    limn+ψ(πn,πn+p,t)=1 for allt>0,p1,limn+φ(πn,πn+p,t)=0forallt>0,p1,

    and

    limn+ϸ(πn,πn+p,t)=0forallt>0,p1.

    Therefore, {πn} is a Cauchy sequence in (β,ψ,φ,ϸ,,). By the completeness of (β,ψ,φ,ϸ,,). There is wβ, such that

    limn+ψ(πn,w,t)=limn+ψ(πn,πn+p,t)=limn+ψ(w,w,t)=1,forallt>0,p1. (15)
    limn+φ(πn,w,t)=limn+φ(πn,πn+p,t)=limn+φ(w,w,t)=0,forallt>0,p1. (16)

    and

    limn+ϸ(πn,w,t)=limn+ϸ(πn,πn+p,t)=limn+ϸ(w,w,t)=0,forallt>0,p1. (17)

    Now, we prove that w is a fixed point for F. For this, we obtain from (11) that

    1ψ(Fπn,Fw,t)1k[1ψ(πn,w,t)1]=kψ(πn,w,t)k,
    1kψ(πn,w,t)+1kψ(Fπn,Fw,t).

    Using the above inequality, we obtain

    ψ(w,Fw,t)ψ(w,πn+1,t2)ψ(πn+1,Fw,t2)
    =ψ(w,πn+1,t2)ψ(Fπn,Fw,t2)ψ(w,πn+1,t2)1kψ(πn,w,t2)+1k,
    φ(w,Fw,t)φ(w,πn+1,t2)φ(πn+1,Fw,t2)
    =φ(w,πn+1,t2)φ(Fπn,Fw,t2)φ(w,πn+1,t2)kφ(πn,w,t2),

    and

    ϸ(w,Fw,t)ϸ(w,πn+1,t2)ϸ(πn+1,Fw,t2)
    =ϸ(w,πn+1,t2)ϸ(Fπn,Fw,t2)ϸ(w,πn+1,t2)kϸ(πn,w,t2)

    Taking limit as n+ and using (15)–(17) in the above expression, we get ψ(w,Fw,t)=1, φ(w,Fw,t)=0andϸ(w,Fw,t)=0, that is, Fw=w. Therefore, w is a fixed point of F and ψ(w,w,t)=1, φ(w,w,t)=0 and ϸ(w,w,t)=0 for all t>0.

    Now, we investigate the uniqueness of the fixed point w of F. Let v be another fixed point of F, such that ψ(w,v, t)1,φ(w,v,t)0 and ϸ(w,v,t)0 for some t>0. It follows from (11) that

    1ψ(w,v,t)1=1ψ(Fw,Fv,t)1k[1ψ(w,v,t)1]<1ψ(w,v,t)1,
    φ(w,v,t)=φ(Fw,Fv,t)kφ(w,v,t)<φ(w,v,t),

    and

    ϸ(w,v,t)=ϸ(Fw,Fv,t)kϸ(w,v,t)<ϸ(w,v,t),

    a contradiction.

    Therefore, we must have ψ(w,v,t)=1,φ(w,v,t)=0 and ϸ(w,v,t)=0, for all t>0, and hence w=v.

    Corollary 3.16. Let (β,ψ,φ,ϸ,,) be a complete neutrosophic metric-like space and F:ββ be a mapping satisfying

    1ψ(Fnπ,Fnλ,t)1k[1ψ(π,λ,t)1],
    φ(Fnπ,Fnλ,t)kφ(π,λ,t),

    and

    ϸ(Fnπ,Fnλ,t)kϸ(π,λ,t)

    for some nN,forallπ,λβ,t>0, where 0<k<1. Then F has a unique fixed point wβ and ψ(w,w,t)=1,φ(w,w,t)=0andϸ(w,w,t)=0forallt>0.

    Proof. wβ is the unique fixed point of Fn by using Theorem 3.15, and ψ(w,w,t)=1,φ(w,w,t)=0andϸ(w,w,t)=0forallt>0. Fw is also a fixed point of Fn as Fn(Fw)=Fw and from Theorem 3.15, Fw=w, w is the unique fixed point, since the unique fixed point of F is also the unique fixed point of Fn.

    Example 3.17. Let β=[0,2] and the continuous t-norm and continuous t-conorm respectively defined as gh=gh and gh=max{g,h}, given ψ,φandϸ as

    ψ(π,λ,t)=tt+max{π,λ}forallπ,λβ,t>0,
    φ(π,λ,t)=max{π,λ}t+max{π,λ}forallπ,λβ,t>0,
    ϸ(π,λ,t)=max{π,λ}tforallπ,λβ,t>0.

    for all π,λβ and t>0. Then (β,ψ,φ,ϸ,,) is a complete neutrosophic metric-like space. Define F:ββ as

    Fπ={0,π=1π3,π[0,1)π7,π(1,2].

    Then we have 8 cases:

    Case 1. If π=λ=1, then Fπ=Fλ=0.

    Case 2. If π=1 and λ[0,1), then Fπ=0 and Fλ=λ3.

    Case 3. If π=1 and λ(1,2], then Fπ=0 and Fλ=λ7.

    Case 4. If π[0,1) and λ(1,2], then Fπ=π3 and Fλ=λ7.

    Case 5. If π[0,1) and λ[0,1), then Fπ=π3 and Fλ=λ3.

    Case 6. If π[0,1) and λ=1, then Fπ=π3 and Fλ=0.

    Case 7. If π(1,2] and λ=1, then Fπ=π7 and Fλ=0.

    Case 8. If π(1,2] and λ(1,2], then Fπ=π7 and Fλ=λ7.

    All above cases satisfy the neutrosophic metric-like contraction:

    1ψ(Fπ,Fλ,t)1k[1ψ(π,λ,t)1],
    φ(Fπ,Fλ,t)kφ(π,λ,t),
    ϸ(Fπ,Fλ,t)kϸ(π,λ,t)

    with k[12,1) the neutrosophic metric-like contractive constant. Henc F is a neutrosophic metric-like contractive mapping with k[12,1). All conditions of Theorem 3.15 are satisfied. Also, 0 is the unique fixed point of F and ψ(0,0,t)=1,φ(0,0,t)=0andϸ(0,0,t)=0,forallt>0.

    Theorem 3.18. Let (β,ψ,φ,ϸ,,) be a complete neutrosophic metric-like space and F:ββ be a NML contractive mapping with an neutrosophic metric-like space contractive constant k. Suppose that their exist wβ, such that ψ(w,Fw,t)ψ(π,Fπ,t), φ(w,Fw,t)φ(π,Fπ,t) and ϸ(w,Fw,t)ϸ(π,Fπ,t) for all πβandt>0, we claim that ψ(w,Fw,t)=1, φ(w,Fw,t)=0 and ϸ(w,Fw,t)=0 for all wβandt>0, then F has a unique fixed point wβ so that ψ(w,w,t)=1, φ(w,w,t)=0andφ(w,w,t)=0 for all t>0.

    Proof. Let ψπ(t)=ψ(π,Fπ,t), φπ(t)=φ(π,Fπ,t) and ϸπ(t)=ϸ(π,Fπ,t) for all πβandt>0. Then by the assumption ψw(t)ψπ(t), φw(t)φπ(t) and ϸw(t)ϸπ(t) for all πβandt>0. We claim that ψ(w,Fw,t)=1, φ(w,Fw,t)=0 and ϸ(w,Fw,t)=0 for all t>0. Indeed, if ψw(t)=ψ(w,Fw,t)<1, φw(t)=φ(w,Fw,t)>0 and ϸw(t)=ϸ(w,Fw,t)>0 for some t>0, then it fellows from (11) that

    1ψFw(t)1=1ψ(Fw,FFw,t)1k[1ψ(w,Fw,t)1]=k[1ψw(t)1]<[1ψw(t)1],
    φFw(t)=φ(Fw,FFw,t)k[φ(w,Fw,t)]=k[φw(t)]<φw(t),
    ϸFw(t)=ϸ(Fw,FFw,t)k[ϸ(w,Fw,t)]=k[ϸw(t)]<ϸw(t).

    That is, ψw(t)ψFw(t),Fwβ a contradiction. Therefore, we have ψπ(t)=ψ(w,Fwt)=1, φπ(t)=φ(w,Fwt)=0 and ϸπ(t)=ϸ(w,Fwt)=0 for all t>0, and so Fw=w. Following the similar argument as in Theorem 2.15, uniqueness of fixed point of F follows. If ψ(w,w,t)<1,φ(w,w,t)>0 and ϸ(w,w,t)>0 for some t>0, then from (11), we have

    1ψ(w,w,t)1=1ψ(Fw,Fw,t)1k[1ψ(w,w,t)1]<[1ψ(w,w,t)1],
    φ(w,w,t)=φ(Fw,Fw,t)k[φ(w,w,t)]<φ(w,w,t),
    ϸ(w,w,t)=ϸ(Fw,Fw,t)k[ϸ(w,w,t)]<ϸ(w,w,t),

    a contradiction. Therefore, ψ(w,w,t)=1,φ(w,w,t)=0 and ϸ(w,w,t)=0.

    Remark 3.19. In the above theorem it is shown that in an neutrosophic metric-like space, the self-neutrosophic distance of the fixed point of a neutrosophic metric-like contractive mapping with a neutrosophic metric-like contractive constant k, is always 1, 0. That is, the degree of self-nearness of the fixed point of a neutrosophic metric-like contractive mapping is perfect.

    In this manuscript, we introduced the concept of neutrosophic metric like spaces and established some properties. Also, we established several fixed point results with non-trivial examples. As is well known, in recent years, the study of metric fixed point theory has been widely researched because of this theory has a fundamental role in various areas of mathematics, science and economic studies. This work can be extended in different generalized structures like, neutrosophic partial metric like spaces, neutrosophic b-metric like spaces.

    The data used to support the findings of this study are available from the corresponding author upon request.

    The authors declare that they have no competing interests regarding the publication of this paper.



    [1] M. Kirişci, N. Simsek, Neutrosophic metric spaces, Math. Sci., 14 (2020), 241–248. https://doi.org/10.1007/s40096-020-00335-8 doi: 10.1007/s40096-020-00335-8
    [2] J. H. Park, Intuitionistic fuzzy metric spaces, Chaos Solitons Fract., 22 (2004), 1039–1046. https://doi.org/10.1016/j.chaos.2004.02.051 doi: 10.1016/j.chaos.2004.02.051
    [3] M. Rafi, M. S. M. Noorani, Fixed theorems on intuitionistic fuzzy metric space, Iran. J. Fuzzy Syst., 3 (2006), 23–29.
    [4] W. Sintunavarat, P. Kumam, Fixed point theorems for a generalized intuitionistic fuzzy contraction in intuitionistic fuzzy metric spaces, Thai J. Math., 10 (2012), 123–135.
    [5] S. Sowndrarajan, M. Jeyarama, F. Smarandache, Fixed point results for contraction theorems in neutrosophic metric spaces, Neutrosophic Sets Syst., 36 (2020), 308–318.
    [6] N. Simşek, M. Kirişci, Fixed point theorems in Neutrosophic metric spaces, Sigma J. Eng. Nat. Sci., 10 (2019), 221–230.
    [7] A Amini-Harandi, Metric-like paces, partial metric spaces and fixed point, Fixed Point Theory Appl., 2012 (2012), 204. https://doi.org/10.1186/1687-1812-2012-204 doi: 10.1186/1687-1812-2012-204
    [8] S. Shukla, M. Abbas, Fixed point results in fuzzy metric-like spaces, Iran. J. Fuzzy Syst., 11 (2014), 81–92. https://dx.doi.org/10.22111/ijfs.2014.1724 doi: 10.22111/ijfs.2014.1724
    [9] L. A. Zadeh, Fuzzy sets, Inf. Control, 3 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X
    [10] I. Kramosil, J. Michálek, Fuzzy metric and statistical metric spaces, Kybernetika, 11 (1975), 336–344.
    [11] A. George, P. Veeramani, On some results of analysis for fuzzy metric spaces, Fuzzy Sets Syst., 90 (1997), 365–368. https://doi.org/10.1016/S0165-0114(96)00207-2 doi: 10.1016/S0165-0114(96)00207-2
    [12] M. Grabiec, Fixed points in fuzzy metric spaces, Fuzzy Sets Syst., 27 (1988), 385–389. https://doi.org/10.1016/0165-0114(88)90064-4 doi: 10.1016/0165-0114(88)90064-4
    [13] T. Došenović, A. Javaheri, S. Sedghi, N. Shobe, Coupled fixed point theorem in b-fuzzy metric spaces, Novi Sad J. Math., 47 (2017), 77–88. https://doi.org/10.30755/NSJOM.04361 doi: 10.30755/NSJOM.04361
    [14] S. Sedghi, N. Shobe, Common fixed point theorem in b-fuzzy metric space, Nonlinear Funct. Anal. Appl., 17 (2012), 349–359.
    [15] K. Javed, F. Uddin, H. Aydi, M. Arshad, U. Ishtiaq, H. Alsamir, On fuzzy b-metric-like spaces, J. Funct. Spaces, 2021 (2021), 6615976. https://doi.org/10.1155/2021/6615976 doi: 10.1155/2021/6615976
    [16] K. Javed, F. Uddin, H. Aydi, A. Mukheimer, M. Arshad, Ordered-theoretic fixed point results in fuzzy b-metric spaces with an application, J. Math., 2021 (2021), 6663707. https://doi.org/10.1155/2021/6663707 doi: 10.1155/2021/6663707
    [17] S. H. Hadi, A. H. Ali, Integrable functions of fuzzy cone and ψ-fuzzy cone and their application in the fixed point theorem, J. Interdiscip. Math., 25 (2022), 247–258. https://doi.org/10.1080/09720502.2021.1881220 doi: 10.1080/09720502.2021.1881220
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1575) PDF downloads(68) Cited by(0)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog