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1. Introduction

The notion of fuzzy sets was given by Zadeh [9], and this gave a new direction to this research
field. A large number of researchers doing work in this direction due to its wide range of applications
in science. In this connectedness, Kramosil and Michalek [10] initiated the concept of fuzzy metric
spaces by generalizing the notion of probabilistic metric spaces to fuzzy metric spaces. George and
Veeramani [11] derived a Hausdorff topology initiated by fuzzy metric to modify the notion of fuzzy
metric spaces. Fixed point theory enriched with many generalizations and playing an important role to
find the existence of solution. Garbiec [12] displayed the fuzzy version of Banach contraction principle
in fuzzy metric spaces. In [13,14], a great job has been done by authors in extending contraction results.
In recent times, Harandi [7] originated the notion of metric-like spaces, which generalized the concept
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of metric spaces in beautiful manners. In this connectedness, Shukla and Abbas [8] generalized the
notion of metric-like spaces and introduced fuzzy metric-like spaces. The approach of intuitionistic
fuzzy metric spaces was tossed by Park in [2]. Kirisci and Simsek [1] generalized the approach of
intuitionistic fuzzy metric spaces and tossed the approach of neutrosophic metric spaces. Simsek, and
Kirisci [5] and Sowndrarajan et al. [6] proved some fixed point results in the setting of neutrosophic
metric spaces. In [3,4,15—17] proved several fixed point results for contractive mappings.

In this article, we introduced the notion of neutrosophic metric-like spaces and established some
fixed point results with non-trivial examples.

2. Preliminaries

First, we give some basic definitions that are helpful for readers to understand main section.

Definition 2.1. [8] A 3-tuple (B,,*) is said to be a fuzzy metric-like space if f # O is a random
set, * is a continuous t-norm and Y is a fuzzy set on B X X (0,0) meet the points below for all
T, A, u€EpL,ts>0:

(FL1) ¢(m, A, t) > 0;

(FL2) If ¥ (m, A, t) =1, then m = 4;

(FL3) ¢(m, A, t) =4, m,t);

(FL4) Y(m,pu, t +s) = YP(m A, t) xPp(4,u,s);

(FL5) ¥(m, A, +):(0,400) = [0,1] is continuous.

Example 2.2. [8] Let 8 = R", k € R* and m > 0. Define continuous t-norm by g * h = gh and
the fuzzy set Y on S X 8 X (0,+) by

kt
kt + m(max{m, 1})

Y(m, A, t) = ,forallm,A € B,t > 0.

Then (f,1,*) is a fuzzy metric-like space.

Definition 2.3.[1] Suppose 8 # @, assume a six tuple (8,v, @, p,*,0) where * is a continuous t-norm,
o is a continuous t-conorm, ¥, and p neutrosophic sets on f X 8 X (0,+). If (B,¥,p,p,*
,o) meet the below circumstances for all 7,4, u € fandt,s > 0:

(NS1) Y(m, A, t) + o(m, A, t) + p(mr, A,t) <3,

(NS2) 0 <y(mAt) <1,

(NS3) Y(mr, At) =1 & n=1,

(NS4) Y(m, A t) =4, t),

(NS5) Y(m,p, (t +5)) = P(m, A4, )*P(4, 1, 5),

(NS6) Y(m, A,7):[0,+0) - [0,1] is a continuous,

(NS7) tl_i)IElool/J(ﬂ, Lt) =1,

(NS8) 0 < (m A, t) <1,

(NS9) p(m,A,t) =0 & n =24,

(NS10) ¢(m, A, t) = (4, t),

(NSI) @(m, i, (t +5)) < o(m, A, D04 1. 5),

(NS12) ¢(m, A,7):[0,+0) = [0,1] is a continuous,

(NS13) lim ¢(m,4,) = 0,
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(NS14) 0 < p(m, A t) <1,
(NS15) p(m,1,t) =0 & n =4,
(NS16) p(m, A,t) = p(4,m,t),
(NS17) b(n,u, (t+ S)) < b(m A, t)op(4, 1, ),
(NS18) p(m, A,7):[0,+) — [0,1] is a continuous,
(NS19) tligrn b(m,4,t) =0,
(NS20) If t <0 then Y(m, A, t) =0,¢(r,At) =1,p(mAt) =1.
Then, (B,y, @, b) is a neutrosophic metric on B and (B, Y, ¢, b,*,°) be a neutrosophic metric space.

3. Main results

In this section, we introduce the concept of neutrosophic metric-like spaces and prove some fixed
point results.

Definition 3.1. Suppose 8 # @, assume a six tuple (B,Y, @, p,*,0) where * is a continuous t-norm,
o is a continuous t-conorm, 1, and p neutrosophic sets on f X B X (0,4+). If (8,9, p,p,*
,o) meets the below circumstances for all 7,4, u € fandt,s > 0:

(NL1) ¢(m, A, t) + o(m, A, t) + p(m, A, t) <3,

(NL2) 0 <y(m A t) <1,

(NL3) y(m, A, t) = 1impliesm = 4,

(NL4) Y(m, A, t) = Y4, 7, t),

(NLS) Y(m,u,t +s) = Y(m, 4, ) *P(4, 1, 5),

(NL6) Y (m, A,7):[0,4+) — [0,1] is a continuous,

(NL7) tl_i)inoollj(ﬂ, At)=1,

(NL8) 0 < ¢(m, A,t) <1,

(NL9) ¢(m, A, t) =0 impliesm = 4,

(NL10) ¢(m,4,t) = ¢(4,m, 1),

(NL11) @(m,u, (t+5)) < o4, t)° @A, 1, 5),

(NL12) ¢(m, A,-):[0,+o0) — [0,1] is a continuous,

(NL13) tl_i)inoofp(n, At) =0,

(NL14) 0 < p(m, 4, t) <1,

(NL15) p(m, A,t) =0 impliesw = 4,

(NL16) p(m, A, t) = p(4,m, t),

(NL17) p(m, p, (¢ +5)) < b(m, A, ) b4, ),

(NL18) p(m, 4,):[0,+0) — [0,1] is a continuous,

(NL19) tl_i)inoo b(m, 4,t) =0,

(NL20) If t <0 then Y(m, A,t) =0,0(m,A,t) =1,p(r, A, t) = 1.
Then, (B,y,,p) beaneutrosophic metric-likeon £ and (f,y, ¢, p,*,0) beaneutrosophic metric-
like space.

Remark 3.2. In the above definition, a set [ is endowed a neutrosophic metric-like space with a
continuous t-norm (*) and continuous t-conorm (°). A neutrosophic metric space does not satisfy the
(NL3), (NL9) and (NL15) conditions of neutrosophic metric-like space, that is, the self-distance may
notbe equalto 1 and 0, i.e., Y(m,m,t) # 1, (m,m,t) # 0and p(rr,m,t) # 0 forall t > 0, for some
or may be for all w € 5. But, all other conditions are the same.
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Proposition 3.3. Let (3, o) be any metric-like space. Then (88,1, @, b,*,0) is a neutrosophic metric-
like space, where ‘*’ is defined g * h = gh and ‘o’ is defined by goh = max{g, h} and NSs
Y, pand p are given by

kt"
Y(m A t) = kO T mo(m, D) forallm, A€ B,t >0,
o) =—"CTD o maept>0
o kt™ + mo(m, 1) ’ ’ '
mao(m, 1)

b(m, A, t) = T forallm A€ B,t > 0.

Where, k € RY,m >0 and n > 1.

Remark 3.4. Note that the above proposition also holds for continuous t-norm g * h = min{g, h}
and continuous t-conorm goh = max{g, h}.

Remark 3.5. The proposition (3.3) shows that every metric-like space induces a neutrosophic metric-
like space. For k =n =m =1 the induced neutrosophic metric-like space (S,y, @, p,*,0) is called
the standard neutrosophic metric-like space, where k € R*

t

ll}(ﬂ',ﬂ.,t)—meTClllﬂ',/lEﬁ,t>O,

(m, A, t) = () Um,AeB,t>0

(M) = s JordlmAES >0,
v

b(m, A, t) = 0(’; ) forallmaept>0.

Example3.6.Let 8 = RT, k € Rfand m > 0. Define *by g *h = ghande by goh = max{g, h}
and neutrosophic sets ¥, ¢ and p in X f X (0,+) by

kt

Y(m, A, t) = Rt + mmax o7 7)) forallm, A€ B,t >0,
_ m(max {m, 1})
p(m, A t) = Kt + m(max (7, A]) forallm A€ B, t>0,
A
br a6 = MMXAY o mae >0,

kt

Then, since o(m, 1) = max {m,A} for allm,A € f is a metric-like space on S . Therefore, by
proposition (3.2) (B,Y, @, p,*,°) is a neutrosophic metric-like space, but it is not a neutrosophic
metric space.

As,

kt
Y(m,m,t) il Tap— #1forallm,A€B,t >0,
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mm
t) = ——— € ,
p(m,m,t) kt+mﬂ¢0forall7r,/1 B,t>0
mm
p(n,n,t)=F¢0forall7t,/1€ﬁ,t>0.

Definition 3.7. A sequence {m,} is neutrosophic metric-like space (B,y,®,p,*,0) is said to be
convergentto w € B if

lirP Y(my,, mt) =yY(m,mt) forallt >0,
n—->+oco

lirﬁp o(m,, mt) = (m,mt) forallt > 0,
n—+oo

and

lirp b(r,, m,t) = p(m,m,t) forallt > 0.
n-+oo

Definition 3.8. A sequence {m,} in a neutrosophic metric-like space (f,y, @, p,*,°) is said to be
Cauchy sequence if

nETw lp(nn' Tn+p» t)'

nl_i}_Poo <p(ﬂn' T[n+p' t)'

and

nl—i>I-Poo b(ﬂn' T[n+p' t)

forall t > 0,p = 1 exist and is finite.

Definition 3.9. A neutrosophic metric-like space (f,¥, @, p,*,0) is said to be complete if every
Cauchy sequence {m,} in B converge to some 7 € [ such that

lim Y(my, m,t) = P(m,m,t) = lim P(my,, mpyp,t) forall t >0,p =1,
n-+oo n-+o

lim o(m,,mt) =@(r,mnt) = lim <p(nn,nn+p,t) forall t >20,p >1,
n—+oo n—+oo

and

lim p(m,, mt) =p(mr,m,t) = lim p(m,, Ty t) forall t = 0,p = 1.
n—-+oo p

n—-+o

Remark 3.10. In neutrosophic metric-like space, the limit of a convergent sequence may not be unique
for instance, for a neutrosophic metric-like space (S,y, @, p,*,°) given in proposition (3.3) with
o(mr,A) = max{r,A} and n=k=m =1 . Define a sequence {m,} in B by m,=1-—
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%,for alln e N.If m > 1 then

t t

= LT, t llt >0,
—>+00t+maX{T[n,7l'} t + max {m, } Y(mm ) for a

llm Y(my,, mt) =

y ( = lim max {m,, 7}  max{mm} ( 0 Lt 0
nteo Pt T nsto £ + max (m,,m}  t+max{mm} ¢(mmt) for a '
max {m,, 7} max{m,w
11m b(m,, mt) = 11m {t w7} = i ) = p(m,m,t) forallt > 0.
n->+ + oo

Therefore, the sequence {m,} convergetoall w € f with m > 1.

Remark 3.11. In an neutrosophic metric-like space, a convergent sequence may not be Cauchy.
Assume a neutrosophic metric-like space (5,9, @, p,*,°) given in above Remark 3.10. Define a
sequence {m,} in by m, =14+ (=1)" foralln € N.If m > 2, then

t t
n—>+00 t + max {nn,n} t + max {m, }

hm Y(my,, m,t) = =yY(m, m,t) for allt > 0,

y ( = lim max {m,, 7}  max{mnm} ( 0 it > 0
o PV T niteo £ + max {m,,m} t+max{mm} ¢(mmt) fora ’
max {m,,m} max{m,w
lim p(m,, mt) = hm {t n 1} = i ) = p(m, m,t) for allt > 0.
n-+o +00

Therefore, a sequence {m,} converge to all m € § with @ > 2, but it is not a Cauchy sequence as

lim l/)(ﬂn,ﬂn+p,t) llm @ (Ty, Tyyp, t) and hm P (Tn, TTp4p, t) does not exist.
n—+co n-

Theorem 3.12. Let (S,Y, ¢, p,*,°) be a complete neutrosophic metric-like space such that

tl_l)grnool,l)(n, At)=1, tl_l)I_Eloo o(m,A,t) =0 and tl_grnoo p(mAt) =0

forall m;,A € B,t >0 and F:f — [ be a mapping satisfying the conditions
Y(Fr,FA,at) 2 P(m,At), o(Fn,FA at) < o(m, A t) and p(Frr, FA, at) < p(rw, A, t), (1)
forall m,A € B,t >0, where @ € (0,1). Then F has a unique fixed point w € § and
Y(w,w,t) =1,w,w,t) =0and p(w,w,t) =0 forall t > 0.

Proof. Let (B,¥, @, b,*,0) be a complete neutrosophic metric-like space. For an arbitrary my € 3,
define a sequence {m,} in f by

m, = Fmy, mp, = F?my = Fry, ..., m, = F'my = Fr,_, forall n € N.

If m, = m,_; for some n €N then m, is a fixed point of F. We assume that mw,, # m,_; for all
n € N. For t > 0and n € N, we get from (1) that

l/)(T[n, Tnt1) t) = lp(ﬂn+1'ﬂn' at) = lp(?nn"?nn—li at) = l/)(ﬂn' Th-1, t)r

AIMS Mathematics Volume 7, Issue 9, 17105-17122.
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(p(T[n, Tn+1s t) < (p(nn+1)nn) (lt) = (p(:FT[n' Tnn—li at) < <p(nnrﬂn—1rt)

and

p(nn' T[n+1't) < p(nn+1)nn) (lt) = b(Tnn' Tﬂn—llat) < p(nnrﬂn—lrt)'

forall n € N and t > 0. Therefore, by applying the above expression, we can deduce that

Y(Tn1, T, 8) = Py, T, at) = Y(Fry, Fip_q, at) = P(mp, Tp-q, t)
= Y(Frpq, Friy_,t) 2 ¢ (7Tn—1,”n—2,£) =2 (”1’7'[0:6[_2) (2)
P (Mpi1, T, 1) < @(Mpp1, T, at) = @(Frey, Frip_q, at) < @ (T, Tp-q, t)
= @(Frp_1,Fip_pt) < ¢ (7Tn—1,”n—2,£) S =9 (”1’7'[0'0[_2) (3)
and
P(Tni1, T, t) < P(ns1, T, at) = p(Frp, Fry—y, at) < p(my, my—g, )
= P(FTn 1, Ftp ) S b (Tp 1M 2s) < - <b(mumo ) @)

forall n € N, p>1 and t>0. Thus, we have

t t
lnb(ﬂn: Tn+ps t) =Y (T[n' Th+1s E) *P (nn+lr Tn+ps E)r

t

t
(P(Tl'n, Tn+ps t) =@ (T[n: Th+, E) °Q (nn+1: Tn+ps E)

and

t t
b(ﬂ'n, Tn+p) t) <b (T[nt Tn+1 E) °p (nn+1: Tn+p) E)

Continuing in this way, we get

lp(”n: Tn+ps t) =Y (T[n: 7Tn+1'%) * P (T[n+1: 7Tn+2f%) * ek ) (nn+p—1r 7Tn+pr%)
and
t t t
(P(Tfn: Tntp, t) () (T[n: 7Tn+1:§) °Q (T[n+1: 7Tn+2f§> 00 (”n+p—1»7Tn+p»F>;
and

t t t
b(nm Tn+ps t) <p (T[n: Tn+1, E) °p (T[n+1, Tn+2, ?) o:oh (nn+p—1l Tn+p, F)

Using (2)—(4) in the above inequality, we deduce

AIMS Mathematics Volume 7, Issue 9, 17105-17122.
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t t t
l/)(T[n, Tn+p, t) 2y (T[O’ Ty ﬁ) *P (71'0, Y 22an+1) ¥kl (7T0r Ty, Zp—lan+p—1)’ (%)

t t t
(p(ﬂn, T[n+p; t) < 4 (77:0177:1) ﬁ) °Qp (T[O’ T4, W) oo @ (T[O’ Ty, W)’ (6)

and
t t t
I.)(T[n, T[n+p! t) < I:)(T[O,Tl'l,ﬁ) o p(no’nl’zza—nﬂ) 0 e 0 p (TL’O,T[l,W). (7)

We know that lirp Y(m A t)=1,s lirp p(m, A, t) =0,forallm, A € fand t > 0, € (0,1). So,
n—+oo n—»+oo

from (5)—(7) we deduce that

lim w(nn,nn+p,t) =1x1*--x1=1,forallt>0,p=1,

n—-+oo

lim (T, Tpyp t) =0000-00=0,forallt>0,p =1,

n—-+oo

and

lim p(7y, Tpyp, t) =0000--00=0,forallt>0,p=1,

n—-+oo

Hence, {m,} is a Cauchy sequence. The hypothesis of completeness of the neutrosophic metric-like
space (f,Y, @, b,*,°) ensures that there exists w € f such that

lirP Y(m,,w,t) = lirﬁp Y(m,, nn+p,t) =yYw,w,t) =1, forallt >0,p =1, (8)
n—-+oo n—->+oo

ler o(m,w,t) = hm <p(nn,nn+p,t) pow,w,t) =0,forallt >0,p =1, 9)
n—
and
lim p(m,,w,t) = lim b(nn,nn+p,t) =pw,w,t) =0, forallt >0,p=>1. (10)
n—+oo n—+oo

Now, we derive that w € 8 is a fixed point of F. We have

t t
Y(w, Fw,t) =y (w, v/ S 2) * (nn+1,}"w ) forallt >0,

= (W tnsnr) < (P Fw,2) 2 (Wi 5) 0 (),
)

o
AS]
—

t

t
nn+1,TW,2>,for allt > 0,
)<

t t
0w mning) 0 (mn )

AIMS Mathematics Volume 7, Issue 9, 17105-17122.
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and

t t
b(w,Fw,t) < b(w, nn+1,§) ° p(nn+1,Tw, E) ,forallt >0,

Taking limit as n — +o0, and by (8)—(10), we get
Y(w,Fw,t) =1%1=1,
ow,Fw,t) =000=0,
and
b(w,Fw,t) =000 = 0.
Therefore, w is a fixed point of F,
Y(w,w,t) =1,9(w,w,t) =0and p(w,w,t) =0, forallt > 0.

Now, we investigate the uniqueness of fixed point. For this, assume that v and w are two fixed
points of F, then by (1), we have

Y(w,v,t) =Y(Fw,Fv, t) =Y (W, v, é),
Yy(w,v,t) =y (W, v,é),for allt >0,
pw,v,t) = o(Fw,Fv,t) < @ (W, v,é),

ow,v,t) < ¢ (w,v,%), for all t >0,

and
b(w,v,t) = p(Fw,Fv,t) < Io(w, vé)
t
b(w,v,t) < p<w, v,;),for allt > 0.
We obtain
Y(w,v,t) =P (w, va—tn) ,foralln €N,
pw,v,t) <@ (W, v,in),for alln €N,
a
and

t
p(w,v,t) < p(w, v,;),for alln € N.

Taking limit as n — +oc and using the fact tliin Y(m, A, t) =1and tligrn p(m, A t) =

AIMS Mathematics Volume 7, Issue 9, 17105-17122.
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0 and tligrn b(m, A, t) = 0,so w = v, hence the fixed point is unique.

Example 3.13. Let f =[0,1] and the continuous t-norm and continuous t-conorm respectively
definedas g * h = gh and g o h = max{g, h}. Also, ¥, ¢ and p are defined as

w(n,l,t)=HTX{7T’A}]COTQUTT,AEﬁ,t>O,
(w2, 1) = —Pax (T A} UmA€B,t>0
o(m, A, _t+max{n,/1}fora T, B, ,
max {m, A}
b(m, A, t) :f forallm A€ B,t>0.

Then (B,Y, @, p,*,°) be a complete neutrosophic metric-like space. Define F: 5 — f by

0 E[O 1]
, Vs VS
Frr = :
5 me(z]
g -\l
Now,
lim ¢ (m,4,t) = li : -
Jim 4 (m, 4, T Vet + max(m A}
max{m, 1
{m, 2} 0,

A oA ) = e )

max {m, A}

tl—lgloo b(m,4,1) = tl—1>£rloo t

Fora € E, 1), we have four cases:
Casel.If 7,1 € [0, %] then Frr = FA = 0.

Case2.If € [0%] and 1 € (% 1], then Fr =0 and FA =1,

Case3.If T,1 € G, 1], then Frr = g and FA = g.

Cased. If m € G, 1] and 1 € [O,%], then Fm =g and FA = 0.
From all 4 cases, we obtain that
Y(Fr,FA, at) = Y(m, A, t),
o (Fr,FA, at) < o(m, A, t),
b(Fm, FA, at) < p(m, A, ¢t).

Hence all conditions of Theorem 3.12 are satisfied and 0 is the unique fixed point of F. Also,

AIMS Mathematics Volume 7, Issue 9, 17105-17122.
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Y(w,w,t) =1(0,0,t) =1, forallt > 0,
ew,w,t) = ¢(0,0,t) =0, forallt >0,
b(w,w,t) = p(0,0,t) =0, for all t > 0.

Definition 3.14. Let (3,9, @, p,*,0) be an neutrosophic metric-like space. A mapping F: [ — [ is
said to be neutrosophic metric-like contractive if k € (0,1) such that

1

1
i e [W_ 1], o(Fr, FAt) < ko(m, A, t) and b(Fm, FA,t) < kb(m, A, t)(11)

forall m,A € f and t > 0. Here, k is called the neutrosophic metric-like contractive constant of F.

Theorem 3.15. Let (f,9, @, b,*,0) be a complete neutrosophic metric-like space and F:§ - [ be a
neutrosophic metric-like contractive mapping with a neutrosophic metric-like contractive constant k,
then F has a unique fixed point w € f so that Y (w,w,t) =1, ¢(w,w,t) =0 and p(w,w,t) =
0, forall t > 0.

Proof. Let (B,¥, @, p,*,0) be a complete neutrosophic metric-like space. For an arbitrary my € 3,
define a sequence {m,} in B by

m, = Frmy, m, = Finy = Fry, ..., M, = F'my = Fm,_, forall n € N.

If m,, = m,_; for some n €N, then m, is a fixed point of F. We assume that m,, # m,_; for all
n € N.For t > 0 and n € N, we get from (11)

1 1 1
— 1= —1sk[——1].
lp(ﬂnr Tn+1s t) l/J(TT[n_l, Tﬂ:n' t) lp(nn—li Ty, t)

We have

LI +(—k) forallt>0

= —K), jora ’
1/)(7-[71' Ty+1s t) d’(nn—l'nn' t)
k
= +(1-k)
lp(Tnn—ZtTﬂ:n—li t)
kZ

< S ptkaA-R+a -k,

Continuing in this way, we get
1 k™
<
l/)(nnr T+, t) lp(T[O' Ty, t)

n

< -
- 1,0(77,'0, Ty, t)

n

S _—
l/)(n-O' Ty, t)

+ kY1 — k) + k72— k) + -+ k(1 — k) + (1 — k)

+ k" + K2+ -+ D) - k)

+ (1 —-Ek™).

We have
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1

T < Y(1,, Tpeq,t), forallt > 0,n €N, (12)
m‘l‘(l—kn)
0.7t1,
Now,
(p(nn) Th+1) t) = (p(j:'nn—li“]:nn' t)
= k(P(Tl'n_l,Tl'n, t) = k(P(Tnn—Z'Tnn—lf t)
S k2Q(Mp_z, My_q,t) < - < k™ (p, 4, ) (13)
and

p(Tn, Tn41, 1) = p(Frip_q, Friy, t)
< kp(my—1, 70, t) = kp(Frry—, Friy—y,t)
< k?p(mtn 2, n_1,t) < - S K"p(mg, 1, 1), (14)
Now, for p = 1 and n € N, we have

t t
1:b(ﬂnr Tn+ps t) =Y (nnr T+t 5) *1P (nn+11 Tn+ps E)

t t t
= l/) (T[n'ﬂn+1t E) * l/) (nn+1:77:n+2' ?) * 1/1 (nn+2'77:n+p: ?)

Continuing in this way, we get

t t t
l[}(ﬂ'n, Tn4ps t) = l/) (T[n' Tn+, E) * l/) (T[n+1: Tn+2, 2_2> Ko Xk l/) (nn+p—1' Tntps 2p—1>'

t t
(P(ﬂn, Tn+ps t) =@ (nn' Tn+1, E) °Y (nn+1' Tn+ps E)

t

t t
<o <7Tn: TTn+1) E) °oQ (T[n+1'77:n+2' 2_2) °Q (nn+2: Tn+ps ?)

and

t t
p(ﬂn' Tn+p) t) <b (nn: Tp+1s E) °p (nn+1: Tn+ps E)

t t t
< p (T[n' Tnt1) E) ° b (T[n+1' TTny2, 2_2) ° p (T[n+21 Tn+p 2_2)

Continuing in this way, we get

t t t
p(nn’ Tn+py t) < p (T[n» Tn+1) E) ° p (nn+1' TTny2) 2_2) 00 b (T[n+p—b Tntp, 2p—1)'

By using (12)—(14) in the above inequality, we have
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1 1

V(T Ty, t) = 0 * i o
~+ (1 —k") 7~ + (1 —knt)
¥ (m0.m3) ¥ (70, m1,52)
1
* kn+p-1 . n (1 _ kn+p—1)
Y (”0»”1»@)
> ! ! .
> * Kk eee % — )
LS Y | 41
Y (7‘[0, Ty, 2) Y (ﬂo. Ty, ?) Y (7T0r Ty, F)

t t t
(p(nn,nn+p, t) < k"p (”0'”1:5) o k™lgp (nl,rrz,z—z) 0.0 P 1y (no,nl,F),

and

t t - t
b(rrn, Tn4ps t) < k™p (TL’O, 7'[1,5) o k™1p (nl, nz,z—z) o +ero fMHP~1p (no, nl,ﬁ).
Here, k € (0,1), we deduce from the above expression that

lim Y(m,, Tpyp t) =1 forall ¢ >0,p =1,

n—-+oo

lim go(nn,nn+p, t) =0forallt >0,p =1,

n-—-+oo

and

lim p(m,, Tpep t) = 0forallt > 0,p = 1.

n-—-+oo

Therefore, {m,} is a Cauchy sequence in (B,¥, @, p,*,°). By the completeness of (B,y, @, b,*,).
There is w € B, such that

lim Y(m,,w,t) = lim 1P(7Tn;7fn+p: t)= lim Yp(w,w,t) =1,forallt>0,p=1. (15
n—+oo n-+o n-+o

lim @(m,,w,t) = lim (p(nn,nn+p,t) = lim o(w,w,t) =0, forallt >0,p=>1. (16)
n—+oo n—-+oo n—+oo
and

lim p(m,,w,t) = lim b(y, Tpap, t) = im b(w,w,t) =0, forallt >0,p>1. (17)

n—»+oo

Now, we prove that w is a fixed point for F. For this, we obtain from (11) that

1 1<k —1 1| = —k k
Y(Fm,, Fw,t) ST [w(nn,w, t) ] Y(m,w, t) -
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1

7 < Y(Fr,, Fw, b).

41—k
Y (1, w, t)

Using the above inequality, we obtain

t t
1/)(W, Fw, t) = l,b (W' Tyn41, E) * 1/J (71'”+1,TW, E)

t t t 1
= 1/) (W; 7Tn+1;_) * l/) (j:'nn; :FW: _) = 1/] (Wr nn+1'_> * ’
2 2 2k i1k
lp(ﬂnrwri)

t t
ow,Fw,t) < @ (W, nnﬂ,z) o (nn+1,Tw, E)

t t t t
oot o) o (r )i )

and

t t
b(W' TW! t) < b(W! Tn+1s E) ° b(ﬂn+1'TWJ E)

t t t t
= 'D(W' ”nﬂ'z) °b (:an, Fw, 5) < 'D(W' ”mz) ° kp (”ww' z)

Taking limit as n — 4+oco0 and using (15)—(17) in the above expression, we get Y(w,Fw,t) =1,
o(w,Fw,t) = 0and p(w,Fw, t) = 0, that is, Fw = w. Therefore, w is a fixed point of F and
Yyw,w,t) =1, o(w,w,t) =0 and p(w,w,t) =0 forall t > 0.

Now, we investigate the uniqueness of the fixed point w of F.Let v be another fixed point of
F, such that Yp(w,v, )= 1,9(w,v,t) # 0 and p(w,v,t) # 0 for some t > 0. It follows from (11)
that

—1 1= —1 1<k —1 1 —1 1
w0 wFwTFnD o [tp(w,v,t) - ]<1/J(W,v,t) b

pw,v,t) = p(Fw,Fv,t) < ko(w,v,t) < p(w,v,t),
and
bw,v,t) = p(Fw,Fv,t) < kp(w,v,t) < p(w,v,t),

a contradiction.
Therefore, we must have Y(w,v,t) =1,9(w,v,t) =0 and p(w,v,t) =0, forall t > 0, and
hence w = v.

Corollary 3.16. Let (8,1, @, p,*,0) be a complete neutrosophic metric-like space and F: 5 — [ be
a mapping satisfying
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1 1<k —1 1
W(Frm, FrA L) [lp(n,z, t) ]

e(Frm, F"A,t) < ko(m, A, t),

and
b(F™m, F"A,t) < kp(m, A, t)

forsome n €N, forallm,A € §,t > 0,where 0 < k < 1.Then F has aunique fixed point w € 8
andy(w,w,t) =1,o(w,w,t) = 0and p(w,w,t) =0 forallt > 0.

Proof. w € B is the unique fixed point of F™ by using Theorem 3.15, and Y(w,w,t) =1,
e(w,w,t) =0and p(w,w,t) =0 forallt > 0. Fw is also a fixed point of F" as F*(Fw) =
Fw and from Theorem 3.15, Fw = w, w is the unique fixed point, since the unique fixed point of
F is also the unique fixed point of F™.

Example 3.17. Let § = [0,2] and the continuous t-norm and continuous t-conorm respectively
defined as g * h = gh and g o h = max{g, h}, given, ¢ and p as

Y(m, A t) = m forallm A€ B,t >0,
max {m, 1}
p(mAt) = H—Tx{n,l} forallm A€ B,t >0,
b(, A, £) = w forallm A€ B,t>0.

for all ;, A€ and t > 0.Then (B,y,q,p,*0) is a complete neutrosophic metric-like space.
Define F: = f as

Then we have 8 cases:
Casel.If t=A=1,then Fm =FA1=0.

Case2.If t=1 and A €[0,1),then Fr =0 and FA1 = %

Case3.If t=1 and A € (1,2],then Fr =0 and FA1 =

N>

Case4.If t € [0,1) and A € (1,2], then Frr =§ and FA =2

7

CaseS.If T €[0,1) and A € [0,1), then Frr = g and FA =

W~

Case6.If T €[0,1) and A =1, then Frr =§ and FA = 0.

Case7.If T € (1,2] and A =1, then Frr = g and FA1 = 0.
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Case8.1f m € (1,2] and 1€ (1,2], then Fr =7 and FA =1,

All above cases satisfy the neutrosophic metric-like contraction:

—1 1<k —1 1
W(Fr,FLD Lp(n,/l,t)_ ]

o (Fm, FAt) < ko(m, A, t),
b(Fm, FA, t) < kp(m, A, t)

with k € [5, 1) the neutrosophic metric-like contractive constant. Henc F is a neutrosophic metric-

like contractive mapping with k € E, 1). All conditions of Theorem 3.15 are satisfied. Also, 0 is the
unique fixed point of F and ¥(0,0,t) = 1,¢(0,0,t) = 0and p(0,0,t) =0, for all t > 0.

Theorem 3.18. Let (f,9, @, b,*,0) be a complete neutrosophic metric-like space and F:§ = [ be a
NML contractive mapping with an neutrosophic metric-like space contractive constant k. Suppose that
their exist w € f, such that Y(w,Fw,t) =Y, Fr,t), ow,Fw,t) < @(m Fr,t) and
b(w,Fw,t) < p(m,Fr,t) forall m € fandt > 0, we claimthat Y(w,Fw,t) =1, o(w,Fw,t) =
0 and p(w,Fw,t) =0for all w € Bandt > 0, then F has a unique fixed point w € 8 so that
Yyw,w,t) =1, o(w,w,t) = 0and ¢(w,w,t) =0 forall t> 0.

Proof. Let Y. (t) =y¢(n,Fr,t), @ (t) = @(m Fr,t) and p,(t) = p(w,Fr,t) for all we
f and t > 0. Then by the assumption ¥, (t) = Y, (t), ¢, (t) < @, (t) and b, (t) < p,(t) for all
m € Bandt > 0. We claim that Y (w,Fw,t) =1, o(w,Fw,t) =0 and p(w,Fw,t) =0 for all
t>0. Indeed, if u,(t)=vwFw,t)<]1, Q) =W, Fw,t) >0 and p,(t) =
b(w,Fw,t) > 0 forsome t > 0, then it fellows from (11) that

1 - ! —1<k[;—1]=k[;—1]<[;—1]

Yrw (1) Y(Fw,F Fw,t) - pw, Fw,t) Py (1) Py () '

Prw(t) = @(Fw,F Fw, t) < klpWw, Fw, t)] = k[, (0] < ¢y (D),
brw(t) = b(Fw, F Fw,t) < k[p(w, Fw, )] = k[pw ()] < b (0).

That is, ¥, (t) < ¥z, (t), Fw € B a contradiction. Therefore, we have Y, (t) =Y (w,Fwt) =1,
() =W, Fwt) =0 and p,(t) = p(w,Fwt) =0 forall t >0, andso Fw = w. Following
the similar argument as in Theorem 2.15, uniqueness of fixed point of F follows. If Y(w,w,t) <1,
o(w,w,t) >0 and p(w,w,t) >0 forsome t > 0, then from (11), we have

1 _ 1 1<k 1 1 1 1
vw,w,t)  Y(Fw,Fw,t) [l/)(W,W, t) ] < [l/)(W,W, t) ]'

pw,w,t) = o(Fw,Fw,t) < klp(w,w,t)] < p(w,w,t),
b(w,w,t) = p(Fw,Fw,t) < k[p(w,w,t)] < p(w,w, t),
a contradiction. Therefore, Y (w,w,t) = 1,(w,w,t) =0 and p(w,w,t) = 0.

Remark 3.19. In the above theorem it is shown that in an neutrosophic metric-like space, the self-
neutrosophic distance of the fixed point of a neutrosophic metric-like contractive mapping with a
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neutrosophic metric-like contractive constant k, is always 1, 0. That is, the degree of self-nearness of
the fixed point of a neutrosophic metric-like contractive mapping is perfect.

4, Conclusions

In this manuscript, we introduced the concept of neutrosophic metric like spaces and established
some properties. Also, we established several fixed point results with non-trivial examples. As is well
known, in recent years, the study of metric fixed point theory has been widely researched because of
this theory has a fundamental role in various areas of mathematics, science and economic studies. This
work can be extended in different generalized structures like, neutrosophic partial metric like spaces,
neutrosophic b-metric like spaces.

Data availability

The data used to support the findings of this study are available from the corresponding author
upon request.
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