Research article

Fixed points of Kannan maps in modular metric spaces

  • Received: 01 July 2020 Accepted: 30 July 2020 Published: 12 August 2020
  • MSC : 46B20, 47H10, 47E10

  • The notion of a modular metric on an arbitrary set and the corresponding modular spaces, generalizing classical modulars over linear spaces like Orlicz spaces, were recently introduced. In this paper we study the existence of fixed points for contractive and nonexpansive Kannan maps in the setting of modular metric spaces.These are related to the successive approximations of fixed points (via orbits) which converge to the fixed points in the modular sense, which is weaker than the metric convergence.

    Citation: Afrah. A. N. Abdou. Fixed points of Kannan maps in modular metric spaces[J]. AIMS Mathematics, 2020, 5(6): 6395-6403. doi: 10.3934/math.2020411

    Related Papers:

  • The notion of a modular metric on an arbitrary set and the corresponding modular spaces, generalizing classical modulars over linear spaces like Orlicz spaces, were recently introduced. In this paper we study the existence of fixed points for contractive and nonexpansive Kannan maps in the setting of modular metric spaces.These are related to the successive approximations of fixed points (via orbits) which converge to the fixed points in the modular sense, which is weaker than the metric convergence.


    加载中


    [1] A. A. Abdou, M. A Khamsi, Fixed point results of pointwise contractions in modular metric spaces, Fixed Point Theory Appl., 2013 (2013), 163.
    [2] A. A. Abdou, M. A Khamsi, On the fixed points of nonexpansive maps in modular metric spaces, Fixed Point Theory Appl., 2013 (2013), 229.
    [3] S. Banach, Sur les opérations dans les ensembles abstraits et leurs applications, Fund. Math., 3 (1922), 133-181. doi: 10.4064/fm-3-1-133-181
    [4] V. V. Chistyakov, Modular metric spaces, I: Basic concepts, Nonlinear Anal., 72 (2010), 1-14.
    [5] V. V. Chistyakov, Modular metric spaces, Ⅱ: Application to superposition operators, Nonlinear Anal., 72 (2010), 15-30.
    [6] R. Kannan, Some results on fixed points-Ⅱ, Am. Math. Mon., 76 (1969), 405-408.
    [7] M. A. Khamsi, W. A. Kirk, An Introduction to metric spaces and fixed point theory, John Wiley, New York, 2001.
    [8] M. A. Khamsi, W. K. Kozlowski, S. Reich, Fixed point theory in modular function spaces, Nonlinear Anal., 14 (1990), 935-953.
    [9] M. A. Khamsi, W. M. Kozlowski, Fixed point theory in modular function spaces, Birkhauser New York, 2015.
    [10] W. M. Kozlowski, Modular function spaces, Series of Monographs and Textbooks in Pure and Applied Mathematics, Dekker, New York/Basel, 122 (1988).
    [11] J. Musielak, Orlicz spaces and modular spaces, Lecture Notes in Mathematics, Springer-Verlag, Berlin/Heidelberg/New York/Tokyo, 1034 (1983).
    [12] H. Nakano, Modulared semi-ordered linear spaces, Maruzen Co., Tokyo, 1950.
    [13] W. Orlicz, Über konjugierte exponentenfolgen, Studia Math., 3 (1931), 200-211. doi: 10.4064/sm-3-1-200-211
    [14] M. Paknazar, M. D. Sen, Best proximitym point results in non-archimedean modular metric space, Mathematics, 5 (2017), 23.
    [15] M. Paknazar, M. D. Sen, Some new approaches to modular and fuzzy metric and related best proximity results, Fuzzy Set. Syst., 390 (2020), 138-159. doi: 10.1016/j.fss.2019.12.012
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3442) PDF downloads(317) Cited by(4)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog