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Abstract: In this work, by introducing a scalar matrix αI, we transform the complex symmetric
indefinite linear systems (W + iT )x = b into a block two-by-two complex equations equivalently,
and propose an efficient relaxed shift-splitting (ERSS) preconditioner. By adopting the relaxation
technique, the ERSS preconditioner is not only a computational advantage but also closer to the original
two-by-two of complex coefficient matrix. The eigenvalue distributions of the preconditioned matrix
are analysed. An efficient and practical formula for computing the parameter value α is also derived by
computing the Frobenius norm of symmetric indefinite matrix T . Numerical examples on a few model
problems are illustrated to verify the performances of the ERSS preconditioner.
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1. Introduction

Consider the iterative solution of the following complex linear equations of the form

Ã x̃ = b̃, Ã ∈ Cn×n and x̃, b̃ ∈ Cn, (1.1)

where Ã = W + iT ∈ Cn×n is a complex matrix, with W, T ∈ Rn×n being symmetric matrices,
x̃ = y + iz, b̃ = f + ig, and i =

√
−1 denotes the imaginary unit.

Complex systems such as (1.1) are important and arise in various scientific computing and
engineering applications, such as diffuse optical tomography, structural dynamics [7], optimal control
problems for PDEs with various kinds of state stationary or time dependent equations, e.g., Poisson,
convection diffusion, Stokes [2], wave propagation and so on. More details on this class of questions
are given in references [1, 3, 5, 14, 15].
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When the matrices W, T are symmetric positive semi-definite with at least one of them being
positive definite, Bai et al. [7, 8] proposed the modified Hermitian and skew-Hermitian splitting
(MHSS) iteration method and the preconditioned MHSS (PMHSS) iteration methods to compute an
approximate solution for the complex linear systems (1.1), see also [6]. It is proved in [7, 8] that
the MHSS and PMHSS methods converge to the unique solution of (1.1) unconditionally. Moreover,
Bai et al. pointed out the h-independent behavior of the corresponding preconditioner of the PMHSS
iteration method. To solve the systems (1.1) further and more efficiently, Zheng et al. [24] designed
a double scale splitting (DSS) iteration method and also analyzed the unconditional convergence
property. Furthermore, two reciprocal optimal iteration parameters and corresponding optimal
convergence factor are determined simultaneously. There are some other effective iteration methods at
the same time, such as Euler preconditioned SHSS iteration method [17], Double parameter splitting
(DPS) iteration method [18], etc.

However, the matrix T of complex symmetric system of linear equations arises in direct frequency
domain analysis [10] and time integration of parabolic partial differential equations [4] is usually
symmetric indefinite, the MHSS, PMHSS and DSS methods may be applicative or not, due to the
fact that the coefficient matrices αI + T , αV + T and αW + T are indefinite or singular. For such
a problem, multiply the complex linear systems on the left by T , Wu [19] developed the simplified
Hermitian normal splitting (SHNS) iteration method. In order to accelerate the convergence of the
SHNS method, Zhang et al. [21] established a preconditioned SHNS (PSHNS) iteration method and
constructed a corresponding preconditioner. Although these two iteration methods are unconditionally
convergent, they still involve the complex arithmetics in each inner iteration, which can result in
expensive computational costs. More importantly, computation of the optimal values with any of the
aforementioned two methods is a time-consuming because it first needs to compute the maximum and
the minimum eigenvalues of some dense matrices.

In this paper, we will focus on the case that W is symmetric positive definite and T is symmetric
indefinite. In order to avoid the complex arithmetic, the complex linear systems (1.1) are often
transformed into the real block two-by-two systems as follows [3, 25]:[

W −T
T W

] [
y
−z

]
=

[
f
g

]
, (1.2)

this real form can be regarded as a special class of generalized saddle point problems [11]. Based on
the relaxed preconditioning technique [12] for generalized saddle point problems, Zhang et al. [22]
proposed a block splitting (BS) preconditioner. In order to overcome the nonzero off-diagonal block
becoming unbounded as the relaxed parameter approaches 0, Zhang et al. [23] proposed an improved
block (IB) splitting preconditioner. All of these preconditioners are highly close to the coefficient
matrix of the real linear systems (1.2), when accelerating the Krylov subspace methods, a linear sub-
system with coefficient matrix αW + T 2 must be solved in each inner iteration. However, αW + T 2 is
a dense symmetric positive and definite matrix. Unlike sparse matrices, the computation of a dense
matrix is more difficult, for some high dimensional problems, it may be hard to solve.

Fortunately, constructing these preconditioners give us some inspiration, while the linear
systems (1.2) need to make some changes first. We introduce a scalar matrix αI to construct a new
complex block two-by-two linear systems, then based on the shift-splitting preconditioner [13] for
saddle point problems, we propose an efficient relaxed shift-splitting (ERSS) preconditioner. This
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preconditioner not only avoid the complex arithmetics but also maintain the sparse properties of the
matrices W and T . More importantly, the ERSS preconditioner is highly close to the original coefficient
matrix of the new complex block two-by-two linear systems and the relax parameter is easily to
implemented.

The remainder of this work is organized as follows. In Section 2.1, we propose an efficient
relaxed shift-splitting (ERSS) preconditioner and the eigenvalue properties of preconditioned matrix
are discussed. In Section 2.2, using the scaled norm minimization (SNM) method [20], we derive
a practical formula for computing the parameter value α. In Section 3 , numerical experiments are
presented to show the effectiveness of the ERSS preconditioner. Finally, we end this paper with some
conclusions in Section 4.

2. The ERSS preconditioner

In this section, we first build the ERSS preconditioner and derive some spectral properties of the
corresponding preconditioned system. Then by using the scaled norm minimization (SNM) method, a
practical estimation formula is given to compute the relaxed parameter.

2.1. The ERSS preconditioner

Firstly, we reconstruct the complex linear systems (1.1) into the following structure by introducing
a scalar matrix αI:

A x ≡
[
αI −αI
W iT

] [
x̃
x̃

]
=

[
0
b̃

]
≡ b, (2.1)

where α is a positive constant. We regard this system (2.1) as a “saddle point system”. Based on
the shift-splitting preconditioner [13] for saddle point problems, we propose the following relax shift-
splitting preconditioner:

PERSS =

[
I −I

1
α
W αI

] [
αI 0
0 i

α
T

]
. (2.2)

The difference between PERSS and A is

RERSS = PERSS −A =

[
0 αI − i

α
T

0 0

]
.

Only the (1, 2) block being nonzero in RERSS shows that the preconditioner PERSS is a good
approximation to the coefficient matrix A and it may be easier to analyze the eigenvalue distributions
of the preconditioned matrix P−1

ERSSA .
In actual implementations, the actions of the preconditioned Krylov subspace methods with the

preconditioner PERSS, are often realized through solving a sequence of generalized residual equations
of the form PERSSz = r, where r = (r∗1, r

∗
2)∗ ∈ C2n, with r1, r2 ∈ C

n represent the current residual
vector, z = (z∗1, z

∗
2)∗ ∈ C2n, with z1, z2 ∈ C

n represent the generalized residual vector, i.e.,[
I 0

1
α
W I

] [
I −I
0 αI + 1

α
W

] [
αI 0
0 i

α
T

] [
z1

z2

]
=

[
r1

r2

]
.

By using the matrix factorization of P−1
ERSS, we obtain the following procedure for the residual vector

z = (z∗1, z∗2)∗:
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Algorithm 1:
(1) solve (αI + 1

α
W)u1 = r2 −

1
α
Wr1;

(2) z1 = 1
α
(r1 + u1);

(3) solve Tu2 = u1;
(4) z2 = −iαu2.

From Algorithm 1, we see that two linear subsystems with sparse real coefficient matrices αI + 1
α
W

and T need to be solved at steps (1) and (3). Since the matrix αI + 1
α
W is symmetric positive and

definite and T is symmetric, both of them are sparse matrices, then the above linear subsystems can be
solved effectively by sparse Cholesky factorization and LU method, respectively.

The spectral distributions of the preconditioned matrix relate closely to the convergence rate
of Krylov subspace methods [9]. The following result shows the eigenvalue distributions of the
preconditioned matrix P−1

ERSSA .

Theorem 2.1. Let W ∈ Rn×n is symmetric and positive definite and T ∈ Rn×n is symmetric indefinite, α
is a positive constant. Then the preconditioned matrix P−1

ERSSA has eigenvalues at 1 with multiplicity
n, and the remaining n eigenvalues are of the form α2(ω−iτ)

1+α2ω
, where

ω =
µ∗W−1µ

µ∗µ
> 0, τ =

µ∗T−1µ

µ∗µ
∈ R, for µ ∈ Cn and µ , 0.

Proof. The preconditioned matrix can be rewritten as

P−1
ERSSA = P−1

ERSS(PERSS −RERSS) = I −P−1
ERSSRERSS.

From (2.2), we can get

P−1
ERSSRERSS =

[ 1
α

I 0
0 − i

α
T−1

] [
I (αI + 1

α
W)−1

0 (αI + 1
α
W)−1

] [
I 0
− 1
α
W I

] [
0 αI − i

α
T

0 0

]
=

[
0 (αI + 1

α
W)−1(αI − i

α
T )

0 Θ

]
,

where Θ = iT−1(αI + 1
α
W)−1W(αI − i

α
T ). Define Θ̃ = ( 1

α
I + αW−1)−1( 1

α
I + iαT−1), then Θ is similar to

Θ̃. Assume that (λ̃, µ) is an eigenpair of Θ̃, i.e., Θ̃µ = λ̃µ,

(
1
α

I + iαT−1)µ = λ̃(
1
α

I + αW−1)µ. (2.3)

Multiplying µ∗

µ∗µ
by the right and left side of Eq (2.3), by simple calculations, we have

λ̃ =
1 + iα2τ

1 + α2ω
.

Hence the eigenvalues of the preconditioned matrix P−1
ERSSA are at 1 with multiplicity n, and the

remaining n eigenvalues are of the form α2(ω−iτ)
1+α2ω

. �

Remark 2.1. Let W ∈ Rn×n is symmetric and positive definite and T ∈ Rn×n is symmetric indefinite, α is
a positive constant. Then the non-unit eigenvalues of the preconditioned matrix P−1

ERSSA are clustered
at 0+ if α is close to 0, while the real parts of the eigenvalues are around at 1 if α approaches to∞.

Remark 2.2. If |τ|max ≤ ωmin, then for ∀α > 0, all eigenvalues of P−1
ERSSA satisfies |λ − 1| < 1, where

|τ|max is the maximum value of the absolute value of eigenvalues of the matrix T−1 and ωmin is the
smallest eigenvalue of the matrix W−1.
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2.2. Practical estimation for the parameter α

When PERSS is used as a preconditioner, we expect that PERSS is as close as possible to the
coefficient matrix A of the complex linear systems (2.1). So we try to derive a practical formula
for computing the optimal parameter α such that RERSS ≈ 0. Recently, Yang [20] proposed
an easily implemented scaled norm minimization (SNM) method to compute the parameter values
including several traces of some matrices for the Hermitian and skew-Hermitian splitting (HSS)
method [9,14,16]. Here, we define tr(·) as a matrix’s trace. Owing to ‖RERSS‖

2
F = tr(R∗

ERSSRERSS), we
first give

R∗
ERSSRERSS =

[
0 0
0 α2I + 1

α2 T 2

]
.

Because tr(A + B) = tr(A) + tr(B) and tr(k ·A) = k · tr(A) for any A ∈ Rn×n and k ∈ R. It follows that

‖RERSS‖
2
F = tr(α2I +

1
α2 T 2)

= α2n +
1
α2 ‖T‖

2
F .

It’s clear to know when α? =
√
‖T‖F
4√n

that minimizes ‖RERSS‖
2
F . Obviously, the calculation of relax

parameter α? is easy to realise.

3. Numerical examples

In this section, we employ two examples to test the performances of the ERSS preconditioner in
terms of both iteration count (denoted as IT) and computing time (in seconds, denoted as CPU). To
show the effectiveness of the ERSS preconditioner (2.2), we also test the other two preconditioners:
PSHNS preconditioner PPSHNS [21] and IB preconditioner PIB [23] as follows:

PPSHNS =
1

2α
(αW + I)(−αT + iI), PIB =

1
α

[
W −T
T αI

] [
αI

βI + W

]
.

PPSHNS is used to precondition the complex linear systems (1.1), and PIB preconditions the real linear
systems (1.2).

In implementations, we use those preconditioners to accelerate the convergence of the generalized
minimum residual (GMRES) method. The initial guess x(0) for the preconditioned GMRES method is
chosen to zero vector, and the iterations are terminated once the current iterate x(k) satisfies

‖b −A x(k)‖2

‖b −A x(0)‖2
< 10−6.

The relaxed parameters used in both PSHNS and IB preconditioners are the experimentally
found ones, which minimize the number of iteration steps, while the relaxed parameter of ERSS
preconditioner is α? =

√
‖T‖F/ 4

√
n. In addition, the systems of linear equations involved in the

preconditioned GMRES method are solved by direct methods, that is, the Cholesky factorization in
combination with the symmetric approximate minimum degree reordering and the LU factorization in
combination with the column approximate minimum degree reordering, respectively.
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All experiments are performed by using MATLAB (version R2009b) in double precision on a
personal computer with 3.60GHz central processing unit (Intel(R) Core(TM) i7-4790 CPU), 8.00G
memory and Windows 7 operating system.

Example 3.1. (See [8, 23–25]) The following complex symmetric linear system is considered

[(ωCV + CH) + i(K − ωM)]x = b,

where M and K are the inertia and stiffness matrices, respectively; CV and CH are the viscous and
hysteretic damping matrices, respectively; and ω is the driving circular frequency.

In our numerical computations, we take CH = 0.02K, ω = 2π, CV = 1
2 M, M = kI and K is the five-

point centered difference matrix approximating the negative Laplacian operator with homogeneous
Dirichlet boundary conditions, on a uniform mesh in the unit square [0, 1] × [0, 1] with the mesh size
h = 1

m+1 . In this case, the matrix K ∈ Rn×n possesses the tensor-product form K = I ⊗ Vm + Vm ⊗ I with
Vm = h−2tridiag(−1, 2,−1) ∈ Rm×m. Hence, the total number of variables is n = m2. In addition, the
right-hand side vector b̃ = (1 + i)Ã ∗ ones(n,1). Furthermore, we normalize the coefficient matrix and
right-hand side by multiplying both by h2.

In Table 1, we report results for GMRES preconditioned with ERSS, PSHNS and IB preconditioners
for different mesh-size h and symmetric positive and definite matrices M. From these results we
observe that when used as a preconditioner, by choosing the theoretical optimal parameter α?, ERSS
performs much better than PSHNS and IB in both iteration steps and CPU times, especially when the
mesh-size h becomes small. While the number of iterations with the PSHNS and IB preconditioners
increase with problem size, those for the ERSS preconditioner are almost constant. In addition,
searching for optimal parameters of the PSHNS and IB preconditioners is quite time-consuming,
especially for the latter, while the calculation of the parameter of the ERSS preconditioner is effortless.

Table 1. IT and CPU for preconditioned GMRES for Example 3.1.

m PERSS PPSHNS PIB

k 5 10 20 5 10 20 5 10 20
128 α 2.1135 2.1131 2.1123 90 90 90 (0.5, 0.1) (0.5, 0.1) (0.5, 0.1)

IT 5 5 6 24 23 23 17 17 17
CPU 0.2978 0.2980 0.3272 0.5483 0.5215 0.5313 0.5156 0.5271 0.5219

256 α 2.1142 2.1141 2.1139 200 200 230 (0.5, 0.1) (0.5, 0.1) (0.5, 0.08)
IT 5 5 6 34 33 33 23 22 23

CPU 1.7823 1.7877 1.9229 5.1613 5.0060 5.0521 4.9696 4.7127 4.9145
512 α 2.1145 2.1145 2.1144 550 550 700 (0.5, 0.1) (0.5, 0.1) (0.5, 0.1)

IT 5 5 6 47 47 47 34 34 37
CPU 10.5151 10.4153 11.2287 42.4040 41.8526 42.7765 40.1000 40.3012 42.3688

Example 3.2. (See [23]) Consider the system of linear Eq (1.1) as following:

[(K + (3 +
√

3)τIm2) + i(K − (3 −
√

3)ωIm2)]x̃ = b̃,

where K = Im ⊗ Vm + Vm ⊗ Im, τ = 2π2, h = 1
m+1 , n = m2 and Vm = h−2tridiag(−1, 2,−1) ∈ Rm×m is a

tridiagonal matrix. ω =
√

kπ2 is a variable.
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We choose the symmetric positive and definite matrix W = K + (3 +
√

3)τIm2 and the symmetric
indefinite matrix T = K − (3 −

√
3)ωIm2 , the right-hand side vector b̃ = (1 + i)Ã ∗ ones(m2, 1).

Furthermore, we normalize the coefficient matrix and right-hand side by multiplying both by h2.
In Table 2, we list results for GMRES preconditioned with ERSS, PSHNS and IB for different

mesh-size h and variable k. Note that the parameter values of the PSHNS and IB preconditioners
are the experimentally found optimal ones, which is time-consuming. Despite the iteration steps and
CPU times of ERSS preconditioner exceed that of IB as the mesh-size h decreases, the difference
is acceptable. As a consequence, although the number of iteration steps of the ERSS method
increase slightly with the mesh refinement, it still has strong competitiveness due to the fast parameter
calculation method.

Finally, we present the experimental optimal results for the ERSS-preconditioned GMRES method
by minimizing the numbers of iterations with respect to different test examples and variables in Table 3.
We can see that the experimental optimal parameters in Table 3 are consistent with theoretical optimal
parameters α? =

√
‖T‖F/ 4

√
n in Tables 1 and 2. While, the experimental optimal results are slightly

larger than that of theoretical optimal results in Table 2, and this insignificant difference in iteration
steps are acceptable. Table 3 demonstrates that the ERSS-preconditioned GMRES method is efficient
and stable when the relaxation parameter selected theoretically optimal α?.

Eigenvalue distributions (48×48 grids) of the three preconditioned matrices are plotted in Figures 1
and 2 for different variables k. It is evident that the ERSS preconditioned matrix is of a well-clustered
spectrum around 1 away from zero, especially in Example 3.1.
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Figure 1. Eigenvalue distributions of three preconditioned matrices for Example 3.1 (m=48,
k=5).
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Figure 2. Eigenvalue distributions of three preconditioned matrices for Example 3.2 (m=48,
k=10).
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Table 2. IT and CPU for preconditioned GMRES for Example 3.2.
m PERSS PPSHNS PIB

k 5 10 20 5 10 20 5 10 20
128 α 2.1136 2.1134 2.1132 9 9 9 (2.5, 0.001) (2.5, 0.001) (3, 0.001)

IT 11 13 13 37 37 37 9 9 8
CPU 0.4396 0.4937 0.4913 0.7752 0.7757 0.7870 0.3763 0.3764 0.3714

256 α 2.1142 2.1142 2.1142 25 25 25 (2, 0.0004) (2, 0.0004) (2.4, 0.0004)
IT 10 12 13 54 54 53 9 9 9

CPU 2.4741 2.7851 2.9757 8.8896 9.0279 9.0138 2.3160 2.3157 2.3864
512 α 2.1145 2.1145 2.1145 60 60 60 (2.5, 0.0001) (2.5, 0.0001) (2.5, 0.0001)

IT 10 12 13 79 79 78 9 9 9
CPU 14.0046 15.8918 17.0173 89.3188 90.6522 89.2453 14.8628 14.3777 14.6812

Table 3. The experimental optimal results for ERSS-preconditioned GMRES method by
minimizing iteration steps.

m Example 3.1 Example 3.2

k 5 10 20 5 10 20
128 αexp 2 2 2 7.4 6.2 4

IT 5 5 6 8 9 11
CPU 0.2896 0.2878 0.3159 0.3744 0.4020 0.4564

256 αexp 2 2 2 7 8.6 4
IT 5 5 6 8 9 11

CPU 1.7275 1.7325 1.8809 2.1710 2.3576 2.6778
512 αexp 2 2 2 6.5 4.6 3.6

IT 5 5 6 8 10 11
CPU 10.1367 10.1427 10.9061 11.4431 12.3632 15.3991

4. Conclusions

To solve a class of complex linear systems (1.1), an efficient relaxed shift-splitting preconditioner is
proposed in this paper by introducing a scalar matrix αI. The new preconditioner not only remains
easy computational but also is closer to the original two-by-two complex coefficient matrix (2.1).
Theoretical analysis proves that the preconditioned matrix has a well-clustered eigenvalue distribution
with a reasonable choice of the relaxation parameters. More importantly, an efficient and practical
formula for computing the relax parameter value α is derived by computing dimension and Frobenius
norm of the matrix T . Numerical experiments are presented to illustrate that the presented
preconditioner is feasible and effective compared with other existing block preconditioners.
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