Citation: Yajun Xie, Minhua Yin, Changfeng Ma. Novel accelerated methods of tensor splitting iteration for solving multi-systems[J]. AIMS Mathematics, 2020, 5(3): 2801-2812. doi: 10.3934/math.2020180
[1] | H. He, L. Chen, L. Qi, et. al. A globally and quadratically convergent algorithm for solving multilinear systems with ${\mathcal {M}}$-tensors, J. Sci. Comput., 76 (2018), 1718-1741. doi: 10.1007/s10915-018-0689-7 |
[2] | C. Lv, C. Ma, A Levenberg-Marquardt method for solving semi-symmetric tensor equations, J. Comput. Appl. Math., 332 (2018), 13-25. doi: 10.1016/j.cam.2017.10.005 |
[3] | X. Wang, M. Che, Y. Wei, Neural networks based approach solving multi-linear systems with ${{\mathcal {M}}}$-tensors, Neurocomputing, 351 (2019), 33-42. doi: 10.1016/j.neucom.2019.03.025 |
[4] | Z. Xie, X. Jin, Y. Wei, Tensor methods for solving symmetric ${{\mathcal {M}}}$-tensor systems, J. Sci. Comput., 74 (2018), 412-425. doi: 10.1007/s10915-017-0444-5 |
[5] | Z. Xie, X. Jin, Y. Wei, A fast algorithm for solving circulant tensor systems, Linear Multilinear Algebra, 65 (2017), 1894-1904. |
[6] | T. G. Kolda, Multilinear operators for higher-order decompositions, Technical report SAND2006-2081, Sandia National Laboratories, Albuquerque, NM and Livermore, CA, 2006. |
[7] | D. Liu, W. Li, S. W. Vong, Relaxation methods for solving the tensor equation arising from the higher-order Markov chains, Numer. Linear Algebra Appl., 26 (2019): e2260. |
[8] | Y. Song, L. Qi, Spectral properties of positively homogeneous operators induced by higher order tensors, SIAM J. Matrix Anal. Appl., 34 (2013), 1302-1324. |
[9] | Y. Song, L. Qi, Properties of some classes of structured tensors, J. Optim. Theory Appl., 165 (2015), 854-873. |
[10] | L. Zhang, L. Qi, G. Zhou, M-tensors and some applications, SIAM J. Matrix Anal. Appl., 35 (2014), 437-452. |
[11] | W. Ding, Y. Wei, Solving multilinear systems with ${{\mathcal {M}}}$-tensors, J. Sci. Comput., 68 (2016), 689-715. doi: 10.1007/s10915-015-0156-7 |
[12] | W. Ding, Y. Wei, Generalized tensor eigenvalue problems, SIAM J. Matrix Anal. Appl., 36 (2015), 1073-1099. doi: 10.1137/140975656 |
[13] | L. Han, A homotopy method for solving multilinear systems with ${{\mathcal {M}}}$-tensors, Appl. Math. Lett., 69 (2017), 49-54. doi: 10.1016/j.aml.2017.01.019 |
[14] | D. Liu, W. Li, S. W. Vong, The tensor splitting with application to solve multi-linear systems, J. Comput. Appl. Math., 330 (2018), 75-94. doi: 10.1016/j.cam.2017.08.009 |
[15] | W. Li, D. Liu, S. W. Vong, Comparison results for splitting iterations for solving multi-linear systems, Appl. Numeri. Math., 134 (2018), 105-121. doi: 10.1016/j.apnum.2018.07.009 |
[16] | W. Li, M. K. Ng, On the limiting probability distribution of a transition probability tensor, Linear Multilinear Algebra, 62 (2014), 362-385. doi: 10.1080/03081087.2013.777436 |
[17] | A. Cichocki, R. Zdunek, A-H. Phan, et al., Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory Multi-way Data Analysis and Blind Source Separation, A John Wiley and Sons, Ltd, Publication, 2009. |
[18] | T. G. Kolda, B. W. Bader, Tensor decompositions and applications, SIAM Rev., 51 (2009), 455-500. doi: 10.1137/07070111X |
[19] | K. Pearson, Essentially positive tensors, Int. J. Algebra, 4 (2010), 421-427. |
[20] | L. Qi, Eigenvalues of a real supersymmetric tensor, J. Symb. Comput., 40 (2005), 1302-1324. |
[21] | W. Ding, L. Qi, Y. Wei, ${{\mathcal {M}}}$-tensors and nonsingular ${{\mathcal {M}}}$-tensors, Linear Algebra Appl., 439 (2013), 3264-3278. |
[22] | L. Qi, Z. Luo, Tensor Analysis: Spectral Theory and Special Tensors, SIAM, 2017. |
[23] | Y. Yang, Q. Yang, Further results for Perron-Frobenius theorem for nonnegative tensors, SIAM J. Matrix Anal. Appl., 31 (2010), 2517-2530. |
[24] | A. Berman, J. R. Plemmons, Nonnegative Matrices in the Mathematical Science, SIAM, Philadelphia, 1994. |
[25] | T. Kohno, H. Kotakemori, H. Niki, et al., Improving the modified Gauss-Seidel method for Zmatrices, Linear Algebra Appl., 267 (1917), 113-123. |