Projection-type methods are studied widely and deeply to solve multiples-sets split feasibility problem. From the perspective of splitting iteration, in this paper, the efficient tensor projection-splitting iteration methods are firstly investigated for solving tensor split feasibility problem, which is properly transformed into a tensor equation by taking advantage of projection operator. Then, accelerated overrelaxation method and symmetric (alternating) accelerated overrelaxation method are further generalized to solve this problem from general system of linear equations to multi-linear systems. Theoretically, the convergence is proven by the analysis of spectral radius of splitting iteration tensor. Numerical experiments demonstrate the efficiency of the presented method.
Citation: Yajun Xie, Changfeng Ma. The hybird methods of projection-splitting for solving tensor split feasibility problem[J]. AIMS Mathematics, 2023, 8(9): 20597-20611. doi: 10.3934/math.20231050
Projection-type methods are studied widely and deeply to solve multiples-sets split feasibility problem. From the perspective of splitting iteration, in this paper, the efficient tensor projection-splitting iteration methods are firstly investigated for solving tensor split feasibility problem, which is properly transformed into a tensor equation by taking advantage of projection operator. Then, accelerated overrelaxation method and symmetric (alternating) accelerated overrelaxation method are further generalized to solve this problem from general system of linear equations to multi-linear systems. Theoretically, the convergence is proven by the analysis of spectral radius of splitting iteration tensor. Numerical experiments demonstrate the efficiency of the presented method.
[1] | C. Byrne, Iterative oblique projection onto convex sets and the split feasibility problem, Inverse Probl., 18 (2002), 411–453. https://doi.org/10.1088/0266-5611/18/2/310 doi: 10.1088/0266-5611/18/2/310 |
[2] | H. K. Xu, Iterative methods for the split feasibility problem in infinite-dimensional Hilbert spaces, Inverse Probl., 26 (2010), 105018. https://doi.org/10.1088/0266-5611/26/10/105018 doi: 10.1088/0266-5611/26/10/105018 |
[3] | Y. Censor, T. Elfving, N. Kopf, T. Bortfeld, The multiple-sets split feasibility problem and its applications for inverse problems, Inverse Probl., 21 (2005), 2071–2084. https://doi.org/10.1088/0266-5611/21/6/017 doi: 10.1088/0266-5611/21/6/017 |
[4] | W. Zhang, D. Han, Z. Li, A self-adaptive projection method for solving the multiple-sets split feasibility problem, Inverse Probl., 25 (2009), 115001. https://doi.org/10.1088/0266-5611/25/11/115001 doi: 10.1088/0266-5611/25/11/115001 |
[5] | Y. Censor, T. Bortfeld, B. Martin, A. Trofimov, A unified approach for inversion problems in intensity-modulated radiation therapy, Phys. Med. Biol., 51 (2006), 2353–2365. https://doi.org/10.1088/0031-9155/51/10/001 doi: 10.1088/0031-9155/51/10/001 |
[6] | C. Byrne, A unified treatment of some iterative algorithms in signal processing and image reconstruction, Inverse Probl., 20 (2004), 103–120. https://doi.org/10.1088/0266-5611/20/1/006 doi: 10.1088/0266-5611/20/1/006 |
[7] | J. Zhao, Q. Yang, A simple projection method for solving the multiple-sets split feasibility problem, Inverse Probl. Sci. Eng., 21 (2013), 537–546. https://doi.org/10.1080/17415977.2012.712521 doi: 10.1080/17415977.2012.712521 |
[8] | J. Zhao, Q. Yang, Several acceleration schemes for solving the multiple-sets split feasibility problem, Linear Algebra Appl., 437 (2012), 1648–1657. https://doi.org/10.1016/j.laa.2012.05.018 doi: 10.1016/j.laa.2012.05.018 |
[9] | W. Ding, Y. Wei, Solving multilinear systems with M-tensors, J. Sci. Comput., 68 (2016), 689–715. https://doi.org/10.1007/s10915-015-0156-7 doi: 10.1007/s10915-015-0156-7 |
[10] | W. Ding, Y. Wei, Generalized tensor eigenvalue problems, SIAM J. Matrix Anal. Appl., 36 (2015), 1073–1099. https://doi.org/10.1137/140975656 doi: 10.1137/140975656 |
[11] | L. Han, A homotopy method for solving multilinear systems with M-tensors, Appl. Math. Lett., 69 (2017), 49–54. https://doi.org/10.1016/j.aml.2017.01.019 doi: 10.1016/j.aml.2017.01.019 |
[12] | D. D. Liu, W. Li, S. W. Vong, The tensor splitting with application to solve multi-linear systems, J. Comput. Appl. Math., 330 (2018), 75–94. https://doi.org/10.1016/j.cam.2017.08.009 doi: 10.1016/j.cam.2017.08.009 |
[13] | W. Li, D. D. Liu, S. W. Vong, Comparison results for splitting iterations for solving multi-linear systems, Appl. Numer. Math., 134 (2018), 105–121. https://doi.org/10.1016/j.apnum.2018.07.009 doi: 10.1016/j.apnum.2018.07.009 |
[14] | T. G. Kolda, B. W. Bader, Tensor decompositions and applications, SIAM Rev., 51 (2009), 455–500. https://doi.org/10.1137/07070111X doi: 10.1137/07070111X |
[15] | A. Cichocki, R. Zdunek, A. H. Phan, S. I. Amari, Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory Multi-way Data Analysis and Blind Source Separation, Wiley, 2009. |
[16] | K. Pearson, Essentially positive tensors, Int. J. Algebra, 4 (2010), 421–427. |
[17] | W. Li, M. K. Ng, On the inverse of a tensor, Linear Algebra Appl., 495 (2016), 199–205. https://doi.org/10.1016/j.laa.2016.01.011 doi: 10.1016/j.laa.2016.01.011 |
[18] | L. Zhang, L. Qi, G. Zhou, $\mathcal{M}$-tensor and some applications, SIAM J. Matrix Anal. Appl., 35 (2014), 437–452. https://doi.org/10.1137/130915339 doi: 10.1137/130915339 |
[19] | L. Qi, Eigenvalues of a real supersymmetric tensor, J. Symb. Comput., 40 (2005), 1302–1324. https://doi.org/10.1016/j.jsc.2005.05.007 doi: 10.1016/j.jsc.2005.05.007 |
[20] | L. Qi, Z. Luo, Tensor Analysis: Spectral Theory and Special Tensors, Philadelphia: Society for Industrial and Applied Mathematics, 2017. https://doi.org/10.1137/1.9781611974751 |
[21] | Y. Yang, Q. Yang, Further results for Perron-Frobenius theorem for nonnegative tensors, SIAM J. Matrix Anal. Appl., 31 (2010), 2517–2530. https://doi.org/10.1137/090778766 doi: 10.1137/090778766 |