This article investigates Wardowski's contraction in the setting of extended distance spaces known as M-metric spaces using hybrid operators based an M -dynamic iterative process. The main purpose is to observe new set-valued Chatterjea type common fixed point theorems for hybrid operators with respect to an M-dynamic iterative process, i.e., ˇD(Ψ1,Ψ2,s0). We realize an application: the existence of a solution for a multistage system and integral equation. Also, we give a graphical interpretation of our obtained theorems. The main results are explicated with the help of a relevant example. Some important corollaries are extracted from the main theorems as well.
Citation: Amjad Ali, Muhammad Arshad, Eskandar Ameer, Asim Asiri. Certain new iteration of hybrid operators with contractive M -dynamic relations[J]. AIMS Mathematics, 2023, 8(9): 20576-20596. doi: 10.3934/math.20231049
[1] | Muhammad Ghaffar Khan, Nak Eun Cho, Timilehin Gideon Shaba, Bakhtiar Ahmad, Wali Khan Mashwani . Coefficient functionals for a class of bounded turning functions related to modified sigmoid function. AIMS Mathematics, 2022, 7(2): 3133-3149. doi: 10.3934/math.2022173 |
[2] | Rabha W. Ibrahim, Dumitru Baleanu . Fractional operators on the bounded symmetric domains of the Bergman spaces. AIMS Mathematics, 2024, 9(2): 3810-3835. doi: 10.3934/math.2024188 |
[3] | Muhammmad Ghaffar Khan, Wali Khan Mashwani, Jong-Suk Ro, Bakhtiar Ahmad . Problems concerning sharp coefficient functionals of bounded turning functions. AIMS Mathematics, 2023, 8(11): 27396-27413. doi: 10.3934/math.20231402 |
[4] | Muhammmad Ghaffar Khan, Wali Khan Mashwani, Lei Shi, Serkan Araci, Bakhtiar Ahmad, Bilal Khan . Hankel inequalities for bounded turning functions in the domain of cosine Hyperbolic function. AIMS Mathematics, 2023, 8(9): 21993-22008. doi: 10.3934/math.20231121 |
[5] | Zhen Peng, Muhammad Arif, Muhammad Abbas, Nak Eun Cho, Reem K. Alhefthi . Sharp coefficient problems of functions with bounded turning subordinated to the domain of cosine hyperbolic function. AIMS Mathematics, 2024, 9(6): 15761-15781. doi: 10.3934/math.2024761 |
[6] | Lina Ma, Shuhai Li, Huo Tang . Geometric properties of harmonic functions associated with the symmetric conjecture points and exponential function. AIMS Mathematics, 2020, 5(6): 6800-6816. doi: 10.3934/math.2020437 |
[7] | Xinghua You, Ghulam Farid, Lakshmi Narayan Mishra, Kahkashan Mahreen, Saleem Ullah . Derivation of bounds of integral operators via convex functions. AIMS Mathematics, 2020, 5(5): 4781-4792. doi: 10.3934/math.2020306 |
[8] | İbrahim Aktaş . On some geometric properties and Hardy class of q-Bessel functions. AIMS Mathematics, 2020, 5(4): 3156-3168. doi: 10.3934/math.2020203 |
[9] | Muhammad Ghaffar Khan, Sheza.M. El-Deeb, Daniel Breaz, Wali Khan Mashwani, Bakhtiar Ahmad . Sufficiency criteria for a class of convex functions connected with tangent function. AIMS Mathematics, 2024, 9(7): 18608-18624. doi: 10.3934/math.2024906 |
[10] | Yue Wang, Ghulam Farid, Babar Khan Bangash, Weiwei Wang . Generalized inequalities for integral operators via several kinds of convex functions. AIMS Mathematics, 2020, 5(5): 4624-4643. doi: 10.3934/math.2020297 |
This article investigates Wardowski's contraction in the setting of extended distance spaces known as M-metric spaces using hybrid operators based an M -dynamic iterative process. The main purpose is to observe new set-valued Chatterjea type common fixed point theorems for hybrid operators with respect to an M-dynamic iterative process, i.e., ˇD(Ψ1,Ψ2,s0). We realize an application: the existence of a solution for a multistage system and integral equation. Also, we give a graphical interpretation of our obtained theorems. The main results are explicated with the help of a relevant example. Some important corollaries are extracted from the main theorems as well.
Let A denote the class of functions f which are analytic in the open unit disk Δ={z∈C:|z|<1}, normalized by the conditions f(0)=f′(0)−1=0. So each f∈A has series representation of the form
f(z)=z+∞∑n=2anzn. | (1.1) |
For two analytic functions f and g, f is said to be subordinated to g (written as f≺g) if there exists an analytic function ω with ω(0)=0 and |ω(z)|<1 for z∈Δ such that f(z)=(g∘ω)(z).
A function f∈A is said to be in the class S if f is univalent in Δ. A function f∈S is in class C of normalized convex functions if f(Δ) is a convex domain. For 0≤α≤1, Mocanu [23] introduced the class Mα of functions f∈A such that f(z)f′(z)z≠0 for all z∈Δ and
ℜ((1−α)zf′(z)f(z)+α(zf′(z))′f′(z))>0(z∈Δ). | (1.2) |
Geometrically, f∈Mα maps the circle centred at origin onto α-convex arcs which leads to the condition (1.2). The class Mα was studied extensively by several researchers, see [1,10,11,12,24,25,26,27] and the references cited therein.
A function f∈S is uniformly starlike if f maps every circular arc Γ contained in Δ with center at ζ ∈Δ onto a starlike arc with respect to f(ζ). A function f∈C is uniformly convex if f maps every circular arc Γ contained in Δ with center ζ ∈Δ onto a convex arc. We denote the classes of uniformly starlike and uniformly convex functions by UST and UCV, respectively. For recent study on these function classes, one can refer to [7,9,13,19,20,31].
In 1999, Kanas and Wisniowska [15] introduced the class k-UCV (k≥0) of k-uniformly convex functions. A function f∈A is said to be in the class k-UCV if it satisfies the condition
ℜ(1+zf″(z)f′(z))>k|zf′(z)f′(z)|(z∈Δ). | (1.3) |
In recent years, many researchers investigated interesting properties of this class and its generalizations. For more details, see [2,3,4,14,15,16,17,18,30,32,35] and references cited therein.
In 2015, Sokół and Nunokawa [33] introduced the class MN, a function f∈MN if it satisfies the condition
ℜ(1+zf″(z)f′(z))>|zf′(z)f(z)−1|(z∈Δ). |
In [28], it is proved that if ℜ(f′)>0 in Δ, then f is univalent in Δ. In 1972, MacGregor [21] studied the class B of functions with bounded turning, a function f∈B if it satisfies the condition ℜ(f′)>0 for z∈Δ. A natural generalization of the class B is B(δ1) (0≤δ1<1), a function f∈B(δ1) if it satisfies the condition
ℜ(f′(z))>δ1(z∈Δ;0≤δ1<1), | (1.4) |
for details associated with the class B(δ1) (see [5,6,34]).
Motivated essentially by the above work, we now introduce the following class k-Q(α) of analytic functions.
Definition 1. Let k≥0 and 0≤α≤1. A function f∈A is said to be in the class k-Q(α) if it satisfies the condition
ℜ((zf′(z))′f′(z))>k|(1−α)f′(z)+α(zf′(z))′f′(z)−1|(z∈Δ). | (1.5) |
It is worth mentioning that, for special values of parameters, one can obtain a number of well-known function classes, some of them are listed below:
1. k-Q(1)=k-UCV;
2. 0-Q(α)=C.
In what follows, we give an example for the class k-Q(α).
Example 1. The function f(z)=z1−Az(A≠0) is in the class k-Q(α) with
k≤1−b2b√b(1+α)[b(1+α)+2]+4(b=|A|). | (1.6) |
The main purpose of this paper is to establish several interesting relationships between k-Q(α) and the class B(δ) of functions with bounded turning.
To prove our main results, we need the following lemmas.
Lemma 1. ([8]) Let h be analytic in Δ with h(0)=1, β>0 and 0≤γ1<1. If
h(z)+βzh′(z)h(z)≺1+(1−2γ1)z1−z, |
then
h(z)≺1+(1−2δ)z1−z, |
where
δ=(2γ1−β)+√(2γ1−β)2+8β4. | (2.1) |
Lemma 2. Let h be analytic in Δ and of the form
h(z)=1+∞∑n=mbnzn(bm≠0) |
with h(z)≠0 in Δ. If there exists a point z0(|z0|<1) such that |argh(z)|<πρ2(|z|<|z0|) and |argh(z0)|=πρ2 for some ρ>0, then z0h′(z0)h(z0)=iℓρ, where
ℓ:{ℓ≥n2(c+1c)(argh(z0)=πρ2),ℓ≤−n2(c+1c)(argh(z0)=−πρ2), |
and (h(z0))1/ρ=±ic(c>0).
This result is a generalization of the Nunokawa's lemma [29].
Lemma 3. ([37]) Let ε be a positive measure on [0,1]. Let ϝ be a complex-valued function defined on Δ×[0,1] such that ϝ(.,t) is analytic in Δ for each t∈[0,1] and ϝ(z,.) is ε-integrable on [0,1] for all z∈Δ. In addition, suppose that ℜ(ϝ(z,t))>0, ϝ(−r,t) is real and ℜ(1/ϝ(z,t))≥1/ϝ(−r,t) for |z|≤r<1 and t∈[0,1]. If ϝ(z)=∫10ϝ(z,t)dε(t), then ℜ(1/ϝ(z))≥1/ϝ(−r).
Lemma 4. ([22]) If −1≤D<C≤1, λ1>0 and ℜ(γ2)≥−λ1(1−C)/(1−D), then the differential equation
s(z)+zs′(z)λ1s(z)+γ2=1+Cz1+Dz(z∈Δ) |
has a univalent solution in Δ given by
s(z)={zλ1+γ2(1+Dz)λ1(C−D)/Dλ1∫z0tλ1+γ2−1(1+Dt)λ1(C−D)/Ddt−γ2λ1(D≠0),zλ1+γ2eλ1Czλ1∫z0tλ1+γ2−1eλ1Ctdt−γ2λ1(D=0). |
If r(z)=1+c1z+c2z2+⋯ satisfies the condition
r(z)+zr′(z)λ1r(z)+γ2≺1+Cz1+Dz(z∈Δ), |
then
r(z)≺s(z)≺1+Cz1+Dz, |
and s(z) is the best dominant.
Lemma 5. ([36,Chapter 14]) Let w, x and\ y≠0,−1,−2,… be complex numbers. Then, for ℜ(y)>ℜ(x)>0, one has
1. 2G1(w,x,y;z)=Γ(y)Γ(y−x)Γ(x)∫10sx−1(1−s)y−x−1(1−sz)−wds;
2. 2G1(w,x,y;z)= 2G1(x,w,y;z);
3. 2G1(w,x,y;z)=(1−z)−w2G1(w,y−x,y;zz−1).
Firstly, we derive the following result.
Theorem 1. Let 0≤α<1 and k≥11−α. If f∈k-Q(α), then f∈B(δ), where
δ=(2μ−λ)+√(2μ−λ)2+8λ4(λ=1+αkk(1−α);μ=k−αk−1k(1−α)). | (3.1) |
Proof. Let f′=ℏ, where ℏ is analytic in Δ with ℏ(0)=1. From inequality (1.5) which takes the form
ℜ(1+zℏ′(z)ℏ(z))>k|(1−α)ℏ(z)+α(1+zℏ′(z)ℏ(z))−1|=k|1−α−ℏ(z)+αℏ(z)−αzℏ′(z)ℏ(z)|, |
we find that
ℜ(ℏ(z)+1+αkk(1−α)zℏ(z)ℏ(z))>k−αk−1k(1−α), |
which can be rewritten as
ℜ(ℏ(z)+λzℏ(z)ℏ(z))>μ(λ=1+αkk(1−α);μ=k−αk−1k(1−α)). |
The above relationship can be written as the following Briot-Bouquet differential subordination
ℏ(z)+λzℏ′(z)ℏ(z)≺1+(1−2μ)z1−z. |
Thus, by Lemma 1, we obtain
ℏ≺1+(1−2δ)z1−z, | (3.2) |
where δ is given by (3.1). The relationship (3.2) implies that f∈B(δ). We thus complete the proof of Theorem 3.1.
Theorem 2. Let 0<α≤1, 0<β<1, c>0, k≥1, n≥m+1(m∈ N ), |ℓ|≥n2(c+1c) and
|αβℓ±(1−α)cβsinβπ2|≥1. | (3.3) |
If
f(z)=z+∞∑n=m+1anzn(am+1≠0) |
and f∈k-Q(α), then f∈B(β0), where
β0=min |
such that (3.3) holds.
Proof. By the assumption, we have
\begin{equation} f'(z) = \hslash(z) = 1+\mathop {\mathop \sum \limits^\infty }\limits_{n = m} c_{n}z^{n}\quad (c_{m}\neq0). \end{equation} | (3.4) |
In view of (1.5) and (3.4), we get
{\Re}\left(1+\frac{z\hslash'(z) }{\hslash(z)}\right) \gt k\left\vert \left(1-\alpha\right) \hslash(z)+\alpha\left(1+\frac{z\hslash'(z)}{\hslash(z)}\right) -1\right\vert . |
If there exists a point z_{0}\in\Delta such that
\left\vert \arg\hslash\left( z\right) \right\vert \lt \frac{\beta\pi} {2}\quad(\left\vert z\right\vert \lt \left\vert z_{0}\right\vert;\, 0 \lt \beta \lt 1) |
and
\left\vert \arg\hslash\left(z_{0}\right)\right\vert = \frac{\beta\pi}{2}\quad(0 \lt \beta \lt 1), |
then from Lemma 2, we know that
\frac{z_{0} \hslash'\left(z_{0}\right)}{\hslash\left(z_{0}\right) } = i\ell\beta, |
where
\left(\hslash\left(z_{0}\right)\right) ^{1/\beta} = \pm ic\quad\left(c \gt 0\right) |
and
\ell:\left\{ \begin{array} [c]{c} \ell\geq\frac{n}{2}\left(c+\frac{1}{c}\right)\quad (\arg\hslash\left(z_{0}\right) = \frac{\beta\pi}{2}), \\ \\ \ell\leq-\frac{n}{2}\left(c+\frac{1}{c}\right)\quad(\arg \hslash\left(z_{0}\right) = -\frac{\beta\pi}{2}). \end{array} \right. |
For the case
\arg\hslash\left(z_{0}\right) = \frac{\beta\pi}{2}, |
we get
\begin{equation} {\Re}\left(1+\frac{z_0\hslash'(z_0) }{\hslash(z_0)}\right) = {\Re}\left(1+i\ell \beta\right) = 1. \end{equation} | (3.5) |
Moreover, we find from (3.3) that
\begin{align} \begin{split} & k\left\vert\left(1-\alpha\right)\hslash(z_0) +\alpha\left(1+\frac{z_0\hslash'(z_0)}{\hslash(z_0)}\right) -1\right\vert \\ = &k\left\vert\left(1-\alpha\right)\left(\hslash(z_0) -1\right)+\alpha\frac{z_0\hslash'(z_0)}{\hslash(z_0)}\right\vert \\ = &k\left\vert\left(1-\alpha\right)\left[\left(\pm ic\right)^{\beta }-1\right]+i\alpha\beta\ell\right\vert \\ = &k\sqrt{\left(1-\alpha\right)^2\left(c^{\beta}\cos\frac{\beta\pi} {2}-1\right)^{2}+\left[\alpha\beta\ell\pm\left(1-\alpha\right)c^{\beta}\sin \frac{\beta\pi}{2}\right]^{2}}\\ \geq&1. \end{split} \end{align} | (3.6) |
By virtue of (3.5) and (3.6), we have
{\Re}\left(1+\frac{z\hslash'(z_0) }{\hslash(z_0)}\right)\leq k\left\vert \left(1-\alpha\right) \hslash(z_0)+\alpha\left(1+\frac{z_0\hslash(z_0)}{\hslash(z_0)}\right)-1\right\vert, |
which is a contradiction to the definition of k - \mathcal{Q}(\alpha) . Since \beta_{0} = {\min}\{\beta: \beta\in(0, 1)\} such that (3.3) holds, we can deduce that f\in\mathcal{B}(\beta_0) .
By using the similar method as given above, we can prove the case
\arg\hslash(z_{0}) = -\frac{\beta\pi}{2} |
is true. The proof of Theorem 2 is thus completed.
Theorem 3. If 0 < \beta < 1 and 0\leq\nu < 1 . If f\in k - \mathcal{Q}(\alpha) , then
{\Re}(f') \gt \left[ _{2}G_{1}\left(\frac{2}{\beta}\left( 1-\nu\right), 1;\frac{1}{\beta}+1;\frac{1}{2}\right)\right]^{-1}, |
or equivalently, k - \mathcal{Q}\left(\alpha\right)\subset{\mathcal{B}}\left(\nu_{0}\right) , where
\nu_{0} = \left[ _{2}G_{1}\left(\frac{2}{\beta}\left(1-\mu\right) , 1;\frac{1}{\beta}+1;\frac{1}{2}\right)\right]^{-1}. |
Proof. For
w = \frac{2}{\beta}(1-\nu), \ x = \frac {1}{\beta}, \ y = \frac{1}{\beta}+1, |
we define
\begin{align} \text{$\digamma$}(z) = \left(1+Dz\right)^{w}\int_0^1t^{x-1}\left(1+Dtz\right)^{-w}dt = \frac{\Gamma\left(x\right)}{\Gamma\left(y\right)}\ _{2} G_{1}\left(1, w, y;\frac{z}{z-1}\right). \end{align} | (3.7) |
To prove k - \mathcal{Q}(\alpha)\subset\mathcal{B}\left(\nu _{0}\right) , it suffices to prove that
\underset{\left\vert z\right\vert \lt 1}{\inf}\left\{{\Re}(q\left(z\right))\right\} = q\left(-1\right), |
which need to show that
{\Re}\left(1/\text{$\digamma$}(z)\right) \geq1/\text{$\digamma$}(-1). |
By Lemma 3 and (3.7), it follows that
\text{$\digamma$}(z) = \int_0^1\text{$\digamma$}\left(z, t\right)d\varepsilon(t), |
where
\begin{array}{l} \text{$\digamma$}(z, t) = \frac{1-z}{1-\left(1-t\right) z}\quad \left(0\leq t\leq1\right), \end{array} |
and
d\varepsilon(t) = \frac{\Gamma(x) } {\Gamma(w) \Gamma\left(y-w\right)}t^{w-1}\left(1-t\right) ^{y-w-1}dt, |
which is a positive measure on \left[0, 1\right] .
It is clear that {\Re}(\digamma(z, t)) > 0 and \digamma(-r, t) is real for \left\vert z\right\vert \leq r < 1 and t\in\left[0, 1\right] . Also
{\Re}\left(\frac{1}{\text{$\digamma$}(z, t) }\right) = {\Re}\left(\frac{1-\left(1-t\right)z} {1-z}\right)\geq\frac{1+\left(1-t\right)r}{1+r} = \frac{1} {\text{$\digamma$}(-r, t)} |
for \left\vert z\right\vert \leq r < 1 . Therefore, by Lemma 3, we get
{\Re}(1/\text{$\digamma$}(z)) \geq1/\text{$\digamma$}(-r). |
If we let r\rightarrow1^{-} , it follows that
{\Re}\left(1/\text{$\digamma$}(z)\right) \geq1/\text{$\digamma$}(-1). |
Thus, we deduce that k - \mathcal{Q}\left(\alpha\right)\subset\mathcal{B}(\nu_{0}) .
Theorem 4. Let 0\leq\alpha < 1 and k\geq\frac{1}{1-\alpha} . If f\in k - \mathcal{Q}\left(\alpha\right) , then
f'(z)\prec s(z) = \frac{1}{g(z)}, |
where
g(z) = {_{2}G_{1}\left(\frac{2}{\lambda}, 1, \frac{1}{\lambda}+1; \frac{z}{z-1}\right)}\quad\left(\lambda = \frac{1+\alpha k}{k(1-\alpha)}\right). |
Proof. Suppose that f' = \hslash . From the proof of Theorem 1, we see that
\hslash(z)+\frac{z\hslash'(z)} {\frac{1}{\lambda}\hslash(z)}\prec\frac{1+\left(1-2\mu \right)z}{1-z}\prec\frac{1+z}{1-z}\quad\left(\lambda = \frac{1+\alpha k}{k\left(1-\alpha\right)};\, \mu = \frac{k-\alpha k-1}{k(1-\alpha)}\right). |
If we set \lambda_1 = \frac{1}{\lambda} , \gamma_2 = 0, C = 1 and D = -1 in Lemma 4, then
\hslash(z)\prec s(z) = \frac{1}{g(z) } = \frac{z^{\frac{1}{\lambda}}\left(1-z\right)^{-\frac{2}{\lambda}}} {1/\lambda\int_0^z t^{(1/\lambda)-1}\left(1-t\right)^{-2/\lambda}dt}. |
By putting t = uz , and using Lemma 5, we obtain
\hslash(z)\prec s(z) = \frac{1}{g(z) } = \frac{1}{\frac{1}{\lambda}\left(1-z\right)^{\frac {2}{\lambda}}\int_0^1u^{(1/\lambda)-1}\left(1-uz\right)^{-2/\lambda}du} = \left[_{2}G_{1}\left(\frac{2}{\lambda}, 1, \frac {1}{\lambda}+1;\frac{z}{z-1}\right)\right]^{-1}, |
which is the desired result of Theorem 4.
The present investigation was supported by the Key Project of Education Department of Hunan Province under Grant no. 19A097 of the P. R. China. The authors would like to thank the referees for their valuable comments and suggestions, which was essential to improve the quality of this paper.
The authors declare no conflict of interest.
[1] |
A. Ali, M. Arshad, A. Hussain, N. Hussain, S. M. Alsulami, On new generalized \theta _{b}-contractions and related fixed point theorems, J. Inequal. Appl., 2022 (2022), 37. https://doi.org/10.1186/s13660-022-02770-8 doi: 10.1186/s13660-022-02770-8
![]() |
[2] |
A. Ali, H. Işık, H. Aydi, E. Ameer, J. R. Lee, M. Arshad, On multivalued Suzuki-type \theta -contractions and related applications, Open Math., 18 (2020), 386–399. https://doi.org/10.1515/math-2020-0139 doi: 10.1515/math-2020-0139
![]() |
[3] |
A. Ali, M. Arshad, A. Asif, E. Savas, C. Park, D. Y. Shin, On multivalued maps for \varphi-contractions involving orbits with application, AIMS Math., 6 (2021), 7532–7554. https://doi.org/10.3934/math.2021440 doi: 10.3934/math.2021440
![]() |
[4] |
A. Ali, F. Uddin, M. Arshad, M. Rashid, Hybrid fixed point results via generalized dynamic process for F-HRS type contractions with application, Phys. A, 538 (2020), 122669. https://doi.org/10.1016/j.physa.2019.122669 doi: 10.1016/j.physa.2019.122669
![]() |
[5] |
A. Ali, A. Hussain, M. Arshad, H. A. Sulami, M. Tariq, Certain new development to the orthogonal binaryc relations, Symmetry, 14 (2022), 1954. https://doi.org/10.3390/sym14101954 doi: 10.3390/sym14101954
![]() |
[6] |
A. Ali, E. Ameer, S. S. Aiadi, M. Tariq, M. Arshad, N. Mlaiki, et al., New extension to fuzzy dynamic system and fuzzy fixed point results with an application, AIMS Math., 8 (2022), 1208–1229. https://doi.org/10.3934/math.2023061 doi: 10.3934/math.2023061
![]() |
[7] |
M. Arshad, M. Abbas, A. Hussain, N. Hussain, Generalized dynamic process for generalized (f, L)-almost F-contraction with applications, J. Nonlinear Sci. Appl., 9 (2016), 1702–1715. https://doi.org/10.22436/jnsa.009.04.26 doi: 10.22436/jnsa.009.04.26
![]() |
[8] |
M. Asadi, E. Karapinar, P. Salimi, New extension of p -metric spaces with fixed-point results on M-metric spaces, J. Inequal. Appl., 2014 (2014), 18. https://doi.org/10.1186/1029-242X-2014-18 doi: 10.1186/1029-242X-2014-18
![]() |
[9] |
H. Aydi, M. Abbas, C. Vetro, Partial Hausdorff metric and Nadler's fixed point theorem on partial metric spaces, Topol. Appl., 159 (2012), 3234–3242. https://doi.org/10.1016/j.topol.2012.06.012 doi: 10.1016/j.topol.2012.06.012
![]() |
[10] |
S. C. Buranay, M. A. Özarslan, S. S. Falahhesar, Hybrid operators for approximating nonsmooth functions and applications on Volterra integral equations with weakly singular kernels, Numer. Funct. Anal. Optim., 44 (2023), 36–63. https://doi.org/10.1080/01630563.2022.2150642 doi: 10.1080/01630563.2022.2150642
![]() |
[11] |
C. Ciobanescu, Remarks on some operators of nonexpansive type, J. Math. Anal., 13 (2022), 42–52. https://doi.org/10.54379/jma-2022-4-4 doi: 10.54379/jma-2022-4-4
![]() |
[12] |
H. A. Hammad, H. Aydi, M. De la Sen, Generalized dynamic process for an extended multi-valued F-contraction in metric-like spaces with applications, Alexandria Eng. J., 59 (2020), 3817–3825. https://doi.org/10.1016/j.aej.2020.06.037 doi: 10.1016/j.aej.2020.06.037
![]() |
[13] |
H. A. Hammad, M. Zayed, Solving a system of differential equations with infinite delay by using tripled fixed point techniques on graphs, Symmetry, 14 (2022), 1388. https://doi.org/10.3390/sym14071388 doi: 10.3390/sym14071388
![]() |
[14] |
H. A. Hammad, P. Agarwal, S. Momani, F. Alsharari, Solving a fractional-order differential equation using rational symmetric contraction mappings, Fractal Fract., 5 (2021), 159. https://doi.org/10.3390/fractalfract5040159 doi: 10.3390/fractalfract5040159
![]() |
[15] |
D. Klim, D. Wardowski, Fixed points of dynamic processes of set-valued F-contractions and application to functional equations, Fixed Point Theory Appl., 2015 (2015), 22. https://doi.org/10.1186/s13663-015-0272-y doi: 10.1186/s13663-015-0272-y
![]() |
[16] | S. G. Matthews, Partial metric topology, Ann. N. Y. Acad. Sci., 728 (1994), 183–197. https://doi.org/10.1111/j.1749-6632.1994.tb44144.x |
[17] |
M. Tariq, M. Arshad, E. Ameer, A. Aloqaily, S. S. Aiadi, N. Mlaik, On relational weak \left(F_{R}^{m}, \eta \right)-contractive mappings and their applications, Symmetry, 15 (2023), 922. https://doi.org/10.3390/sym15040922 doi: 10.3390/sym15040922
![]() |
[18] |
M. Tariq, M. Abbas, A. Hussain, M. Arshad, A. Ali, H. Sulami, Fixed points of non-linear set-valued (\alpha _{\ast }\phi _{M}) -contraction mappings and related applications, AIMS Math., 8 (2022), 8861–8878. https://doi.org/10.3934/math.2022494 doi: 10.3934/math.2022494
![]() |
[19] |
M. Tariq, E. Ameer, A. Ali, H. A. Hammad, F. Jarad, Applying fixed point techniques for obtaining a positive definite solution to nonlinear matrix equations, AIMS Math., 8 (2023), 3842–3859. https://doi.org/10.3934/math.2023191 doi: 10.3934/math.2023191
![]() |
[20] |
S. B. Nadler, Multi-valued contraction mappings, Pac. J. Math., 30 (1969), 475–488. https://doi.org/10.2140/PJM.1969.30.475 doi: 10.2140/PJM.1969.30.475
![]() |
[21] |
P. R. Patle, D. K. Patel, H. Aydi, D. Gopal, N. Mlaiki, Nadler and Kannan type set valued mappings in M-metric spaces and an application, Mathematics, 7 (2019), 373. https://doi.org/10.3390/math7040373 doi: 10.3390/math7040373
![]() |
[22] |
M. S. Shagari, M. Noorwali, A. Azam, Hybrid fixed point theorems of fuzzy soft set-valued maps with applications in integral inclusions and decision making, Mathematics, 11 (2023), 1393. https://doi.org/10.3390/math11061393 doi: 10.3390/math11061393
![]() |
[23] |
H. M. Srivastava, A. Ali, A. Hussain, M. Arshad, H. A. Sulami, A certain class of \theta _{L}-type non-linear operatorsand some related fixed point results, J. Nonlinear Var. Anal., 6 (2022), 69–87. https://doi.org/10.23952/jnva.6.2022.1.05 doi: 10.23952/jnva.6.2022.1.05
![]() |
[24] |
M. Sgroi, C. Vetro, Multi-valued F-contractions and the solutions of certain functional and integral equations, Filomat, 27 (2013), 1259–1268. https://doi.org/10.2298/FIL1307259S doi: 10.2298/FIL1307259S
![]() |
[25] |
F. Vetro, A generalization of Nadler fixed point theorem, Carpathian J. Math., 31 (2015), 403–410. https://doi.org/10.37193/CJM.2015.03.18 doi: 10.37193/CJM.2015.03.18
![]() |
[26] |
D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl., 2012 (2012), 94. https://doi.org/10.1186/1687-1812-2012-94 doi: 10.1186/1687-1812-2012-94
![]() |
1. | Syed Ghoos Ali Shah, Saima Noor, Saqib Hussain, Asifa Tasleem, Akhter Rasheed, Maslina Darus, Rashad Asharabi, Analytic Functions Related with Starlikeness, 2021, 2021, 1563-5147, 1, 10.1155/2021/9924434 |