By utilizing an inner-outer iteration strategy, a shift-splitting (SS) iteration method to solve a class of large sparse linear matrix equation $ AXB = C $ is proposed in this work. Two convergence theorems for differential forms are studied in depth. Moreover, the quasi-optimal parameters which minimize the upper bound for the spectral radius of SS iteration matrix are given. Two numerical examples illustrate the high-efficiency of SS iteration method, especially when coefficient matrices are ill-conditioned.
Citation: Xu Li, Rui-Feng Li. Shift-splitting iteration methods for a class of large sparse linear matrix equations[J]. AIMS Mathematics, 2021, 6(4): 4105-4118. doi: 10.3934/math.2021243
By utilizing an inner-outer iteration strategy, a shift-splitting (SS) iteration method to solve a class of large sparse linear matrix equation $ AXB = C $ is proposed in this work. Two convergence theorems for differential forms are studied in depth. Moreover, the quasi-optimal parameters which minimize the upper bound for the spectral radius of SS iteration matrix are given. Two numerical examples illustrate the high-efficiency of SS iteration method, especially when coefficient matrices are ill-conditioned.
[1] | O. Axelsson, Z. Z. Bai, S. X. Qiu, A class of nested iteration schemes for linear systems with a coefficient matrix with a dominant positive definite symmetric part, Numer. Algorithms, 35 (2004), 351–372. doi: 10.1023/B:NUMA.0000021766.70028.66 |
[2] | Z. Z. Bai, On Hermitian and skew-Hermitian splitting iteration methods for continuous Sylvester equations, J. Comput. Math., 29 (2011), 185–198. doi: 10.4208/jcm.1009-m3152 |
[3] | Z. Z. Bai, M. Benzi, F. Chen, On preconditioned MHSS iteration methods for complex symmetric linear systems, Numer. Algorithms, 56 (2011), 297–317. doi: 10.1007/s11075-010-9441-6 |
[4] | Z. Z. Bai, G. H. Golub, C. K. Li, Convergence properties of preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite matrices, Math. Comput., 76 (2007), 287–298. doi: 10.1090/S0025-5718-06-01892-8 |
[5] | Z. Z. Bai, G. H. Golub, M. K. Ng, Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems, SIAM J. Matrix Anal. Appl., 24 (2003), 603–626. doi: 10.1137/S0895479801395458 |
[6] | Z. Z. Bai, A. Hadjidimos, Optimization of extrapolated Cayley transform with non-Hermitian positive definite matrix, Linear Algebra Appl., 463 (2014), 322–339. doi: 10.1016/j.laa.2014.08.021 |
[7] | Z. Z. Bai, J. F. Yin, Y. F. Su, A shift-splitting preconditioner for non-Hermitian positive definite matrices, J. Comput. Math., 24 (2006), 539–552. |
[8] | Z. Z. Bai, G. H. Golub, L. Z. Lu, J. F. Yin, Block triangular and skew-Hermitian splitting methods for positive-definite linear systems, SIAM J. Sci. Comput., 26 (2005), 844–863. doi: 10.1137/S1064827503428114 |
[9] | D. Calvetti, L. Reichel, Application of ADI iterative methods to the restoration of noisy images, SIAM J. Matrix Anal. Appl., 17 (1996), 165–186. doi: 10.1137/S0895479894273687 |
[10] | Y. Cao, S. Li, L. Q. Yao, A class of generalized shift-splitting preconditioners for nonsymmetric saddle point problems, Appl. Math. Lett., 49 (2015), 20–27. doi: 10.1016/j.aml.2015.04.001 |
[11] | B. N. Datta, Numerical Methods for Linear Control Systems, San Diego: Elsevier Academic Press, 2004. |
[12] | Y. X. Dong, C. Q. Gu, On PMHSS iteration methods for continuous Sylvester equations, J. Comput. Math., 35 (2017), 600–619. doi: 10.4208/jcm.1607-m2016-0613 |
[13] | D. W. Fausett, C. T. Fulton, Large least squares problems involving Kronecker products, SIAM J. Matrix Anal. Appl., 15 (1994), 219–227. doi: 10.1137/S0895479891222106 |
[14] | M. Khorsand Zak, F. Toutounian, Nested splitting conjugate gradient method for matrix equation $AXB = C$ and preconditioning, Comput. Math. Appl., 66 (2013), 269–278. doi: 10.1016/j.camwa.2013.05.004 |
[15] | M. Khorsand Zak, F. Toutounian, An iterative method for solving the continuous Sylvester equation by emphasizing on the skew-hermitian parts of the coefficient matrices, Int. J. Comput. Math., 94 (2017), 633–649. doi: 10.1080/00207160.2015.1120863 |
[16] | X. Li, H. F. Huo, A. L. Yang, Preconditioned HSS iteration method and its non-alternating variant for continuous Sylvester equations, Comput. Math. Appl., 75 (2018), 1095–1106. doi: 10.1016/j.camwa.2017.10.028 |
[17] | X. Li, A. L. Yang, Y. J. Wu, Lopsided PMHSS iteration method for a class of complex symmetric linear systems, Numer. Algorithms, 66 (2014), 555–568. doi: 10.1007/s11075-013-9748-1 |
[18] | X. Li, Y. J. Wu, A. L. Yang, J. Y. Yuan, A generalized HSS iteration method for continuous Sylvester equations, J. Appl. Math., 2014 (2014), 578102. |
[19] | U. A. Rauhala, Introduction to array algebra, Photogramm. Eng. Remote Sens., 46 (1980), 177–192. |
[20] | P. A. Regalia, S. K. Mitra, Kronecker products, unitary matrices and signal processing applications, SIAM Rev., 31 (1989), 586–613. doi: 10.1137/1031127 |
[21] | D. K. Salkuyeh, M. Masoudi, D. Hezari, On the generalized shift-splitting preconditioner for saddle point problems, Appl. Math. Lett., 48 (2015), 55–61. doi: 10.1016/j.aml.2015.02.026 |
[22] | X. Wang, W. W. Li, L. Z. Mao, On positive-definite and skew-Hermitian splitting iteration methods for continuous Sylvester equation $AX+XB = C$, Comput. Math. Appl., 66 (2013), 2352–2361. doi: 10.1016/j.camwa.2013.09.011 |
[23] | X. Wang, Y. Li, L. Dai, On Hermitian and skew-Hermitian splitting iteration methods for the linear matrix equation $AXB = C$, Comput. Math. Appl., 65 (2013), 657–664. doi: 10.1016/j.camwa.2012.11.010 |
[24] | Y. J. Wu, X. Li, J. Y. Yuan, A non-alternating preconditioned HSS iteration method for non-Hermitian positive definite linear systems, Comput. Appl. Math., 36 (2017), 367–381. doi: 10.1007/s40314-015-0231-6 |
[25] | L. Xie, J. Ding, F. Ding, Gradient based iterative solutions for general linear matrix equations, Comput. Math. Appl., 58 (2009), 1441–1448. doi: 10.1016/j.camwa.2009.06.047 |
[26] | L. Xie, Y. J. Liu, H. Z. Yang, Gradient based and least squares based iterative algorithms for matrix equations $AXB+CX^{T}{D} = {F}$, Appl. Math. Comput., 217 (2010), 2191–2199. |
[27] | A. L. Yang, J. An, Y. J. Wu, A generalized preconditioned HSS method for non-Hermitian positive definite linear systems, Appl. Math. Comput., 216 (2010), 1715–1722. |
[28] | H. Y. Zha, Comments on large least squares problems involving Kronecker products, SIAM J. Matrix Anal. Appl., 16 (1995), 1172–1172. doi: 10.1137/S0895479894265009 |
[29] | W. H. Zhang, A. L. Yang, Y. J. Wu, Parameterized preconditioned Hermitian and skew-Hermitian splitting iteration method for a class of linear matrix equations, Comput. Math. Appl., 70 (2015), 1357–1367. doi: 10.1016/j.camwa.2015.07.016 |
[30] | Q. Q. Zheng, C. F. Ma, On normal and skew-Hermitian splitting iteration methods for large sparse continuous Sylvester equations, J. Comput. Appl. Math., 268 (2014), 145–154. doi: 10.1016/j.cam.2014.02.025 |
[31] | D. M. Zhou, G. L. Chen, Q. Y. Cai, On modified HSS iteration methods for continuous Sylvester equations, Appl. Math. Comput., 263 (2015), 84–93. |
[32] | R. Zhou, X. Wang, X. B. Tang, A generalization of the Hermitian and skew-Hermitian splitting iteration method for solving Sylvester equations, Appl. Math. Comput., 271 (2015), 609–617. |
[33] | R. Zhou, X. Wang, X. B. Tang, Preconditioned positive-definite and skew-Hermitian splitting iteration methods for continuous Sylvester equations $AX+XB = C$, East Asian J. Appl. Math., 7 (2017), 55–69. doi: 10.4208/eajam.190716.051116a |
[34] | R. Zhou, X. Wang, P. Zhou, A modified HSS iteration method for solving the complex linear matrix equation $AXB = C$, J. Comput. Math., 34 (2016), 437–450. doi: 10.4208/jcm.1601-m2015-0416 |