In this paper, the split feasibility problem is studied in real Banach spaces. Through the $ W $-mapping, a new iterative algorithm with the inertial technique for solving the split feasibility problem is proposed, which the step size is self-adaptive and no prior estimation of operator norm is required. We prove that the proposed algorithm converges weakly to a solution of the split feasibility problem under some mild conditions. Finally, the effectiveness of the proposed algorithm is indicated by numerical experiments. Our results are innovative and can enrich recently announced related results in the literature.
Citation: Meiying Wang, Luoyi Shi. A new self-adaptive inertial algorithm with $ W $-mapping for solving split feasibility problem in Banach spaces[J]. AIMS Mathematics, 2022, 7(10): 18767-18783. doi: 10.3934/math.20221032
In this paper, the split feasibility problem is studied in real Banach spaces. Through the $ W $-mapping, a new iterative algorithm with the inertial technique for solving the split feasibility problem is proposed, which the step size is self-adaptive and no prior estimation of operator norm is required. We prove that the proposed algorithm converges weakly to a solution of the split feasibility problem under some mild conditions. Finally, the effectiveness of the proposed algorithm is indicated by numerical experiments. Our results are innovative and can enrich recently announced related results in the literature.
[1] | C. Byrne, Iterative oblique projection onto convex sets and the split feasibility problem, Inverse Probl., 18 (2002), 441–453. https://doi.org/10.1088/0266-5611/18/2/310 doi: 10.1088/0266-5611/18/2/310 |
[2] | C. Byrne, A unified treatment of some iterative algorithms in signal processing and image reconstruction, Inverse Probl., 20 (2004), 103–120. https://doi.org/10.1088/0266-5611/20/1/006 doi: 10.1088/0266-5611/20/1/006 |
[3] | V. Berinde, M. Pǎcurar, Kannan's fixed point approximation for solving split feasibility and variational inequality problems, J. Comput. Appl. Math., 386 (2021), 113217. https://doi.org/10.1016/j.cam.2020.113217 doi: 10.1016/j.cam.2020.113217 |
[4] | Y. Censor, T. Elfving, A multiprojection algorithm using Bregman projections in a product space, Numer. Algor., 8 (1994), 221–239. https://doi.org/10.1007/BF02142692 doi: 10.1007/BF02142692 |
[5] | Y. Censor, T. Bortfeld, B. Martin, A. Trofimov, A unified approach for inversion problems in intensity-modulated radiation therapy, Phys. Med. Biol., 51 (2006), 2353–2365. https://doi.org/10.1088/0031-9155/51/10/001 doi: 10.1088/0031-9155/51/10/001 |
[6] | Y. Censor, A. Segal, The split common fixed point problem for directed operators, J. Convex Anal., 16 (2009), 587–600. https://doi.org/10.1088/0266-5611/26/5/055007 doi: 10.1088/0266-5611/26/5/055007 |
[7] | A. Dixit, D. R. Sahu, P. Gautam, T. Som, J. C. Yao, An accelerated forward-backward splitting algorithm for solving inclusion problems with applications to regression and link prediction problems, J. Nonlinear Var. Anal., 5 (2021), 79–101. https://doi.org/10.23952/jnva.5.2021.1.06 doi: 10.23952/jnva.5.2021.1.06 |
[8] | Q. L. Dong, Y. Peng, Y. Yao, Alternated inertial projection methods for the split equality problem, J. Nonlinear Convex Anal., 22 (2021), 53–67. |
[9] | Q. L. Dong, L. Liu, Y. Yao, Self-adaptive projection and contraction methods with alternated inertial terms for solving the split feasibility problem, J. Nonlinear Convex Anal., 23 (2022), 591–605. |
[10] | F. Gao, X. Liu, X. Li, Strong convergence on the split feasibility problem by mixing $W$-mapping, J. Math., 2021 (2021), 9924937. https://doi.org/10.1155/2021/9924937 doi: 10.1155/2021/9924937 |
[11] | K. Goebel, W. Kirk, Topics in metric fixed point theory, UK: Cambridge University Press, 1990. https://doi.org/10.1017/CBO9780511526152 |
[12] | H. Li, Y. Wu, F. Wang, New inertial relaxed CQ algorithms for solving split feasibility problems in Hilbert spaces, J. Math., 2021 (2021), 6624509. https://doi.org/10.1155/2021/6624509 doi: 10.1155/2021/6624509 |
[13] | J. Lindenstrauss, L. Tzafriri, Classical Banach spaces Ⅱ, Berlin: Springer, 1979. |
[14] | P. E. Maingé, Inertial iterative process for fixed points of certain quasi-nonexpansive mappings, Set-Valued Anal., 15 (2007), 67–79. https://doi.org/10.1007/s11228-006-0027-3 doi: 10.1007/s11228-006-0027-3 |
[15] | E. Naraghirad, S. Timnak, Strong convergence theorems for Bregman $W$-mappings with applications to convex feasibility problems in Banach spaces, Fixed Point Theory Appl., 2015 (2015), 149. https://doi.org/10.1186/s13663-015-0395-1 doi: 10.1186/s13663-015-0395-1 |
[16] | Y. Nesterov, A method for solving the convex programming problem with convergence rate $O(1/k^2)$, Dokl. Akad. Nauk SSSR, 269 (1983), 543–547. |
[17] | B. T. Polyak, Some methods of speeding up the convergence of iteration methods, Ussr Comput. Math. Math. Phys., 4 (1964), 1–17. https://doi.org/10.1016/0041-5553(64)90137-5 doi: 10.1016/0041-5553(64)90137-5 |
[18] | D. R. Sahu, Y. J. Cho, Q. L. Dong, M. R. Kashyap, X. H. Li, Inertial relaxed CQ algorithms for solving a split feasibility problem in Hilbert spaces, Numer. Algor., 87 (2021), 1075–1095. https://doi.org/10.1007/s11075-020-00999-2 doi: 10.1007/s11075-020-00999-2 |
[19] | F. Schöpfer, T. Schuster, A. K. Louis, An iterative regularization method for the solution of the split feasibility problem in Banach spaces, Inverse Prob., 24 (2008), 055008. https://doi.org/10.1088/0266-5611/24/5/055008 doi: 10.1088/0266-5611/24/5/055008 |
[20] | K. Shimoji, W. Takahashi, Strong convergence to common fixed points of inifinite nonexpansive mappings and applications, Taiwanese J. Math., 5 (2001), 387–404. https://doi.org/10.11650/twjm/1500407345 doi: 10.11650/twjm/1500407345 |
[21] | P. Sunthrayuth, T. M. Tuyen, A generalized self-adaptive algorithm for the split feasibility problem in Banach spaces, Bull. Iran. Math. Soc., 48 (2021), 1869–1893. https://doi.org/10.1007/s41980-021-00622-7 doi: 10.1007/s41980-021-00622-7 |
[22] | Y. Shehu, O. S. Iyiola, C. D. Enyi, An iterative algorithm for solving split feasibility problems and fixed point problems in Banach spaces, Numer. Algor., 72 (2016), 835–864. https://doi.org/10.1007/s11075-015-0069-4 doi: 10.1007/s11075-015-0069-4 |
[23] | J. Tang, S. Chang, L. Wang, X. Wang, On the split common fixed point problem for strict pseudocontractive and asymptotically nonexpansive mappings in Banach spaces, J. Inequal. Appl., 2015 (2015), 305. https://doi.org/10.1186/s13660-015-0832-z doi: 10.1186/s13660-015-0832-z |
[24] | K. K. Tan, H. K. Xu, Approximating fixed point of nonexpansive mappings by the Ishikawa iteration process, J. Math. Anal. Appl., 178 (1993), 301–308. https://doi.org/10.1006/jmaa.1993.1309 doi: 10.1006/jmaa.1993.1309 |
[25] | W. Takahashi, Nonlinear functional analysis: Fixed point theory and its application, Yokohama: Yokohama Publishers, 2000. |
[26] | W. Takahashi, K. Shimoji, Convergence theorems for nonexpansive mappings and feasibility problems, Math. Comput. Model., 32 (2000), 1463–1471. https://doi.org/10.1016/S0895-7177(00)00218-1 doi: 10.1016/S0895-7177(00)00218-1 |
[27] | F. Wang, Polyak's gradient method for split feasibility problem constrained by level sets, Numer. Algor., 77 (2018), 925–938. https://doi.org/10.1007/s11075-017-0347-4 doi: 10.1007/s11075-017-0347-4 |
[28] | H. K. Xu, Inequalities in Banach spaces with applications, Nonlinear Anal., 16 (1991), 1127–1138. https://doi.org/10.1016/0362-546X(91)90200-K doi: 10.1016/0362-546X(91)90200-K |
[29] | H. K. Xu, Iterative methods for the split feasibility problem in infinite-dimensional Hilbert spaces, Inverse Probl., 26 (2010), 105018. https://doi.org/10.1088/0266-5611/26/10/105018 doi: 10.1088/0266-5611/26/10/105018 |
[30] | J. Zhao, Y. Li, A new inertial self-adaptive algorithm for split common fixed point problems, J. Nonlinear Var. Anal., 5 (2021), 43–57. https://doi.org/10.23952/jnva.5.2021.1.04 doi: 10.23952/jnva.5.2021.1.04 |