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1. Introduction

Let H1 and H2 be two real Hilbert spaces. The split feasibility problem (SFP) was first proposed by
Censor and Elfving [4] for modeling inverse problems in finite dimensional Hilbert spaces. The SFP
for mapping A : H1 → H2 is described as follows:

find u ∈ C such that Au ∈ Q, (1.1)

where C and Q are nonempty closed convex subsets of real Hilbert spaces H1 and H2 , respectively.
The SFP has been widely studied and promoted by many scholars due to its crucial role in practical

problems such as medical image reconstruction [1], signal processing [2] and intensity-modulated
radiation therapy [5]. Therefore, some iterative algorithms have been proposed to approximate the
solution of SFP (see [10, 12, 15, 18, 21, 22, 27]).
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The algorithm to solve SFP in finite dimensional real Hilbert spaces was first proposed by Censor
and Elfving [4] in 1994. This iterative algorithm is based on projections and involves computing the
inverse of a matrix. For the sake of overcoming this drawback, a popular CQ algorithm was proposed
by Byrne [1] as follows:

un+1 = PC(un − γA∗(I − PQ)Aun), (1.2)

where 0 < γ < 2/||A||2, PC and PQ are metric projections onto C and Q, respectively. The authors
proved that the sequence {un} generated by this algorithm converges weakly to a solution of SFP.

To obtain strongly convergent results, Berinde et al. [3] proposed the following algorithm:

un+1 = (1 − λ)un + λPC(I − γA∗(I − PQ)A)un, (1.3)

where 0 < λ ≤ 1 and 0 < γ < 2/||A||2. The authors proved that the sequence {un} generated by this
algorithm converges strongly to a unique solution u∗ of the SFP.

In paper [27], Wang proposed the following new algorithm for solving the SFP by applying Polyak’s
gradient method and the calculation of the projections is easily implemented:

un+1 = un − γn[(un − PCnun) + A∗(I − PQn)Aun], (1.4)

where Cn, Qn and γn are given by

Cn = {z ∈ H1 : c(un) ≤ 〈ηn, un − z〉}, ηn ∈ ∂c(un),

Qn = {w ∈ H2 : q(Aun) ≤ 〈θn, Aun − w〉}, θn ∈ ∂q(Aun),

and

γn = λn
||un − PCnun||

2 + ||(I − PQn)Aun||
2

2||(I − PCn)un + A∗(I − PQn)Aun||
2 ,

where λn ∈ (0, 4). The author proved that the sequence {un} generated by (1.4) converges weakly to a
solution of the SFP. To obtain the strong convergence theorem, an improved algorithm was proposed
by Wang [27] as follows: wn = un − γn[(un − PCnun) + A∗(I − PQn)Aun],

un+1 = νnu + (1 − νn)wn,
(1.5)

where Cn, Qn and γn are the same as those given in algorithm (1.4), {νn} is a sequence in [0, 1] and
satisfies

lim
n→∞

νn = 0,
∞∑

n=0

νn = ∞,

either
∞∑

n=0

|νn+1 − νn| < ∞ or lim
n→∞

νn+1

νn
= 1.

Since the setting of Banach spaces sometimes allows for more realistic modeling of problems arising
in industrial and natural science applications, solving SFP in Banach space is interesting not only from
a theoretical point of view, but also for solving related application problems in the real world.
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In [19], Schöpfer et al. first proposed the following algorithm for solving the SFP in Banach spaces:

un+1 = ΠC J∗q[Jp(un) − tnA∗J(Aun − PQ(Aun))], (1.6)

where ΠC denotes the Bregman projection, Jp, J∗q, and J are duality mappings, and PQ denotes the
metric projection. The authors proved the result of weak convergence of algorithm (1.6).

In [23], Tang et al. introduced an iteration algorithm in Banach spaces which does not involve
the projection operator to approximate a solution of the split common fixed point problem. The split
common fixed point problem (SCFP) for two mappings K : C → C and L : Q→ Q was introduced in
2009 by Censor et al. [6] as finding a point u∗ ∈ C such that

u∗ ∈ F(K) and Au∗ ∈ F(L), (1.7)

where F(K) and F(L) represent the sets of fixed points of K and L, respectively. It is worth underlining
that the SCFP can be considered as a promotion of the SFP. The iterative algorithm was proposed by
Tang et al. [23] as follows: For each u1 ∈ E1,wn = un + ρJ−1

E1
A∗JE2(T − I)Aun,

un+1 = (1 − νn)wn + νnS nwn, ∀n ≥ 1,
(1.8)

where J−1
E1

: E∗1 → 2E1 , JE2 : E2 → 2E∗2 are the normalized duality mappings, {νn} is a sequence in (0, 1)
and ρ is a positive constant satisfying 0 < ρ < min{ 1−2k2

||A||2 ,
1−τ
||A||2 }. They proved that the sequence {un}

converges weakly to a point of the SCFP.
To accelerate the convergence, Polyak [17] firstly proposed the inertial extrapolation method for

solving the smooth convex minimization problem. The inertial algorithm is a two-step iterative method,
using the first two iterations to define the next iteration. Nesterov [16] introduced a modified method
to improve the convergence rate as follows:wn = un + βn(wn − wn−1),

un+1 = wn − λnA∗(I − PQAwn), ∀n ≥ 1,
(1.9)

where βn ∈ [0, 1) is an extrapolation factor, and {λn} is a positive sequence. The inertia is denoted
by the term βn(wn − wn−1). It is worth noting that the inertial term greatly improves the performance
of the algorithm and has a good convergence property [16]. Encouraged by the inertial term, many
authors have proposed different algorithms with inertial techniques to solve a number of different
problems(see [7–9, 14, 18, 30]).

Inspired and motivated by previous works, this paper aims to construct a new iterative method with
the inertial technique for solving the SFP, which is self-adaptive in step size and does not require the
prior estimate of operator norm. Through the new W-mapping, the algorithm is given in 2-uniformly
convex and uniformly smooth Banach spaces, and then we show that the algorithm weakly converges
to a solution of SFP.

The rest of this paper is organized as follows: In section 2, some basic facts and helpful lemmas
are given for use in subsequent proofs. In section 3, a new iterative method with the inertial technique
based on W-mapping is presented to find the solution of the SFP and the weak convergence theorem is
proved under some mild conditions. Finally, in section 4, we give the numerical experiment to verify
the effectiveness of the proposed iterative method and compare it with other methods.
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2. Preliminaries

In this section, we first recall some notations and results which are needed in the sequel. We assume
that E is a real Banach space and E∗ represents its dual, 〈·, ·〉 denotes the duality pairing between E
and E∗. C is a nonempty closed convex subset of E. We denote the identity operator by I and the set
of fixed points of T by F(T ). The notation “→” stands for strong convergence while “⇀” stands for
weak convergence.

The normalized duality mapping JE : E → 2E∗ is defined by

JE(u) = {u∗ ∈ E∗ : 〈u∗, u〉 = ||u||2 = ||u∗||2}, ∀u ∈ E. (2.1)

Let 1 < q ≤ 2 ≤ p < ∞. The modulus of convexity δE(ε) : [0, 2]→ [0, 1] is defined as

δE(ε) = inf{1 −
||u + v||

2
: ||u||, ||v|| ≤ 1, ||u − v|| ≥ ε},

E is called uniformly convex if δE(ε) > 0 for any ε ∈ (0, 2], strictly convex if δE(2) = 1. If there is a
cp > 0 such that δE(ε) ≥ cpε

p for any ε ∈ (0, 2], then E is called p-uniformly convex. The modulus of
smoothness ρE(τ) : [0,∞)→ [0,∞) is defined by

ρE(τ) = sup{
||u + τv|| + ||u − τv||

2
− 1 : ||u|| = 1, ||v|| ≤ τ},

E is called uniformly smooth if lim
τ→∞

ρE(τ)
τ

= 0, q-uniformly smooth if there is a cq > 0 so that ρE(τ) ≤
cqτ

q for any τ > 0. It is known that E is p-uniformly convex if and only if its dual E∗ is q-uniformly
smooth [13].

Definition 2.1. [29] Let T : C → C be a nonlinear mapping. Then, T is
(1) Nonexpansive if

||Tu − Tv|| ≤ ||u − v||, ∀u, v ∈ C.

(2) Firmly nonexpansive if

||Tu − Tv||2 + ||(I − T )u − (I − T )v||2 ≤ ||u − v||2, ∀u, v ∈ C.

Definition 2.2. The metric projection PC : E → C is defined by

PCu := arg min
v∈C

||u − v||, u ∈ E.

Lemma 2.3. [19] Let {un} be a sequence in E. Then, for u ∈ E the following holds:
(1) 〈w − PCu, JE(I − PC)u〉 ≤ 0, ∀w ∈ C.
(2) ||u − PCu||2 ≤ 〈u − w, JE(I − PC)u〉, ∀w ∈ C.

The uniformly convex or 2-uniformly smooth Banach space has the following estimate.

Lemma 2.4. [28] Let E be a uniformly convex Banach space. Then, for any r > 0 and s ∈ [0, 1], there
exists a continuous strictly increasing function g : [0,∞) → [0,∞), g(0) = 0 such that for all u, v ∈ E
the following inequality exists:

||su + (1 − s)v||2 ≤ s||u||2 + (1 − s)||v||2 − s(1 − s)g(||u − v||),

where ||u|| ≤ r and ||v|| ≤ r.
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Lemma 2.5. [28] If E is a 2-uniformly smooth Banach space with the optimal smoothness constant
a > 0, then the following inequality holds:

||u + v||2 ≤ ||u||2 + 2〈v, JEu〉 + 2||av||2, ∀u, v ∈ E.

Lemma 2.6. [25] In a strictly convex Banach space E, if

||u|| = ||v|| = ||λu + (1 − λ)v||,

for all u, v ∈ E and λ ∈ (0, 1), then u = v.

Definition 2.7. [26] Let Tt(1 ≤ t ≤ n) be a finite family of nonexpansive mapping on C and λt be real
numbers with 0 < λt ≤ λ < 1. The definition of mapping Wn on C is as follows:

Hn,n+1 = I,

Hn,n = (1 − λn)I + λnTnHn,n+1,

Hn,n−1 = (1 − λn−1)I + λn−1Tn−1Hn,n,

...

Hn,m = (1 − λm)I + λmTmHn,m+1,

Hn,m−1 = (1 − λm−1)I + λm−1Tm−1Hn,m,

...

Hn,2 = (1 − λ2)I + λ2T2Hn,3,

Hn,1 = (1 − λ1)I + λ1T1Hn,2,

Wn = Hn,1,

then the mapping Wn is called the W-mapping generated by Tn,Tn−1, . . . ,T1 and λn, λn−1, . . . , λ1.

The following tools will be used for analysis in the sequel.

Lemma 2.8. [20] Let Wn : E → E be a W-mapping, then Wn is a nonexpansive mapping.

Definition 2.9. Let T : C → C be an operator. Then we say that I − T is demiclosed at zero, if for any
{un} in E, the following meaning holds:

un ⇀ u and (I − T )un → 0 ⇒ u ∈ F(T ).

Lemma 2.10. [11] If T : C → C is a nonexpansive operator, then I − T is demiclosed at zero.

Definition 2.11. Let E be a Banach space, E is said to have the Opial property if for any sequence {un}

in E with un ⇀ u∗, for any v ∈ E with v , u∗, we have

lim inf
n→∞

||un − u∗|| < lim inf
n→∞

||un − v||.

Lemma 2.12. [14] Let {φn} ⊂ [0, ∞) and {ηn} ⊂ [0, ∞) be two nonnegative real sequences satisfying
the following conditions:
(1) φn+1 − φn ≤ αn(φn − φn−1),
(2)
∑∞

n=1 ηn < ∞,
(3) {αn} ⊂ [0, α], where α ∈ [0, 1).

Then, {φn} is a converging sequence and
∑∞

n=1[φn+1 − φn]+ < ∞, where [t]+ = max{t, 0} for any
t ∈ R.
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Lemma 2.13. [24] Assume that {rn} and {tn} are two sequences of nonnegative numbers satisfying

rn+1 ≤ rn + tn, ∀n ∈ N.

If
∑∞

i=1 tn ≤ ∞, then lim
n→∞

rn exists.

3. Main results

In this section, we propose our self-adaptive iterative algorithm to solve the split feasibility problem
in Banach spaces. Subsequently, the weak convergence of the proposed algorithm is analyzed and
established. In order to introduce our algorithm, we first define a special W-mapping Wn as follows:

Hn,n+1 = I,

Hn,n = (1 − λn)I + λnPCHn,n+1,

Hn,n−1 = (1 − λn−1)I + λn−1PCHn,n,

...

Hn,m = (1 − λm)I + λmPCHn,m+1,

Hn,m−1 = (1 − λm−1)I + λm−1PCHn,m,

...

Hn,2 = (1 − λ2)I + λ2PCHn,3,

Hn,1 = (1 − λ1)I + λ1PCHn,2,

Wn = Hn,1,

where λt = 1
n−t+1 and 1 ≤ t ≤ n.

Assumption 3.1. (i) E1 is a real 2-uniformly smooth and uniformly convex Banach space and E2 is a
real Banach space.
(ii) E1 has the Opial property and the optimal smoothness constant a satisfies 0 < a < 1

√
2
.

(iii) A : E1 → E2 is a bounded linear operator and the adjoint of A is represented by A∗.
(iv) The solution set Ω of SFP is nonempty:

Ω = {u ∈ C : Au ∈ Q} , ∅.

Remark 3.2. Let Wn : E1 → E1 be a W-mapping. It’s obvious from Lemma 2.8 that the Wn is a
nonexpansive mapping.

Lemma 3.3. Let C be a nonempty closed convex subset of a strictly convex Banach space E. PC is
the metric projection, and it is a nonexpansive mapping. F(PC) , ∅ and let λ1, λ2, · · · be real numbers
such that 0 < λi ≤ b < 1 for every i = 1, 2, · · · . Then
(i) lim

n→∞
Hn,mu exists, ∀u ∈ C,m ∈ N and Wu = lim

n→∞
Hn,mu;

(ii) F(W) = F(PC).
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Proof. (i) Let u ∈ E1. Without loss of generality, suppose u , PCu, then ∀n ∈ N, n ≥ m, we have

||Hn+1,mu − Hn,mu||

= ||λmPCHn+1,m+1u + (1 − λm)u − λmPCHn,m+1u − (1 − λm)u||
= λm||PCHn+1,m+1u − PCHn,m+1u||

≤ λm||Hn+1,m+1u − Hn,m+1u||

= λm||λm+1PCHn+1,m+2u + (1 − λm+1)u − λm+1PCHn,m+2u − (1 − λm+1)u||
≤ λmλm+1||Hn+1,m+2u − Hn,m+2u||
...

≤ (
n∏

i=m

λi)||Hn+1,n+1u − Hn,n+1u||

= (
n∏

i=m

λi)||λn+1PCHn+1,n+2u + (1 − λn+1)u − u||

= (
n+1∏
i=m

λi)||PCu − u||.

Let ε > 0, there exists n0 ∈ N with n0 ≥ m, such that

bn0−m+2 <
ε(1 − b)
||PCu − u||

.

Hence for every s, n when s > n > n0, we have

||Hs,mu − Hn,mu|| ≤
s−1∑
j=n

||H j+1,mu − H j,mu||

≤

s−1∑
j=n

{(
j+1∏
i=m

λi)||PCu − u||}

≤ ||PCu − u||
s−1∑
j=n

b j−m+2

≤
bn−m+2||PCu − u||

1 − b
< ε.

So, {Un,mu} is a Cauchy sequence, and lim
n→∞

Hn,mu exists. Let

H∞,mu := lim
n→∞

Hn,mu,

and
Wu := lim

n→∞
Wnu = lim

n→∞
Hn,1u.
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(ii) Let w ∈ F(PC), clearly, Hn,mw = w for all n,m ∈ N, n ≥ m. Therefore, H∞,1w = w. In particular,
Ww = H∞,1w = w. So F(PC) ⊂ F(W).

Next we prove F(W) ⊂ F(PC).
Let u ∈ F(W), v ∈ F(PC), then

||Wnu −Wnv||

= ||Hn,1u − Hn,1v||

= ||(1 − λ1)u + λ1PCHn,2u − (1 − λ1)v − λ1PCHn,2v||

= (1 − λ1)||u − v|| + λ1||PCHn,2u − PCHn,2v||

≤ (1 − λ1)||u − v|| + λ1||Hn,2u − Hn,2v||
...

≤ (1 −
m−1∏
i=1

λi)||u − v|| + (
m−1∏
i=1

λi)||Hn,mu − Hn,mv||

≤ (1 −
m−1∏
i=1

λi)||u − v|| + (
m−1∏
i=1

λi)||(1 − λm)u + λmPCHn,m+1u − (1 − λm)v − λmPCHn,m+1v||

= (1 −
m−1∏
i=1

λi)||u − v|| + (
m−1∏
i=1

λi)||(1 − λm)(u − v) + λm(PCHn,m+1u − PCHn,m+1v)||

≤ (1 −
m∏

i=1

λi)||u − v|| + (
m∏

i=1

λi)||PCHn,m+1u − PCHn,m+1v||

≤ (1 −
m∏

i=1

λi)||u − v|| + (
m∏

i=1

λi)||Hn,m+1u − Hn,m+1v||

...

≤ ||u − v||.

So as n→ ∞ we have

||Wu −Wv|| ≤ (
m−1∏
i=1

λi)||λm(PCH∞,m+1u − PCH∞,m+1v) + (1 − λm)(u − v)||

+ (1 −
m−1∏
i=1

λi)||u − v||

≤ (
m∏

i=1

λi)||PCH∞,m+1u − PCH∞,m+1v)|| + (1 −
m∏

i=1

λi)||u − v||

≤ ||u − v||.

Since

||Wu −Wv|| = ||u − v||,
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and 0 < λi < 1 for all m ∈ N,

||λm(PCH∞,m+1u − PCH∞,m+1v) + (1 − λm)(u − v)||
= ||PCH∞,m+1u − PCH∞,m+1v||

= ||u − v||.

Since y ∈ F(PC) and from Lemma 2.6, we have

||u − v|| = ||PCH∞,m+1u − PCH∞,m+1v|| = ||PCH∞,m+1u − v||,

and
u = PCH∞,m+1u.

On the other hand, due to
Hn,m+1u = λm+1PCHn,m+2u + (1 − λm+1)u,

we have

H∞,m+1u = lim
n→∞

Hn,m+1u = λm+1PCH∞,m+2u + (1 − λm+1)u = λm+1u + (1 − λm+1)u = u.

So u = PCH∞,m+1u = PCu, which means that x ∈ F(PC) and F(W) ⊂ F(PC). Therefore, we have
F(W) = F(PC). �

We now introduce our self-adaptive inertial algorithm for solving SFP as follows.

Algorithm 3.4 The inertial algorithm for SFP.
Initialization: Given τ0 > 0, ε > 0. Choose initial point u0, u1 ∈ E1, and set n = 1.
Iterative Steps: Calculate un+1 as follows:
Step 1: Given the iterates un−1 and un. Set

zn = un + αn(un − un−1),
where 0 ≤ αn < αn, {εn} is a positive sequence satisfying

∑∞
n=0 εn < ∞, and

αn =

min{ εn
max{||un−un−1 ||, g(||un−un−1 ||)}

, α}, i f un , un−1,

α, otherwise,

and calculate the step size as shown below:
τn ∈ (ε, 2||(I−PQ)Azn ||

2

||A∗JE2 (I−PQ)Azn ||2
− ε), n ∈ Γ

where Γ := {n ∈ N : Azn − PQAzn , 0}, otherwise τn = τ, τ is nonnegative real number.
Step 2: Compute

wn = zn − τnJ−1
E1

[A∗JE2(I − PQ)Azn].
Step 3: If wn = zn stop. Otherwise, calculate un+1 via

un+1 = κnzn + (1 − κn)Wnwn, ∀n ≥ 1.
where κn satisfies lim

n→∞
κn = 0 and

∑∞
n=0 κn = ∞.

Step 4: Set n = n + 1 and go to Step 1.
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Remark 3.5. It is easy to see from the definition of αn that

∞∑
n=1

αn||un − un−1|| < ∞,

∞∑
n=1

αng(||un − un−1||) < ∞,

which means
lim
n→∞

αn||un − un−1|| = 0, lim
n→∞

αng(||un − un−1||) = 0.

Theorem 3.6. The sequence {un} is generated by Algorithm 3.4, then {un} converges weakly to a
solution ũ of the SFP.

Proof. Let w ∈ Ω. According to the definition of Wn, we obtain w = Wnw. In the following, the proof
will be divided into three steps.

To begin with, we show that the sequence {un} is bounded. From Lemmas 2.3 and 2.5, we get

||wn − w||2 = ||zn − w − τnJ−1
E1

[A∗JE2(I − PQ)Azn]||2

≤ τ2
n||J

−1
E1

[A∗JE2(I − PQ)Azn]||2 − 2τn〈zn − w, A∗JE2(I − PQ)Azn〉 + 2a2||zn − w||2

= τ2
n||A

∗JE2(I − PQ)Azn||
2 + 2a2||zn − w||2 + 2τn〈Aw − Azn, JE2(I − PQ)Azn〉

= τ2
n||A

∗JE2(I − PQ)Azn||
2 + 2a2||zn − w||2 + 2τn〈Aw − PQAzn, JE2(I − PQ)Azn〉

+ 2τn〈PQAzn − Azn, JE2(I − PQ)Azn〉

≤ τ2
n||A

∗JE2(I − PQ)Azn||
2 + 2a2||zn − w||2 − 2τn〈Azn − PQAzn, JE2(I − PQ)Azn〉

= τ2
n||A

∗JE2(I − PQ)Azn||
2 + 2a2||zn − w||2 − 2τn||(I − PQ)Azn||

2

= 2a2||zn − w||2 − τn(2||(I − PQ)Azn||
2 − τn||A∗JE2(I − PQ)Azn||

2)
≤ ||zn − w||2 − τn(2||(I − PQ)Azn||

2 − τn||A∗JE2(I − PQ)Azn||
2). (3.1)

And then, based on the construction of zn and Lemma 2.4, we have

||zn − w||2 = ||(1 + αn)(un − w) − αn(un−1 − w)||2

≤ (1 + αn)||un − w||2 − αn||un−1 − w||2 + (1 + αn)αng(||un − un−1||).

Therefore,

||un+1 − w||2 = ||κnzn + (1 − κn)Wnwn − w||2

= ||κn(zn − w) + (1 − κn)(Wnwn − w)||2

≤ κn||zn − w||2 + (1 − κn)||wn − w||2 − κn(1 − κn)g(||zn −Wnwn||)
≤ ||zn − w||2 − (1 − κn)τn(2||(I − PQ)Azn||

2 − τn||A∗JE2(I − PQ)Azn||
2)

− κn(1 − κn)g(||zn −Wnwn||)
≤ (1 + αn)||un − w||2 − αn||un−1 − w||2 + (1 + αn)αng(||un − un−1||)
− (1 − κn)τn(2||(I − PQ)Azn||

2 − τn||A∗JE2(I − PQ)Azn||
2)

− κn(1 − κn)g(||zn −Wnwn||)
≤ (1 + αn)||un − w||2 − αn||un−1 − w||2 + 2αng(||un − un−1||). (3.2)
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Let φn = ||un − w||2, from (3.2), we can obtain

φn+1 − φn ≤ αn(φn − φn−1) + 2αng(||un − un−1||),

where
∑∞

n=1 αng(||un − un−1||) < ∞.
Therefore, it follows from Lemma 2.12 that the limit of φn exists, and

∞∑
n=1

(||un+1 − w||2 − ||un − w||2)+ < ∞,

which means that
∞∑

n=1

(||un+1 − w||2 − ||un − w||2) < ∞.

It also means that {un} is bounded, so {zn} is bounded.
Secondly, we show that lim

n→∞
||Azn − PQAzn|| = 0 and lim

n→∞
||zn −Wnzn|| = 0. From (3.2) we have

2(1 − κn)τn(||(I − PQ)Azn||
2 −

τn

2
||A∗JE2(I − PQ)Azn||

2) + κn(1 − κn)g(||zn −Wnwn||)

≤ ||un − w||2 − ||un+1 − w||2 + αn(||un − w||2 − ||un−1 − w||2) + 2αng(||un − un−1||).

Taking the limit of the above inequality, we get

||(I − PQ)Azn||
2 −

τn

2
||A∗JE2(I − PQ)Azn||

2 → 0, n→ ∞, (3.3)

and
g(||zn −Wnwn||)→ 0, n→ ∞.

Since τn <
2||(I−PQ)Azn ||

2

||A∗JE2 (I−PQ)Azn ||2
− ε, we obtain

ε

2
||A∗JE2(I − PQ)Azn||

2 ≤ ||(I − PQ)Azn||
2 −

τn

2
||A∗JE2(I − PQ)Azn||

2.

Thus,
lim
n→∞
||A∗JE2(I − PQ)Azn|| = 0.

Then, according to (3.3), we have
lim
n→∞
||(I − PQ)Azn|| = 0.

From the properties of g in Lemma 2.4 and lim
n→∞

g(||zn −Wnwn||) = 0, we know that

lim
n→∞
||zn −Wnwn|| = 0.

In addition, since
||zn − wn|| = ||JE1(zn − wn)|| = τn||A∗JE2(I − PQ)Azn||,

then, we have
lim
n→∞
||zn − wn|| = 0.
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Therefore, according to Wn is a nonexpansive mapping, we obtain

||zn −Wnzn|| = ||zn −Wnwn + Wnwn −Wnzn||

≤ ||zn −Wnwn|| + ||Wnwn −Wnzn||

≤ ||zn −Wnwn|| + ||wn − zn|| → 0, n→ ∞. (3.4)

Finally, {un} converges weakly to ũ ∈ Ω will be proved.
Due to the assumption that E1 is a uniformly convex reflexive Banach space, as well as the fact

that {un} is a bounded sequence from the first step, so there exits a subsequence {un j} of {un} such that
un j ⇀ ũ. On the other hand, lim

n→∞
||un − zn|| = lim

n→∞
αn||un − un−1|| = 0, so we obtain that zn j ⇀ ũ. Then,

since A is a bounded linear operator, we can get Azn j ⇀ Aũ. By the previous step, we get

||Azn j − PQAzn j || → 0, ||zn j −Wn jzn j || → 0, j→ ∞.

Since Wn and PQ are nonexpansive mapping, then it follows from Lemma 2.10 that I−PQ is demiclosed
at zero, and by Lemma 3.3 we know that F(W) = F(PC), so we can obtain

ũ = PCũ and Aũ = PQAũ,

that is ũ ∈ C, Aũ ∈ Q, hence ũ ∈ Ω.

Now, we prove that {un} converges weakly to ũ ∈ Ω. As a matter of fact, we can assume that there
exists another subsequence {unk} of {un}, such that {unk} converges weakly to ǔ ∈ Ω. Since E1 has the
Opial property, then we get as follows:

lim inf
j→∞

||un j − ũ|| < lim inf
j→∞

||un j − ǔ|| = lim
n→∞
||un − ǔ||

= lim inf
k→∞

||unk − ǔ|| < lim inf
k→∞
||unk − ũ||

= lim
n→∞
||un − ũ|| = lim inf

j→∞
||un j − ũ||.

It’s a contradiction. Hence {un} converges weakly to ũ ∈ Ω. As this point, the proof is completed. �

Remark 3.7. One of the significant advantages of the results in this paper is that the proposed inertial
algorithm for solving the split feasibility problem in Banach space based on W-mapping is new, and
the methods in this paper can be applied to solve SFP in Banach spaces, which are more general than
Hilbert spaces ( [1, 27]). On the other hand, the inertial technique can improve the performance of the
algorithm. At last, the step size of our proposed algorithm is self-adaptive and does not require prior
knowledge of the operator norm. This makes the calculation of our algorithm easier to implement
than [1, 19, 23, 27].

It is well known that PC is a nonexpansive mapping. Next, we consider replacing nonexpansive
mapping Wn with PC, and then we have the following corollary.

Corollary 3.8. Let E1 and E2 be 2-uniformly smooth and uniformly convex real Banach spaces. Let C
and Q be nonempty, closed and convex subsets of E1 and E2, respectively, A : E1 → E2 be a bounded
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linear operator and A∗ is the adjoint of A. Let {κn} be a sequence in (0, 1). For fixed point u0, u1 ∈ E1,
let {un} be the sequence generated by the following iteration:

zn = un + αn(un − un−1),
wn = zn − τnJ−1

E1
[A∗JE2(I − PQ)Azn],

un+1 = κnzn + (1 − κn)PCwn.

(3.5)

Suppose αn, κn and τn satisfy the following conditions:
(i) 0 ≤ αn < αn, and

αn =

min{ εn
max{||un−un−1 ||, g(||un−un−1 ||)}

, α}, i f un , un−1,

α, otherwise,

(i) τn ∈ (ε, 2||(I−PQ)Azn ||
2

||A∗JE2 (I−PQ)Azn ||2
− ε),

(ii) lim
n→∞

κn = 0,
∑∞

0 κn = ∞.
Then the sequence {un} converges weakly to a solution ū of the SFP.

4. Numerical example

In this section, we give some preliminary numerical results and compare Algorithm 3.4 with (1.2),
(1.3) and (3.5) to demonstrate the effectiveness of our proposed algorithm. All codes were written in
MATLAB2015B. The numerical results were carried out on a personal Lenovo computer with Intel
Core(TM) i5-7200 CPU @ 3.1GHz.

We give the numerical example in (R3, || · ||2) of the problem considered in Theorem 3.6.
Let

C := {u = (u1, u2, u3) ∈ R3 : ||u|| ≤ 1},

and
Q := {v = (v1, v2, v3) ∈ R3 : ||v|| ≤ 1}.

For Algorithm 3.4 and Eq (3.5), we take αn = α = 0.01, κn = 1
n+1 and τn = τ = 0.12, then the

Algorithm 3.4 becomes 
zn = un + αn(un − un−1),
wn = zn − τn[A∗(I − PQ)Azn],
un+1 = 1

n+1zn + (1 − 1
n+1 )Wnwn.

For algorithm (1.2), we take γ = 0.12, for algorithm (1.3), we take γ = 0.12 and λ = 1/4. The iterations
stop with

error =
||un+1 − un||

||u2 − u1||
< 10−5.

We assume u0 = (0, 0, 0) and make different choices of u1 and A:
Case I: Take u1 = (4,−6,−1) and

A =


3 −2 1
2 −1 −2
1 0 −1

 .
AIMS Mathematics Volume 7, Issue 10, 18767–18783.
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In this case, the numerical values are shown in Figure 1.

Figure 1. Case I: u1 = (4,−6,−1).

Case II: Take u1 = (−1, 3, 8) and

A =


2 0 1
1 1 1
3 −1 −1

 .
In this case, the numerical values are shown in Figure 2.

Figure 2. Case II: u1 = (−1, 3, 8).

From the above Figures and Table 1, we can observe that the error value decreases with the increase
of the number of iterative steps, which means that all the algorithms for solving the SFP are effective.
In addition, Algorithm 3.4 shows a faster decrease in error values, fewer iteration steps and shorter
CPU time than (3.5), (1.2) and (1.3), which reflects the better effect of Algorithm 3.4.

AIMS Mathematics Volume 7, Issue 10, 18767–18783.
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Table 1. Comparison of Algorithm 3.4, (3.5), (1.2) and (1.3).

Case Number of iterations Time
Algorithm 3.4 I 21 0.0057619

Algorithm (3.5) I 24 0.0062141
Algorithm (1.2) I 61 0.015625
Algorithm (1.3) I 37 0.0068346
Algorithm 3.4 II 13 0.0034033

Algorithm (3.5) II 80 0.015625
Algorithm (1.2) II 30 0.0042064
Algorithm (1.3) II 44 0.015625

5. Conclusions

A new self-adaptive algorithm with the inertial technique for solving the SFP in Banach spaces has
been proposed in this work. The inertial term greatly improves the performance of the algorithm and
has a good convergence property. Furthermore, the choice of step size is self-adaptive, which means
that τn does not depend on a prior estimate of the operator norm A. This allows our algorithm to be
computed more simply. Under some mild conditions, the weak convergence theorem of the algorithm
for solving SFP is obtained. Through numerical experiments, the effectiveness of the algorithm was
verified by comparing it with existing results.

In the future work, we shall develop other algorithms for solving SFP that are designed to converge
faster and in less time. Furthermore, we shall also focus our attention on the applications of the
theoretical results obtained on SFP to solve problems arising from medical sciences, economics and
engineering.
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