Let $ R $ be a commutative ring with multiplicative identity, $ C $ a coassociative and counital $ R $-coalgebra, $ B $ an $ R $-bialgebra. A clean comodule is a generalization and dualization of a clean module. An $ R $-module $ M $ is called a clean module if the endomorphism ring of $ M $ over $ R $ (denoted by $ End_{R}(M) $) is clean. Thus, any element of $ End_{R}(M) $ can be expressed as a sum of a unit and an idempotent element of $ End_{R}(M) $. Moreover, for a right $ C $-comodule $ M $, the endomorphism set of $ C $-comodule $ M $ denoted by $ End^{C}(M) $ is a subring of $ End_{R}(M) $. A $ C $-comodule $ M $ is a clean comodule if the $ End^{C}(M) $ is a clean ring. A Hopf module $ M $ over $ B $ is a $ B $-module and a $ B $-comodule that satisfies the compatible conditions. This paper considers the notions of a clean ring, clean module, clean coalgebra, and clean comodule in relation to the Hopf Module. We divide our discussion into two parts, i.e., clean and bi-clean Hopf modules. A $ B $-Hopf module $ M $ is said to be clean if the endomorphism ring of $ M $ is clean, and $ M $ is a bi-clean Hopf module if $ M $ is clean as a module over $ B $ and also clean as a comodule over $ B $. Moreover, we give sufficient conditions of (bi)-clean bialgebras and Hopf modules related to the cleanness concept of modules and comodules.
Citation: Nikken Prima Puspita, Indah Emilia Wijayanti. Bi-clean and clean Hopf modules[J]. AIMS Mathematics, 2022, 7(10): 18784-18792. doi: 10.3934/math.20221033
Let $ R $ be a commutative ring with multiplicative identity, $ C $ a coassociative and counital $ R $-coalgebra, $ B $ an $ R $-bialgebra. A clean comodule is a generalization and dualization of a clean module. An $ R $-module $ M $ is called a clean module if the endomorphism ring of $ M $ over $ R $ (denoted by $ End_{R}(M) $) is clean. Thus, any element of $ End_{R}(M) $ can be expressed as a sum of a unit and an idempotent element of $ End_{R}(M) $. Moreover, for a right $ C $-comodule $ M $, the endomorphism set of $ C $-comodule $ M $ denoted by $ End^{C}(M) $ is a subring of $ End_{R}(M) $. A $ C $-comodule $ M $ is a clean comodule if the $ End^{C}(M) $ is a clean ring. A Hopf module $ M $ over $ B $ is a $ B $-module and a $ B $-comodule that satisfies the compatible conditions. This paper considers the notions of a clean ring, clean module, clean coalgebra, and clean comodule in relation to the Hopf Module. We divide our discussion into two parts, i.e., clean and bi-clean Hopf modules. A $ B $-Hopf module $ M $ is said to be clean if the endomorphism ring of $ M $ is clean, and $ M $ is a bi-clean Hopf module if $ M $ is clean as a module over $ B $ and also clean as a comodule over $ B $. Moreover, we give sufficient conditions of (bi)-clean bialgebras and Hopf modules related to the cleanness concept of modules and comodules.
[1] | W. K. Nicholson, Lifting idempotents and exchange rings, Trans. Amer. Math. Soc., 229 (1977), 269–278. https://doi.org/10.1090/S0002-9947-1977-0439876-2 doi: 10.1090/S0002-9947-1977-0439876-2 |
[2] | V. P. Camillo, D. Khurana, T. Y. Lam, W. K. Nicholson, Y. Zhou, Continuous modules are clean, J. Algebra, 304 (2006), 94–111. https://doi.org/10.1016/j.jalgebra.2006.06.032 doi: 10.1016/j.jalgebra.2006.06.032 |
[3] | V. P. Camillo, D. Khurana, T. Y. Lam, W. K. Nicholson, Y. Zhou, A short proof that continuous modules are clean, In: Contemporary ring theory 2011, 2012,165–169. https://doi.org/10.1142/9789814397681_0015 |
[4] | M. E. Sweedler, Hopf algebra, Mathematics Lecture Note Series, New York: W. A. Benjamins, Inc., 1969. |
[5] | T. Brzeziński, R. Wisbauer, Corings and comodules, United Kingdom: Cambridge University Press, 2003. |
[6] | N. P. Puspita, I. E. Wijayanti, B. Surodjo, Graded modules as a clean comodule, J. Math. Res., 12 (2020), 66–73. https://doi.org/10.5539/jmr.v12n6p66 doi: 10.5539/jmr.v12n6p66 |
[7] | N. P. Pusita, I. E. Wijayanti, B. Surodjo, Clean coalgebra and clean comodules from finitely generated projective modules, Algebra Discrete Math., 31 (2021), 251–260. http://dx.doi.org/10.12958/adm1415 doi: 10.12958/adm1415 |
[8] | D. E. Radford, Hopf algebras, Series on Knots and Everything, Vol. 49, USA: World Scientific, 2011. https://doi.org/10.1142/8055 |
[9] | S. Montgomery, Hopf algebras and their actions on rings, In: CBMS regional conference series in mathematics, American Mathematical Society, 1993. |
[10] | J. Han, W. K. Nicholson, Extension of clean rings, Commun. Algebra, 29 (2001), 2589–2595. https://doi.org/10.1081/AGB-100002409 |
[11] | W. W. McGovern, Characterization of commutative clean rings, Int. J. Math. Game Theory Algebra, 15 (2006), 403–413. |
[12] | C. Natasescu, F. Oystaeyen, Methods of graded rings, Springer-Verlag Berlin Heidelberg, 2004. |
[13] | N. P. Pusita, I. E. Wijayanti, B. Surodjo, Some properties of clean $R$-coalgebra $C$, AIP Conf. Proc., 2268 (2020), 040006. https://doi.org/10.1063/5.0017810 doi: 10.1063/5.0017810 |
[14] | D. D. Anderson, V. P. Camillo, Commutative rings whose element are a sum of a unit and idempotent, Commun. Algebra, 30 (2002), 3327–3336. https://doi.org/10.1081/AGB-120004490 doi: 10.1081/AGB-120004490 |