This article demonstrates the stability property of two boundary equilibria of a symbiotic model of commensalism and parasitism with harvesting in the commensal population. The model was proposed by Nurmaini Puspitasari, Wuryansari Muharini Kusumawinahyu, Trisilowati (2021). We first give two numeric examples to show that the corresponding results of the mentioned paper may be incorrect. Then, by analysis of the characteristic roots of the characteristic equations, we obtain sufficient conditions that ensure the locally asymptotic stability of the equilibria. After that, by applying the standard comparison theorem, some novel results on the global attractivity of these two equilibria are obtained respectively. Our results complement and supplement some known results.
Citation: Xiaowan Liu, Qin Yue. Stability property of the boundary equilibria of a symbiotic model of commensalism and parasitism with harvesting in commensal populations[J]. AIMS Mathematics, 2022, 7(10): 18793-18808. doi: 10.3934/math.20221034
This article demonstrates the stability property of two boundary equilibria of a symbiotic model of commensalism and parasitism with harvesting in the commensal population. The model was proposed by Nurmaini Puspitasari, Wuryansari Muharini Kusumawinahyu, Trisilowati (2021). We first give two numeric examples to show that the corresponding results of the mentioned paper may be incorrect. Then, by analysis of the characteristic roots of the characteristic equations, we obtain sufficient conditions that ensure the locally asymptotic stability of the equilibria. After that, by applying the standard comparison theorem, some novel results on the global attractivity of these two equilibria are obtained respectively. Our results complement and supplement some known results.
[1] | Z. Wei, Y. Xia, T. Zhang, Stability and bifurcation analysis of a commensal model with additive Allee effect and nonlinear growth rate, Int. J. Bifurcat. Chaos, 31 (2021), 2150204. https://doi.org/10.1142/S0218127421502047 doi: 10.1142/S0218127421502047 |
[2] | X. He, Z. Zhu, J. Chen, F. Chen, Dynamical analysis of a Lotka-Volterra commensalism model with additive Allee effect, Open Math., 20 (2022), 646–665. https://doi.org/10.1515/math-2022-0055 doi: 10.1515/math-2022-0055 |
[3] | Q. Lin, Allee effect increasing the final density of the species subject to the Allee effect in a Lotka-Volterra commensal symbiosis model, Adv. Differ. Equ., 2018 (2018), 196. https://doi.org/10.1186/s13662-018-1646-3 doi: 10.1186/s13662-018-1646-3 |
[4] | B. Chen, Dynamic behaviors of a commensal symbiosis model involving Allee effect and one party can not survive independently, Adv. Differ. Equ., 2018 (2018), 212. https://doi.org/10.1186/s13662-018-1663-2 doi: 10.1186/s13662-018-1663-2 |
[5] | R. Wu, L. Li, Q. Lin, A Holling type commensal symbiosis model involving Allee effect, Commun. Math. Biol. Neurosci., 2018 (2018), 1–13. |
[6] | C. Lei, Dynamic behaviors of a Holling type commensal symbiosis model with the first species subject to Allee effect, Commun. Math. Biol. Neurosci., 2019 (2019), 1–13. |
[7] | K. A. Mathis, J. L. Bronstein, Our current understanding of commensalism, Ann. Rev. Ecol., Evol., Syst., 51 (2020), 167–189. |
[8] | P. Lemes, F. G. Barbosa, B. Naimi, M. B. Araujo, Dispersal abilities favor commensalism in animal-plant interactions under climate change, Sci. Total Environ., 835 (2022), 155157. https://doi.org/10.1016/j.scitotenv.2022.155157 doi: 10.1016/j.scitotenv.2022.155157 |
[9] | P. Xu, Dynamics of microbial competition, commensalism, and cooperation and its implications for coculture and microbiome engineering, Biotechnol. Bioeng., 118 (2021), 199–209. https://doi.org/10.1002/bit.27562 doi: 10.1002/bit.27562 |
[10] | L. Xu, Y. Xue, X. Xie, Q. Lin, Dynamic behaviors of an obligate commensal symbiosis model with Crowley-Martin functional responses, Axioms, 11 (2022), 298. https://doi.org/10.3390/axioms11060298 doi: 10.3390/axioms11060298 |
[11] | Y. Xue, X. Xie, F. Chen, R. Han, Almost periodic solution of a discrete commensalism system, Discrete Dyn. Nat. Soc., 2015 (2015), 1–11. https://doi.org/10.1155/2015/295483 doi: 10.1155/2015/295483 |
[12] | Z. Miao, X. Xie, L. Pu, Dynamic behaviors of a periodic Lotka-Volterra commensal symbiosis model with impulsive, Commun. Math. Biol. Neurosci., 2015 (2015), 1–15. |
[13] | R. Wu, L. Lin, X. Zhou, A commensal symbiosis model with Holling type functional response, J. Math. Comput. Sci., 16 (2016) 364–371. http://dx.doi.org/10.22436/jmcs.016.03.06 doi: 10.22436/jmcs.016.03.06 |
[14] | X. Xie, Z. Miao, Y. Xue, Positive periodic solution of a discrete Lotka-Volterra commensal symbiosis model, Commun. Math. Biol. Neurosci., 2015 (2015), 1–10. |
[15] | Y. Liu, X. Xie, Q. Lin, Permanence, partial survival, extinction, and global attractivity of a nonautonomous harvesting Lotka-Volterra commensalism model incorporating partial closure for the populations, Adv. Differ. Equ., 2018 (2018), 211. https://doi.org/10.1186/s13662-018-1662-3 doi: 10.1186/s13662-018-1662-3 |
[16] | H. Deng, X. Huang, The influence of partial closure for the populations to a harvesting Lotka-Volterra commensalism model, Commun. Math. Biol. Neurosci., 2018 (2018), 1–17. |
[17] | C. Lei, Dynamic behaviors of a stage-structured commensalism system, Adv. Differ. Equ., 2018 (2018), 301. https://doi.org/10.1186/s13662-018-1761-1 doi: 10.1186/s13662-018-1761-1 |
[18] | C. Vargas-De-Len, G. Gmez-Alcaraz, Global stability in some ecological models of commensalism between two species, Biomatemtica, 23 (2013), 139–146. |
[19] | F. Chen, Y. Xue, Q. Lin, X. Xie, Dynamic behaviors of a Lotka-Volterra commensal symbiosis model with density dependent birth rate, Adv. Differ. Equ., 2018 (2018), 296. https://doi.org/10.1186/s13662-018-1758-9 doi: 10.1186/s13662-018-1758-9 |
[20] | F. Chen, L. Pu, L. Yang, Positive periodic solution of a discrete obligate Lotka-Volterra model, Commun. Math. Biol. Neurosci., 2015 (2015), 1–9. |
[21] | X. Guan, F. Chen, Dynamical analysis of a two species amensalism model with Beddington-DeAngelis functional response and Allee effect on the second species, Nonlinear Anal.: Real World Appl., 48 (2019), 71–93. https://doi.org/10.1016/j.nonrwa.2019.01.002 doi: 10.1016/j.nonrwa.2019.01.002 |
[22] | T. Li, Q. Lin, J. Chen, Positive periodic solution of a discrete commensal symbiosis model with Holling Ⅱ functional response, Commun. Math. Biol. Neurosci., 2016 (2016), 1–11. |
[23] | W. Ji, M. Liu, Optimal harvesting of a stochastic commensalism model with time delay, Phys. A, 527 (2019), 121284. https://doi.org/10.1016/j.physa.2019.121284 doi: 10.1016/j.physa.2019.121284 |
[24] | G. B. Kumar, M. N. Srinivas, Influence of spatiotemporal and noise on dynamics of a two species commensalism model with optimal harvesting, Res. J. Pharm. Technol., 9 (2016), 1717–1726. https://doi.org/10.5958/0974-360X.2016.00346.2 doi: 10.5958/0974-360X.2016.00346.2 |
[25] | T. Li, Q. Wang, Stability and Hopf bifurcation analysis for a two-species commensalism system with delay, Qual. Theory Dyn. Syst., 20 (2021), 1–20. https://doi.org/10.1007/s12346-021-00524-3 doi: 10.1007/s12346-021-00524-3 |
[26] | L. Chen, T. Liu, F. Chen, Stability and bifurcation in a two-patch model with additive Allee effect, AIMS Math., 7 (2022), 536–551. https://doi.org/10.3934/math.2022034 doi: 10.3934/math.2022034 |
[27] | Z. Zhu, Y. Chen, Z. Li, F. Chen, Stability and bifurcation in a Leslie-Gower predator-prey model with Allee effect, Int. J. Bifurcat. Chaos, 32 (2022), 2250040. https://doi.org/10.1142/S0218127422500407 doi: 10.1142/S0218127422500407 |
[28] | L. Xu, Q. Lin, C. Lei, Dynamic behavior of commensal symbiosis system with both feedback control and Allee effect, J. Shanghai Normal Univ. (Nat. Sci.), 51 (2022), 391–396. |
[29] | F. Chen, Y. Chong, S. Lin, Global stability of a commensal symbiosis model with Holling Ⅱ functional response and feedback controls, Wseas Trans. Syst. Contr., 17 (2022), 279–286. https://doi.org/10.37394/23203.2022.17.32 doi: 10.37394/23203.2022.17.32 |
[30] | R. Han, F. Chen, Global stability of a commensal symbiosis model with feedback controls, Commun. Math. Biol. Neurosci., 2015 (2015), 1–10. |
[31] | Y. Xue, X. Xie, Q. Lin, Almost periodic solutions of a commensalism system with Michaelis-Menten type harvesting on time scales, Open Math., 17 (2019), 1503–1514. https://doi.org/10.1515/math-2019-0134 doi: 10.1515/math-2019-0134 |
[32] | N. Puspitasari, W. M. Kusumawinahyu, T. Trisilowati, Dynamic analysis of the symbiotic model of commensalism and parasitism with harvesting in commensal populations, JTAM, 5 (2021), 193–204. https://doi.org/10.31764/jtam.v5i1.3893 doi: 10.31764/jtam.v5i1.3893 |
[33] | N. Puspitasari, W. M. Kusumawinahyu, T. Trisilowati, Dynamical analysis of the symbiotic model of commensalism in four populations with Michaelis-Menten type harvesting in the first commensal population, JTAM, 5 (2021), 392–404. |
[34] | F. Chen, Q. Zhou, S. Lin, Global stability of symbiotic medel of commensalism and parasitism with harvesting in commensal populations, Wseas Trans. Math., 21 (2022), 424–432. https://doi.org/10.37394/23206.2022.21.50 doi: 10.37394/23206.2022.21.50 |
[35] | L. Xu, Y. Xue, Q. Lin, C. Lei, Global attractivity of symbiotic model of commensalism in four populations with Michaelis-Menten type harvesting in the first commensal populations, Axioms, 11 (2022), 337. https://doi.org/10.3390/axioms11070337 doi: 10.3390/axioms11070337 |
[36] | Q. Zhou, S. Lin, F. Chen, R. Wu, Positive periodic solution of a discrete Lotka-Volterra commensal symbiosis model with Michaelis-Menten type harvesting, Wseass Trans. Math., 21 (2022), 515–523. https://doi.org/10.37394/23206.2022.21.57 doi: 10.37394/23206.2022.21.57 |
[37] | S. Jawad, Study the dynamics of commensalism interaction with Michaels-Menten type prey harvesting, Al-Nahrain J. Sci., 25 (2022), 45–50. |
[38] | B. Chen, The influence of commensalism on a Lotka-Volterra commensal symbiosis model with Michaelis-Menten type harvesting, Adv. Differ. Equ., 2019 (2019), 43. https://doi.org/10.1186/s13662-019-1989-4 doi: 10.1186/s13662-019-1989-4 |
[39] | B. Xie, Z. Zhang, N. Zhang, Influence of the fear effect on a Holling type Ⅱ prey-predator system with a Michaelis-Menten type harvesting, Int. J. Bifurcat. Chaos, 31 (2021), 2150216. https://doi.org/10.1142/S0218127421502163 doi: 10.1142/S0218127421502163 |
[40] | X. Yu, Z. Zhu, L. Lai, F. Chen, Stability and bifurcation analysis in a single-species stage structure system with Michaelis-Menten-type harvesting, Adv. Differ. Equ., 2020 (2020), 238. https://doi.org/10.1186/s13662-020-02652-7 doi: 10.1186/s13662-020-02652-7 |
[41] | Z. Zhu, F. Chen, L. Lai, Z. Li, Dynamic behaviors of a discrete May type cooperative system incorporating Michaelis-Menten type harvesting, IAENG Int. J. Appl. Math., 50 (2020), 1–10. |
[42] | D. Hu, H. Cao, Stability and bifurcation analysis in a predator-prey system with Michaelis-Menten type predator harvesting, Nonlinear Anal.: Real World Appl., 33 (2017), 58–82. https://doi.org/10.1016/j.nonrwa.2016.05.010 doi: 10.1016/j.nonrwa.2016.05.010 |
[43] | L. Lai, X. Yu, M. He, Z. Li, Impact of Michaelis-Menten type harvesting in a Lotka-Volterra predator-prey system incorporating fear effect, Adv. Differ. Equ., 2020 (2020), 320. https://doi.org/10.1186/s13662-020-02724-8 doi: 10.1186/s13662-020-02724-8 |
[44] | X. Yu, Z. Zhu, F. Chen, Dynamic behaviors of a single species stage structure model with Michaelis-Menten-type juvenile population harvesting, Mathematics, 8 (2020), 1281. https://doi.org/10.3390/math8081281 doi: 10.3390/math8081281 |
[45] | Z. Zhu, R. Wu, F. Chen, Z. Li, Dynamic behaviors of a Lotka-Volterra commensal symbiosis model with non-selective Michaelis-Menten type harvesting, IAENG Int. J. Appl. Math., 50 (2020), 1–10. |
[46] | B. Liu, R. Wu, L. Chen, Patterns induced by super cross-diffusion in a predator-prey system with Michaelis-Menten type harvesting, Math. Biosci., 298 (2018), 71–79. https://doi.org/10.1016/j.mbs.2018.02.002 doi: 10.1016/j.mbs.2018.02.002 |
[47] | Y. Liu, L. Zhao, X. Huang, H. Deng, Stability and bifurcation analysis of two species amensalism model with Michaelis-Menten type harvesting and a cover for the first species, Adv. Differ. Equ., 2018 (2018), 295. https://doi.org/10.1186/s13662-018-1752-2 doi: 10.1186/s13662-018-1752-2 |
[48] | X. Yu, Z. Zhu, Z. Li, Stability and bifurcation analysis of two-species competitive model with Michaelis-Menten type harvesting in the first species, Adv. Differ. Equ., 2020 (2020), 397. https://doi.org/10.1186/s13662-020-02817-4 doi: 10.1186/s13662-020-02817-4 |
[49] | L. S. Chen, X. Y. Song, Z. Y. Lu, Mathematical models and methods in ecology (in Chinese), Chengdu: Sichuan Science and Technology Press, 2003. |