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Abstract: This article demonstrates the stability property of two boundary equilibria of a symbiotic
model of commensalism and parasitism with harvesting in the commensal population. The model
was proposed by Nurmaini Puspitasari, Wuryansari Muharini Kusumawinahyu, Trisilowati (2021).
We first give two numeric examples to show that the corresponding results of the mentioned paper
may be incorrect. Then, by analysis of the characteristic roots of the characteristic equations, we
obtain sufficient conditions that ensure the locally asymptotic stability of the equilibria. After that, by
applying the standard comparison theorem, some novel results on the global attractivity of these two
equilibria are obtained respectively. Our results complement and supplement some known results.
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1. Introduction

The aim of this paper is to present an investigation of the dynamic behaviors of the following
symbiotic model of commensalism and parasitism with harvesting in the commensal population:

dx
dt

= r1x
(
1 −

x
k1

+ a
y
k1

)
−

qEx
m1E + m2x

,

dy
dt

= r2y
(
1 −

y
k2
− b

z
k2

)
,

dz
dt

= r3z
(
1 −

z
k3

+ c
y
k3

)
,

(1.1)

where x(t), y(t) and z(t) denote the commensal population, host population and parasite species,
respectively. All parameters used in this model are positive. The definitions of these parameters are as
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follows: ri, i = 1, 2, 3 represents the intrinsic growth of x, y and z; ki, i = 1, 2, 3 show the carrying
capacities of x, y and z. The parameter a is the interaction parameter for x and y and b and c the
interaction parameters between y and z. The parameter E is the fishing effort parameter used to
harvest, q is the catching power coefficient and m1 and m2 are the suitable constants.

During the lase few decades, many scholars have investigated the dynamic behaviors of the
commensalism model [1–38]. Biologists have studied the phenomenon of commensalism through
direct observation of wild species [7–9]. Mathematicians have studied the dynamic behavior of biased
populations through hypothesis and theoretical derivation, with relevant topics including the influence
of the Allee effect [1–6, 26–28], the influence of functional response [10, 13, 21, 22, 25, 28, 29], the
influence of feedback controls [28–30], the influence of linear harvesting or Michaelis-Menten type
harvesting [15, 16, 23, 31–38], the existence of a positive periodic solution or an almost periodic
solution [11, 12, 14, 20, 22, 31, 36], the influence of stage structure [17], the stability of the
system [10, 18, 32–35], the influence of nonlinear birth rates [19], the influence of noise [24], the
influence of delays [25]; These topics have been extensively investigated and many important results
were obtained. On the other hand, to meet human needs, the exploitation of biological resources and
harvesting of populations are commonly practiced in fishery, forestry and wildlife management.
Ecological modeling incorporates linear harvesting or Michaelis-Menten type harvesting, and it has
become one of the main study topics in the area of population dynamics [15, 16, 23], [31–48].
Chen [38] was first to incorporate the Michaelis-Menten-type harvesting into the two species
Lotka-Volterra commensalism model, and he investigated the local and global stability of the
equilibria. Since then, many scholars have conducted works on commensalism systems with
Michaelis-Menten type harvesting [31–38]. However, the commensalism models were not well
studied in the sense that to this day, most of the works have focused on the two species case. Only
recently did Puspitasari, Kusumawinahyu and Trisilowati [32, 33] begin to study three species and
four species cases. In [32], Puspitasari, Kusumawinahyu and Trisilowati proposed System (1.1). The
system has eight equilibria, which take the following forms:

T0(0, 0, 0), T1(0, 0, k3), T2(0, k2, 0), T3(x∗3, 0, 0),

T4

(
0,

k2 − bk3

1 + bc
,

k3 + ck2

1 + bc

)
, T5(x∗5, 0, k3), T6(x∗6, k2, 0), T7(x∗7, y

∗
7, z
∗
7).

Concerned with the local stability property of those equilibria, the authors declared that “of the eight
points, only two points are asymptotically stable if they meet certain conditions.” Indeed, they showed
that T4 and T7 are locally asymptotically stable while the other six equilibria are all unstable. Note that
from the third equation of System (1.1), we have that

dz
dt

= r3z
(
1 −

z
k3

+ c
y
k3

)
≥ r3z

(
1 −

z
k3

)
.

Hence,

lim inf
t→+∞

z(t) ≥ k3.
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That is, for any positive initial conditions, z(t) can not approach 0 as t → +∞, which means that the
equilibria T0,T2,T3 and T6 are always unstable. Hence, it is only necessary to investigate the stability
property of the remaining four equilibria.

Now let us consider the following two examples.

Example 1.1. Consider the following system

dx
dt

= x
(
1 − x + y

)
−

3x
1 + x

,

dy
dt

= y
(
1 − y − 2z

)
,

dz
dt

= z
(
1 − z + y

)
.

(1.2)

Here, for System (1.1), we chose ri = ki = E = c = a = 1, i = 1, 2, 3, b = 2, q = 3 and m1 =

m2 = 1. The results of numerical simulations (Figures 1–3) show that in this case, T1(0, 0, 1) is locally
asymptotically stable.
Example 1.2. Consider the following system

dx
dt

= x
(
1 − x + y

)
−

0.1x
1 + x

,

dy
dt

= y
(
1 − y − 2z

)
,

dz
dt

= z
(
1 − z + y

)
.

(1.3)

Here, all the coefficients are the same as that of System (1.2), only with q changing from 3 to 0.1. The
results of numerical simulations (Figures 4–6) show that in this case, T5(x∗5, 0, k3) = (0.949, 0, 1) is
locally asymptotically stable.

Figure 1. Dynamic behaviors of the first component x in System (1.2) with the initial
conditions (x(0), y(0), z(0)) = (0.5, 0.5, 0.5), (1, 1, 1), (1.5, 1.5, 1.5) and (2, 2, 2), respectively.
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Figure 2. Dynamic behaviors of the second component y in System (1.2) with the initial
conditions (x(0), y(0), z(0)) = (0.5, 0.5, 0.5), (1, 1, 1), (1.5, 1.5, 1.5) and (2, 2, 2), respectively.

Figure 3. Dynamic behaviors of the third component z in System (1.2) with the initial
conditions (x(0), y(0), z(0)) = (0.5, 0.5, 0.5), (1, 1, 1), (1.5, 1.5, 1.5) and (2, 2, 2), respectively.
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Figure 4. Dynamic behaviors of the first component x in System (1.3) with the initial
conditions (x(0), y(0), z(0)) = (0.5, 0.5, 0.5), (1, 1, 1), (1.5, 1.5, 1.5) and (2, 2, 2), respectively.

Figure 5. Dynamic behaviors of the second component y in System (1.3) with the initial
conditions (x(0), y(0), z(0)) = (0.5, 0.5, 0.5), (1, 1, 1), (1.5, 1.5, 1.5) and (2, 2, 2), respectively.
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Figure 6. Dynamic behaviors of the third component z in System (1.3) with the initial
conditions (x(0), y(0), z(0)) = (0.5, 0.5, 0.5), (1, 1, 1), (1.5, 1.5, 1.5) and (2, 2, 2), respectively.

The above two examples show that in System (1.1), T1(0, 0, k3) and T5(x∗5, 0, k3) are all possibly
asymptotically stable. The conclusion of Puspitasari, Kusumawinahyu and Trisilowati [32] may be
incorrect.

Now, one natural problem is to obtain sufficient conditions to ensure the local asymptotic stability
of the equilibria T1(0, 0, k3) and T5(x∗5, 0, k3). Another interesting thing is that the conclusions of
Puspitasari, Kusumawinahyu and Trisilowati [32] are all local ones; thus, we wanted to to whether we
could obtain some sufficient conditions to ensure the globally stability property of the equilibrium.

The aim of this study was to give definitive answers to the above two problems.

2. Local stability of T1 and T5

We will investigate the local stability property of T1(0, 0, k3) and T5(x∗5, 0, k3) in this section.
The variational matrix of System (1.1) is

J(x1, x2, y) =



F11
r1xa
k1

0

0 F22 −
r2yb
k2

0
r3zc
k3

F33


, (2.1)

AIMS Mathematics Volume 7, Issue 10, 18793–18808.



18799

where

F11 = r1

(
1 −

x
k1

+
ay
k1

)
−

r1x
k1
−

qE
m1E + m2x

+
qExm2

(m1E + m2x)2 ,

F22 = r2

(
1 −

y
k2
−

bz
k2

)
−

r2y
k2
,

F33 = r3

(
1 −

z
k3

+
cy
k3

)
−

zr3

k3
.

Theorem 2.1. Assume that
r1 <

q
m1

(2.2)

and
1 <

bk3

k2
(2.3)

hold, then, T1(0, 0, k3) is locally asymptotically stable.
Proof. The Jacobian matrix of the equilibrium point T1(0, 0, k3) is given by

r1 −
q

m1
0 0

0 r2

(
1 −

bk3

k2

)
0

0 cr3 −r3

 .
The characteristic equation of the above matrix is(

λ − (r1 −
q

m1
)
)(
λ − r2

(
1 −

bk3

k2

))
(λ + r3) = 0.

Hence, the characteristic roots are

λ1 = r1 −
q

m1
< 0, λ2 = r2

(
1 −

bk3

k2

)
< 0, λ3 = −r3 < 0.

Consequently, T1(0, 0, k3) is locally asymptotically stable. This ends the proof of Theorem 2.1.

Remark 2.1. In Example 1.1, one could easily check that

r1 = 1 <
q

m1
= 3

and
1 <

bk3

k2
= 2.

Hence, it follows from Theorem 2.1 that T1(0, 0, 1) is locally asymptotically stable, which is
consistence with the numerical simulations (Figures 1–3).

Theorem 2.2. Assume that
q < r1m1, (2.4)
qm2

m2
1E

<
r1

k1
(2.5)
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and
1 <

bk3

k2
(2.6)

hold, then, T5(x∗5, 0, k3) is locally asymptotically stable.
Proof. x∗5 satisfies the equation

r1

(
1 −

x
k1

)
−

qE
m1E + m2x

= 0. (2.7)

It is easy to verify that under the assumption that Eq (2.4) holds, Eq (2.7) admits a unique positive
equilibrium, indeed, x∗5 could be expressed as follows:

x∗5 =
−B2 +

√
B2

2 − 4B1B3

2B1
, (2.8)

where
B1 = r1m2, B2 = r1m1E − k1m2r1, B3 = Ek1q − Ek1m1r1.

The Jacobian matrix of the system about the equilibrium point T5(x∗5, 0, k3) is given by
G11

r1x∗5a
k1

0

0 r2

(
1 −

bk3

k2

)
0

0 cr3 −r3

 , (2.9)

where

G11 = r1

(
1 −

x∗5
k1

)
−

r1x∗5
k1
−

qE
m1E + m2x∗5

+
qEx∗5m2(

m1E + m2x∗5
)2

= −
r1x∗5
k1

+
qEx∗5m2(

m1E + m2x∗5
)2 (by using Eq (2.6)).

The characteristic equation of the above matrix is(
λ −G11

)(
λ − r2

(
1 −

bk3

k2

))
(λ + r3) = 0.

Hence, it follows from Eqs (2.5) and (2.6) that the characteristic roots are

λ1 = −
r1x∗5
k1

+
qEx∗5m2(

m1E + m2x∗5
)2 < −

r1x∗5
k1

+
qm2x∗5
m2

1E
< 0,

λ2 = r2

(
1 −

bk3

k2

)
< 0, λ3 = −r3 < 0.

Consequently, T5(x∗5, 0, k3) is locally asymptotically stable. This ends the proof of Theorem 2.2.

Remark 2.2. In Example 1.2, one could easily check that

q = 0.1 < r1m1 = 1,
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qm2

m2
1E

= 0.1 < 1 =
r1

k1

and
1 <

bk3

k2
= 2.

Hence, it follows from Theorem 2.2, T5(x∗5, 0, k3) is locally asymptotically stable. This is consistent
with the numerical simulations (Figures 4–6).

3. Global attractivity of T1 and T5

We showed in the previous section that T1(0, 0, k3) and T5(x∗5, 0, k3) could be locally asymptotically
stable under some suitable assumption. In this section we will further show that, under some suitable
assumption, T1(0, 0, k3) and T5(x∗5, 0, k3) could be globally attractive.

Theorem 3.1. Assume that
r1 <

qE
m1E + m2k1

(3.1)

and
1 <

bk3

k2
(3.2)

hold, then, T1(0, 0, k3) is globally attractive.

Proof. For ε > 0 sufficiently small, Condition (3.1) implies that

r1 +
ar1ε

k1
<

qE
m1E + m2(k1 + ε)

. (3.3)

Condition (3.2) implies that

1 <
b(k3 − ε)

k2
. (3.4)

From the third equation of System (1.1), we have that

dz
dt
≥ r3z

(
1 −

z
k3

)
, (3.5)

hence
lim inf

t→+∞
z(t) ≥ k3. (3.6)

For aforementioned ε > 0, there exists a T1 > 0 such that

z(t) > k3 − ε for all t > T1.

From this and the second equation of System (1.1), for t > T1, we have that

dy
dt
≤ r2y

(
1 −

y
k2
− b

k3 − ε

k2

)
< r2y

(
1 − b

k3 − ε

k2

)
.
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Hence, it follows from Eq (3.4) that

y(t) < y(T1) exp
{
r2

(
1 − b

k3 − ε

k2

)
(t − T1)

}
→ 0 as t → +∞.

The nonnegative of y(t) together with the above inequality leads to

lim
t→+∞

y(t) = 0. (3.7)

From Eq (3.7), for aforementioned ε > 0, there exists a T2 > T1 such that

y(t) < ε as t ≥ T2. (3.8)

For t ≥ T2, from the above inequality and the third equation of System (1.1), we have that

dz
dt
≤ r3z

(
1 −

z
k3

+ c
ε

k3

)
;

so,
lim sup

t→+∞

z(t) ≤ k3

(
1 + c

ε

k3

)
. (3.9)

Equation (3.6) together with Eq (3.9) leads to

k3 ≤ lim inf
t→+∞

z(t) ≤ lim sup
t→+∞

z(t) ≤ k3

(
1 + c

ε

k3

)
. (3.10)

With ε as sufficiently small positive constants, setting ε→ 0 in Eq (3.10) leads to

lim
t→+∞

z(t) = k3. (3.11)

For t ≥ T2, from Eq (3.8) and the first equation of System (1.1), we have that

dx
dt
≤ r1x

(
1 −

x
k1

+ a
ε

k1

)
.

Thus,
lim sup

t→+∞

x(t) ≤ k1

(
1 + a

ε

k1

)
.

Setting ε→ 0 in the above inequality leads to

lim sup
t→+∞

x(t) ≤ k1.

Consequently, for ε > 0 sufficiently small, there exists a T3 > T2 such that

x(t) < k1 + ε for all t ≥ T3.

From the above inequality and the first equation of System (1.1), for t ≥ T3, we also have that

dx
dt
≤ r1x

(
1 −

x
k1

+ a
ε

k1

)
−

qEx
m1E + m2(k1 + ε)

≤ x
(
r1 + a

r1ε

k1
−

qE
m1E + m2(k1 + ε)

)
.
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It immediately follows from Eq(3.3) and the above inequality that

x(t) ≤ x(T3) exp
{(

r1 + a
r1ε

k1
−

qE
m1E + m2(k1 + ε)

)
(t − T3)

}
→ 0 as t → +∞,

that is
lim

t→+∞
x(t) = 0. (3.12)

Equations (3.7), (3.11) and (3.12) show that T1(0, 0, k3) is globally attractive.
This completes the proof of Theorem 3.1.

Remark 3.1. In Example 1.1, one could easily check that

r1 = 1 <
qE

m1E + m2k1
=

3
2

and
1 <

bk3

k2
= 2.

Hence, it follows from Theorem 3.1 that T1(0, 0, 1) is globally attractive, which is consistent with the
numerical simulations (Figures 1–3).

Theorem 3.2. Assume that
q < r1m1, (3.13)
qm2

m2
1E

<
r1

k1
(3.14)

and
1 <

bk3

k2
(3.15)

hold, then, T5(x∗5, 0, k3) is globally attractive.

Proof. The idea for the proof of this theorem comes from the work of Chen [38].
By using Eq (3.15), similar to the analysis of Eqs (3.5)–(3.11) in the proof of Theorem 3.1, we have

that
lim

t→+∞
y(t) = 0, lim

t→+∞
z(t) = k3. (3.16)

Let ε > 0 be a sufficiently small positive constant; it follows from Eq (3.16) that there exists T > 0
such that

y(t) < ε for all t > T.

From the above inequality and the first equation of System (1.1), we have that

dx
dt
≤ r1x

(
1 −

x
k1

+ α
ε

k1

)
−

qEx
m1E + m2x

. (3.17)

Now, let us consider the equation

du
dt

= r1u
(
1 −

u
k1

+ α
ε

k1

)
−

qEu
m1E + m2u

. (3.18)
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Condition (3.13) implies that
r1

(
1 + α

ε

k1

)
>

q
m1

holds. Let
F(u) = r1

(
1 −

u
k1

+ α
ε

k1

)
−

qE
m1E + m2u

.

Then, we have the following:
(1) There is a unique u∗ε, such that F(u∗ε) = 0, where, by simple computation,

u∗ε =
−A2 +

√
A2

2 − 4A1A3

2A1
. (3.19)

A1 = m2r1, A2 = Em1r1 − εαm2r1 − k1m2r1,

A3 = Ek1q − Ek1m1r1 − Eαm1r1ε.

(2) For all u∗ε > u > 0, F(u) > 0.
(3) For all u > u∗ε > 0, F(u) < 0.

Hence, it follows from Lemma 2.1 in [49] that the unique positive equilibrium u∗ε of System (3.18)
is globally stable. By the comparison theorem of the differential equation, it immediately follows from
Eqs (3.17) and (3.18) that

lim sup
t→+∞

x(t) ≤ u∗ε. (3.20)

Since ε > 0 is an arbitrary small positive constant, if we let ε→ 0 in Eq (3.19), from the expression of
x∗5 (see Eq (2.8)), we have that

lim sup
t→+∞

x(t) ≤ x∗5. (3.21)

From the first equation of Eq (1.1), we have that
dx
dt
≥ r1x

(
1 −

x
k1

)
−

qEx
m1E + m2x

.

Now let us consider the equation
dw
dt

= r1w
(
1 −

w
k1

)
−

qEw
m1E + m2w

. (3.22)

Similar to the above analysis, we could show that (3.22) admits a unique positive equilibrium w = x∗5
that is globally stable. By the comparison theorem, it immediately follows that

lim inf
t→+∞

x(t) ≥ x∗5. (3.23)

It follows from Eqs (3.21) and (3.23) that

lim
t→+∞

x(t) = x∗5. (3.24)

Equations (3.16) and (3.24) show that T5(x∗5, 0, k3) is globally attractive.
This ends the proof of Theorem 3.2.

Remark 3.2. In Example 1.2, one could easily check that all the conditions of Theorem 3.2 are
satisfied; hence, it follows from Theorem 3.2 that T5(x∗5, 0, k3) is globally attractive. This assertion is
consistent with the numerical simulations (Figures 4–6).

AIMS Mathematics Volume 7, Issue 10, 18793–18808.



18805

4. Conclusions

Puspitasari, Kusumawinahyu and Trisilowati [32] proposed System (1.1). The system has eight
equilibria. By computation, they showed that T4 and T7 are locally asymptotically stable while the other
six equilibria are all unstable. However, our numerical simulations (Examples 1.1 and 1.2) showed that
T1 and T5 are also possibly locally stable.

By analyzing the Jacobian matrix’s characteristic equation for the equilibria T1 and T5, some
suitable conditions that ensure the local asymptotical stability of the equilibria T1 and T5 were
obtained.

Next, by developing the analysis technique of Baoguo Chen [38], we also obtained sufficient
conditions that ensure the global attractivity of the two equilibria.

At the end of the paper, we would like to mention that to this day, most of the works on
commensalism models focused on the two species case, and seldom did scholars study the more
complicated multispecies case; we will try to do more works on this topic.
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