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1. Introduction

In this paper, we will discuss the following multi-linear system

Axm−1 = b, (1.1)

whereA = (ai1···im) ∈ R[m,n] is an order m dimension n tensor, b ∈ Rn is a dimension n vector.
We know an essential problem in pure and applied mathematics is solving various classes of

equations. The rapid and efficient calculation approaches of multi-linear systems [1–5] are becoming
more and more significant in the field of science and engineering due to their wide applications,
especially for the data analysis need of big data era (see [6–10]). Normally, it is hard to get the exact
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solution by means of direct methods even for smaller-scale general linear systems, which greatly
promotes the substantial developments of presenting various kinds of iterative strategies. Many
research works have been investigated in some literatures on fast solvers for the multi-linear systems
(1.1). Ding and Wei [11, 12] proposed some classical iterative, such as Jocobi, Gauss-Seidel methods,
and Newton methods through translating (1.1) into the optimization problem. In general, the
computational cost for the Newton method is expensive. Then Han [13] investigated an homotopy
method by the Euler-Newton prediction-correction technique to solve multi-linear systems with
nonsymmetric M-tensors, which is shown a better result than Newton method in the sense of
convergence performance. Tensor splitting method and its convergence results have been studied by
Liu and Li et al. [14]. Further some comparison results for splitting iteration for solving multi-linear
systems were investigated widely in [15, 16], however, we find that some acceleration versions can be
introduced further and may probably improve their work. Motivated by [15], we propose an tensor
alternating splitting iteration scheme for solving multi-linear systems. In practical application, the
accelerated overrelaxation method (AOR), symmetric accelerated overrelaxation method (SAOR) and
their preconditioned versions are generalized for solving multi-linear systems (1.1).

The remainder of this paper is organized as follows. In Section 2, some basic and useful notations
are described simply. In Section 3, we will propose a tensor alternating splitting iteration scheme for
solving multi-linear systems. Meanwhile, a preconditioner is introduced to accelerate the novel
method. In Section 4, the classical approaches, AOR and SAOR, will be generalized to solve
multilinear systems, then some numerical tests are provided to illustrate the superiority of the
presented iteration methods. Finally, a concluding remark is given in Section 5.

2. Preliminaries

Let A ∈ R[2,n] and B ∈ R[k,n]. The matrix-tensor product C = AB ∈ R[k,n] is defined by

c ji2···ik =

n∑
j2=1

a j j2b j2i2···ik . (2.1)

The above formula can be regarded as

C(1) = (AB)(1) = AB(1), (2.2)

where C(1) and B(1) are the matrices generated from C and B flattened along first index. For more
details, see [17, 18].

Definition 2.1. ( [19]). Let A = (ai1i2···im) ∈ R[m,n]. Then the majorization matrix M(A) of A is the
n × n matrix with the entries

M(A)i j = ai j··· j, i, j = 1, 2, · · · , n. (2.3)

Definition 2.2. ( [15]). LetA = (ai1i2···im) ∈ R[m,n]. If M(A) is a nonsingular matrix andA = M(A)Im,
we call M(A)−1 the order-2 left-inverse of tensor A, and A is called left-nonsingular, where Im is
identity tensor with all diagonal elements be 1.
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Definition 2.3. ( [15]). Let A,E,F ∈ R[m,n]. A = E − F is named as a splitting of tensor A if E is
left-nonsingular. A regular splitting of A if E is left-nonsingular with M(E)−1 ≥ 0 and F ≥ 0 (here ≤
or ≥ denotes elementwise). A weak regular splitting of A if E is left-nonsingular with M(E)−1F ≥ 0.
A convergence splitting if spectral radius of M(E)−1F is less than 1, i.e., ρ(M(E)−1F ) < 1.

Definition 2.4. ( [20]). LetA = (ai1i2···im) ∈ R[m,n]. A pair (λ, x) ∈ C× (Cn\{0}) is called an eigenvalue-
eigenvector of tensorA if they satisfy the systems

Axm−1 = λx[m−1], (2.4)

where x[m−1] = (xm−1
1 , xm−1

2 , · · · , xm−1
n )T . The (λ, x) is named as H-eigenpair if both λ and vector x are

real.

Definition 2.5. Let ρ(A) = max{|λ||λ ∈ σ(A)} be the spectral radius ofA, where σ(A) is the set of all
eigenvalues ofA.

Definition 2.6. ( [21]). Let A = (ai1i2···im) ∈ R[m,n]. A is called a Z-tensor if its off-diagonal entries
are non-positive. A is called an M-tensor if there exists a nonnegative tensor B and a positive real
number η ≥ ρ(B) such that

A = ηIm − B.

If η > ρ(B), thenA is called a strong M-tensor.

3. Tensor alternating splitting iteration

Consider two tensor splittings A = E1 − F1 = E2 − F2. First of all, we describe briefly alternating
direction iterative method for solving multi-linear systemsAxm−1 = b.

ByA = E1 − F1, clearly, the above multi-linear systems can be written as

E1xm−1 = F1xm−1 + b, (3.1)

i.e.,

Imxm−1 = M(E1)−1F1xm−1 + M(E1)−1b, (3.2)

here use the property of order 2 left-nonsingular of tensor E1. Im is an identify tensor with appropriate
order. The result leads to Algorithm 3.1.

Algorithm 3.1. (Preconditioned tensor splitting iterative method (PTSI) [15])
Step 1 Input a vector b, and a preconditioner P, a strong M-tensorA with (weak) regular splitting

AP := PA = EP1 − FP1 . Given a precision ε > 0 and initial vector x0. Set k := 1.
Step 2 If ‖APxm−1

k − b‖2 < ε stop; otherwise, go to Step 3.
Step 3

xk+1 =
(
M(EP1)

−1FP1 xm−1
k + M(EP1)

−1b
)[ 1

m−1 ]
.

Step 4 Set k := k + 1, return to Step 2.
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Based on this, we introduce two-step tensor alternating splitting iteration method, then it gets the
iterative scheme 

xk+ 1
2

=
(
M(E1)−1F1xm−1

k + M(E1)−1b
)[ 1

m−1 ]
,

xk+1 =
(
M(E2)−1F2xm−1

k+ 1
2

+ M(E2)−1b
)[ 1

m−1 ]
.

(3.3)

We further consider preconditioned multi-linear systems PAxm−1 = Pb. It follows from the splitting
AP := PA = EP1 − FP1 = EP2 − FP2 that

xk+ 1
2

=
(
M(EP1)

−1FP1 xm−1
k + M(EP1)

−1Pb
)[ 1

m−1 ]
,

xk+1 =
(
M(EP2)

−1FP2 xm−1
k+ 1

2
+ M(EP2)

−1Pb
)[ 1

m−1 ]
.

(3.4)

Set G := M(EP2)
−1FP2 . By Imxm−1 = x[m−1] where Im be an identify tensor with appropriate order,

we have

Gxm−1
k+ 1

2
= M(G) · Imxm−1

k+ 1
2

(3.5)

= M(G)x[m−1]
k+ 1

2

= M(G)
(
M(EP1)

−1FP1 xm−1
k + M(EP1)

−1Pb
)

= M(G)M(EP1)
−1FP1 xm−1

k + M(G)M(EP1)
−1Pb.

Hence,

xk+1 =
[
M(G)M(EP1)

−1FP1 xm−1
k + M(G)M(EP1)

−1Pb + M(EP2)
−1Pb

][ 1
m−1 ]

. (3.6)

The above analysis can be described concretely in Algorithm 3.2. Now, let

T (EP1 ,EP2) := M(G)M(EP1)
−1FP1 . (3.7)

Next we will show the spectral radius of preconditioned iterative tensor ρ
(
T (EP1 ,EP2)

)
< 1, namely,

the proof of convergence of Algorithm 3.2.

Algorithm 3.2. (Preconditioned tensor alternating splitting iterative method (PTASI))
Step 1 Input a vector b, a preconditioner P, a strong M-tensor A with (weak) regular splitting

AP := PA = EP1 − FP1 = EP2 − FP2 . Given a precision ε > 0 and initial vector x0. Set k := 1.
Step 2 If ‖APxm−1

k − b‖2 < ε stop; otherwise, go to Step 3.
Step 3 

xk+ 1
2

=
(
M(E1)−1F1xm−1

k + M(E1)−1b
)[ 1

m−1 ]
,

xk+1 =
(
M(E2)−1F2xm−1

k+ 1
2

+ M(E2)−1b
)[ 1

m−1 ]
.

Step 4 Set k := k + 1, return to Step 2.
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Lemma 3.1. [11]. Let AP = (ai1i2···im) ∈ R[m,n], and AP = EP1 − FP1 = EP2 − FP2 be a weak regular
splitting and a regular splitting, respectively. If FP2 < FP1 , FP2 , 0, and ρ((EP1)

−1FP1) < 1, then there
exists a positive Perron vector x ∈ Rn such that

M(EP2)
−1FP2 xm−1 ≤ ρkx[m−1], (3.8)

where ρk = ρ(M(EP1)
−1FP1 + 1

kS), k is a positive integer and S ∈ R[m,n] is a positive tensor.

Proof. Let S be in R[m,n] whose entries are all equal to 1. There exists a positive integer N such
that ρ(M(EP1)

−1FP1) ≤ ρ(M(EP1)
−1FP1 + 1

kS) < 1 as k > N. It is clear to check that M(EP1)
−1FP1 +

1
kS is positive and hence is irreducible. Using the strong Perron-Frobenius theorem (see [22, 23]),
M(EP1)

−1FP1 + 1
kS has a positive Perron vector x such that

(
M(EP1)

−1FP1 +
1
k
S
)
xm−1 = ρkx[m−1] (3.9)

for k > N, where ρk = ρ(M(EP1)
−1FP1 + 1

kS).
Hence, it give rises to

M(EP1)(ρkIm −
1
k
S)xm−1 = FP1 xm−1. (3.10)

ByAP = EP1 − FP1 = EP2 − FP2 , one gets M(AP) = M(EP1) − M(FP1) = M(EP2) − M(FP2).
So it generates

M(AP)
(
ρkIm −

1
k
S)

)
xm−1 = FP1 xm−1 − M(FP1)(ρkIm −

1
k
S)xm−1, (3.11)

= (1 − ρk)M(FP1)Imxm−1 +
1
k

M(FP1)Sxm−1

+
(
FP1 − M(FP1)Im

)
xm−1.

Further, it follows from (3.11) that

(
M(EP2) − M(FP2)

)(
ρkIm −

1
k
S
)
xm−1 ≥ (1 − ρk)M(FP2)Imxm−1 +

1
k

M(FP2)Sxm−1 (3.12)

+
(
FP2 − M(FP2)Im

)
xm−1,

here, one should notice that the condition FP1 ≥ FP2 and Definition 2.1, so M(FP1) ≥ M(FP2), FP1 −

M(FP1)Im ≥ FP2 − M(FP2)Im and ρk < 1.
By some simple computations, we have

M(EP2)(ρkIm −
1
k
S)xm−1 ≥ FP2 xm−1. (3.13)

Observe that M(EP2)
−1 ≥ 0 and FP2 ≥ 0 due to the regular splitting ofAP = EP2 −FP2 . From (3.14),

it gets

M(EP2)
−1FP2 xm−1 ≤ (ρkIm −

1
k
S)xm−1 ≤ ρkx[m−1]. (3.14)
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Theorem 3.1. LetAP = (ai1i2···im) ∈ R[m,n], andAP = EP1 −FP1 = EP2 −FP2 be a weak regular splitting
and a regular splitting, respectively. If FP2 < FP1 , FP2 , 0 and ρ

(
(EP1)

−1FP1

)
< 1. G := M(EP2)

−1FP2

is order 2 left-nonsingular, i.e., G = M(G)Im, then ρ
(
T (EP1 , EP2)

)
< 1, where T (EP1 ,EP2) is defined

by (3.7).

Proof. First of all, similar to the previous discussion, using the strong Perron-Frobenius theorem, ∃
N > 0, M(EP1)

−1FP1 + 1
kS has a positive Perron vector x such that

(
M(EP1)

−1FP1 +
1
k
S
)
xm−1 = ρkx[m−1] (3.15)

for k > N, where ρk = ρ(M(EP1)
−1FP1 + 1

kS). That it to say

M(G)
(
M(EP1)

−1FP1 +
1
k
S
)
xm−1 = ρkM(G)x[m−1] (3.16)

= ρkM(G)Imxm−1

= ρkGxm−1

= ρkM(EP2)
−1FP2 xm−1

≤ ρkρkx[m−1]

= (ρk)2x[m−1],

where the inequality comes from the Lemma 3.1. When k → ∞, it gets the result. This completes the
proof.

4. Numerical experiments

In this section, some numerical examples are discussed to validate the performance of
effectiveness of the proposed preconditioned tensor AOR (‘PTAOR’) and preconditioned tensor
alternating splitting AOR (‘PTAAOR’) based two-step splitting method for solving the multi-linear
systems (see Algorithms 3.1, 3.2). We compare the convergence of preconditioned tensor Jacobi
method (denoted as ‘PTJb’), preconditioned tensor Gauss-Seidel method (denoted as ‘PTGS’) and
preconditioned tensor SOR method (denoted as ‘PTSOR’) and unpreconditioned versions by the
iteration step (denoted as ‘IT’), elapsed CPU time in seconds (denoted as ‘CPU’), and residual error
(denoted as ‘RES’).

Now, consider the tensor preconditioned splitting of (1.1).

AP := PA = D−L −U. (4.1)

The layout of splitting description is shown in Table 1, whereD = DIm, L = LIm,U = UIm, and
D, −L, −U are the diagonal part, strictly lower and strictly upper triangle part of M(PA). Clearly, the
splittings described in Table 1 satisfy the condition of weak regular splitting, i.e., M(E)−1F ≥ 0.

A type of preconditioner (as a variant form in [24, 25]) Pα = I + S α is considered for solving
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PAxm−1 = Pb, where

S α =



0 −α1a12···2 0 · · · 0
−α1a21···1 0 −α2a23···3 · · · 0

...
. . .

. . .
. . . 0

0 0 . . .
. . . −αn−1an−1,n···n

0 0 0 −αn−1an,n−1···n−1 0


,

αi = 0.01, i = 1, 2, · · · n − 1.

Table 1. The corresponding splitting EP1 and EP2 .

Splitting tensor EP1 EP2

PT Jb D −

PTGS D−L −

PTS OR 1
ω

(D− ωL) −

PT AOR 1
ω

(D− rL) −

PT AAOR 1
ω

(D− rL) 1
ω

(D− rU)

All the numerical experiments have been carried out by MATLAB R2011b 7.1.3 on a PC equipped
with an Intel(R) Core(TM) i7-2670QM, CPU running at 2.20 GHZ with 8 GB of RAM in Windows 7
operating system.

Example 4.1. First consider the multi-linear systems (1.1) with a strong M-tensor A in difference
cases [14, 15].

Case 1. A = 864.4895Im−B, whereB ∈ R[3,5] is a nonnegative tensor with bi1,i2,i3 = |tan(i1+i2+i3)|.
Case 2. A = n2I3 − B, where B ∈ R[3,3] is a nonnegative tensor with bi1,i2,i3 = |sin(i1 + i2 + i3)|.
Case 3. A = sI3−B, where B is generated randomly by MATLAB, and s = (1+δ) max1,2,··· ,n(Be2)i,

e = (1, 1, · · · , 1)T . Let δ = 8. b = x0 = e.

We give three different cases for different tensors A, B with various sizes. Parameter r and ω are
experiential selected according to particular example. In this example, the running is terminated when
the current iteration satisfies RES = ‖Axm−1 − b‖2 < 10−11 or if the number of iteration exceeds the
prescribed iteration steps kmax = 500.

The numerical results have been shown in Tables 2, 3 and Figures 1, 2. From the numerical results,
we can see that PTAAOR and PTAOR are efficient methods, and both of them overmatch the PTSOR,
PTGS, and PTJb in all sides. PTAAOR seems to be a fascinating approach, however the PTAOR
is more efficient method than the PTSOR, PTGS, PTJb methods from all aspects due to the flexible
selection of parameters. It is clear PTSOR and PTGS are nearly similar efficiency when ω approaching
to 1. Meanwhile, we find that PTGS is superior to PTSOR from the view of iteration number. It further
bears out the conclusions in [15], one of which clarifies a fact the spectral radius of PTGS is small
than PTSOR’s (Corollary 5.6 [15]). Further from the residual trend chart with the changing numbers
of iteration in Figure 1, one can demonstrably find the desired performance of the proposed methods.

Example 4.2. Consider the following higher-order Markov chain model:

x = Bxm−1, ‖x‖1 = 1, (4.2)

AIMS Mathematics Volume 5, Issue 3, 2801–2812.
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Table 2. Preconditioned numerical results for Example 4.1 with r = 2.3, ω = 0.99.

Case PTAAOR PTAOR PTSOR PTGS PTJb

It 73 123 137 135 151
1 CPU 0.5987 0.6179 0.6572 0.6761 0.7375

RES 9.1232e − 12 9.2032e − 12 9.3271e − 12 9.9916e − 12 9.4513e − 12

It 23 39 51 49 56
2 CPU 0.2614 0.1993 0.2169 0.3837 0.4039

RES 3.2527e − 12 7.2353e − 12 7.7315e − 12 8.6080e − 12 8.7315e − 12

It 2 5 6 5 5
3 CPU 0.0384 0.0390 0.0438 0.1281 0.1556

RES 6.1840e − 13 7.9154e − 13 1.8964e − 12 7.1052e − 13 1.6462e − 12

Table 3. Unpreconditioned numerical results for Example 4.1 with r = 2.3, ω = 0.99.

Case TAAOR TAOR TSOR TGS TJb

It 133 307 380 338 364
1 CPU 0.7945 1.0568 1.5005 1.3059 1.4757

RES 8.6739e − 12 9.3398e − 12 9.8938e − 12 9.9219e − 12 9.9961e − 12

It 23 39 51 50 56
2 CPU 0.2982 0.2325 0.2984 0.3897 0.5306

RES 3.5812e − 12 9.1947e − 12 9.3484e − 12 9.4678e − 12 9.7318e − 12

It 3 5 7 6 6
3 CPU 0.0432 0.0490 0.0538 0.1521 0.1652

RES 6.1840e − 13 1.5752e − 13 2.5318e − 12 7.1052e − 12 2.3677e − 12

(a) case1 (b) case2 (c) case3

Figure 1. The relative residual for PTAAOR, PTAOR, PTSOR, PTGS and PTJb mehtods
with difference cases in Example 4.1.
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(a) case1 (b) case2 (c) case3

Figure 2. The relative residual for TAAOR, TAOR, TSOR, TGS and TJb mehtods with
difference cases in Example 4.1.

where B = (bi1,i2,··· ,im) is an order m tensor representing an (m − 1)th order Markov chain, which is
called an order m dimension n transiting probability tensor, i.e., bi1,i2,··· ,im ≥ 0, Σn

i1=1bi1,i2,··· ,im = 1, and
x is named as a stochastic vector with xi ≥ 0 and Σn

i=1xi = 1 [16].

Observe that (4.2) can be transformed into the following systems

(Im − βB)xm−1 = x[m−1] − βx, (4.3)
s.t. ‖x‖1 = 1.

Next we set tensor A := Im − βB, b := x[m−1] − βx, then use splitting iteration approaches to solve
the systems (4.3), where

B(:, :, 1) =


0.580 0.2432 0.1429

0 0.4109 0.0701
0.4190 0.3459 0.7870

 , B(:, :, 2) =


0.4708 0.1330 0.0327
0.1341 0.5450 0.2042
0.3951 0.3220 0.7631

 ,

B(:, :, 3) =


0.4381 0.1003 0
0.0229 0.4338 0.0930
0.5390 0.4659 0.9070

 ,
Im is an identity tensor of order m dimension n. In this example, the running is terminated when
the current iteration satisfies RES = ‖Axm−1 − b‖2 < 10−6 or if the number of iteration exceeds the
prescribed iteration steps kmax = 100.

In this example, all the numerical results are depicted in Table 4 and Figure 3. From the elapsed
CPU and numbers of iteration, PTAOR performs always well than all of other approaches, although
the optimum parameters are hard to determine, we can just choose them tentatively in some reality
application according to experiment initial effects. Preconditioned scheme can modify all these
methods to some extent, but the efficiency need to be improved further in some actual applications,
which depends closely on the construction of preconditioner. Hence, the research of optimum
parameters and preconditioners for PTAOR will be further proceeded in future. PTAAOR can be
considered as a novel and efficient approach, however, the selection of splitting tensor EP1 and EP2

should be adequately studied discussed in a later work.
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Table 4. Numerical results for Example 4.2 with r = 2.3, ω = 0.99.

Case PTAOR PTAAOR PTSOR PTGS PTJb

It 17 38 37 37 39
1 CPU 0.0743 0.2126 0.1484 0.2037 0.2665

RES 7.1715e − 06 7.6163e − 06 9.7565e − 06 9.4313e − 06 7.7173e − 06

Case TAOR TAAOR TSOR TGS TJb

It 17 45 37 38 39
2 CPU 0.1016 0.2981 0.1845 0.2616 0.3213

RES 7.1715e − 06 7.6163e − 06 9.7565e − 06 9.4313e − 06 7.7173e − 06

(a) iterative methods with preconditioning (b) iterative methods without preconditioning

Figure 3. The relative residual for five methods with two different cases in Example 4.2.

5. Conclusions

In this paper, an tensor alternating splitting iteration scheme is proposed for solving multi-linear
systems, and the tensor accelerated overrelaxation and tensor symmetric accelerated overrelaxation
splitting iteration strategies are introduced to solve this kind of systems, which can be regarded as the
generalizations of AOR and SAOR for linear systems. Meanwhile, some efficient preconditioned
techniques are provided to improve the efficiency of solving multi-linear systems. The proposed
approaches have been demonstrated to be superior to classical SOR, GS, Jacobi methods under
normal conditions, which can be fully validated in our numerical experiments section. Further, we
point out our future research work.
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