Research article

Energy conservation for the compressible ideal Hall-MHD equations

  • Received: 13 May 2022 Revised: 03 July 2022 Accepted: 18 July 2022 Published: 21 July 2022
  • MSC : 35B65, 35D30, 35Q35, 76W05

  • In this paper, we study the regularity and energy conservation of the weak solutions for compressible ideal Hall-magnetohydrodynamic (Hall-MHD) system, where $ (t, x)\in(0, T)\times {\mathbb{T}}^d(d\geq\; 1) $. By exploring the special structure of the nonlinear terms in the model, we obtain the sufficient conditions for the regularity of the weak solutions for energy conservation. Our main strategy relies on commutator estimates.

    Citation: Yanping Zhou, Xuemei Deng, Qunyi Bie, Lingping Kang. Energy conservation for the compressible ideal Hall-MHD equations[J]. AIMS Mathematics, 2022, 7(9): 17150-17165. doi: 10.3934/math.2022944

    Related Papers:

  • In this paper, we study the regularity and energy conservation of the weak solutions for compressible ideal Hall-magnetohydrodynamic (Hall-MHD) system, where $ (t, x)\in(0, T)\times {\mathbb{T}}^d(d\geq\; 1) $. By exploring the special structure of the nonlinear terms in the model, we obtain the sufficient conditions for the regularity of the weak solutions for energy conservation. Our main strategy relies on commutator estimates.



    加载中


    [1] I. Akramov, T. Debiec, J. Skipper, E. Wiedemann, Energy conservation for the compressible Euler and Navier-Stokes equations with vacuum, Anal. PDE, 13 (2020), 789–811. http://dx.doi.org/10.2140/apde.2020.13.789 doi: 10.2140/apde.2020.13.789
    [2] C. Bardos, E. Titi, Onsager's conjecture for the incompressible Euler equations in bounded domains, Arch. Rational Mech. Anal., 228 (2018), 197–207. https://doi.org/10.1007/s00205-017-1189-x doi: 10.1007/s00205-017-1189-x
    [3] C. Bardos, E. Titi, E. Wiedemann, Onsager's conjecture with physical boundaries and an application to the vanishing viscosity limit, Commun. Math. Phys., 370 (2019), 291–310. https://doi.org/10.1007/s00220-019-03493-6 doi: 10.1007/s00220-019-03493-6
    [4] Q. Bie, L. Kang, Q. Wang, Z. Yao, Regularity and energy conservation for the compressible MHD equations (in Chinese), Sci. Sin. Math., 52 (2022), 741. https://doi.org/10.1360/SSM-2020-0339 doi: 10.1360/SSM-2020-0339
    [5] T. Buckmaster, C. De Lellis, L. Szekelyhidi Jr, V. Vicol, Onsager's conjecture for admissible weak solutions, Commun. Pure Appl. Math., 72 (2019), 229–274. https://doi.org/10.1002/cpa.21781 doi: 10.1002/cpa.21781
    [6] A. Cheskidov, P. Constantin, S. Friedlander, R. Shvydkoy, Energy conservation and Onsager's conjecture for the Euler equations, Nonlinearity, 21 (2008), 1233–1252. https://doi.org/10.1088/0951-7715/21/6/005 doi: 10.1088/0951-7715/21/6/005
    [7] P. Constantin, E. Weinan, E. Titi, Onsager's conjecture on the energy conservation for solutions of Euler's equation, Commun. Math. Phys., 165 (1994), 207–209. https://doi.org/10.1007/BF02099744 doi: 10.1007/BF02099744
    [8] R. Caflisch, I. Klapper, G. Steele, Remarks on singularities, dimension and energy disspation for ideal hydrodynamics and MHD, Commun. Math. Phys., 184 (1997), 443–455. https://doi.org/10.1007/s002200050067 doi: 10.1007/s002200050067
    [9] R. Chen, C. Yu, Onsager's energy conservation for inhomogeneous Euler equations, J. Math. Pure. Appl., 131 (2019), 1–16. https://doi.org/10.1016/j.matpur.2019.02.003 doi: 10.1016/j.matpur.2019.02.003
    [10] E. Dumas, F. Sueur, On the weak solutions to the Maxwell-Landsu-Lifshitz equations and to the Hall-Magneto-Hydrodynamic equations, Commun. Math. Phys., 330 (2014), 1179–1225. https://doi.org/10.1007/s00220-014-1924-1 doi: 10.1007/s00220-014-1924-1
    [11] T. Drivas, H. Nguyen, Onsager's conjecture and anomalous disspation on domains with boundary, SIAM J. Math. Anal., 50 (2018), 4785–4811. https://doi.org/10.1137/18M1178864 doi: 10.1137/18M1178864
    [12] G. Eyink, Energy dissipation without viscosity in ideal hydrodynamics I. Fourier analysis and local energy transfer, Phys. D, 78 (1994), 222–240. https://doi.org/10.1016/0167-2789(94)90117-1 doi: 10.1016/0167-2789(94)90117-1
    [13] L. Evans, Partial differential equations, Providence: American Mathematical Society, 1998.
    [14] E. Feireisl, P. Gwiazda, A. Świerczewska-Gwiazda, E. Widemann, Regularity and energy conservation for the compressible Euler equations, Arch. Rational Mech. Anal., 261 (2017), 1375–1395. https://doi.org/10.1007/s00205-016-1060-5 doi: 10.1007/s00205-016-1060-5
    [15] S. Guo, Z. Tan, Local 4/5-law and energy dissipation anomaly in turbulence of incompressible MHD Equations, Z. Angew. Math. Phys., 67 (2016), 147. https://doi.org/10.1007/s00033-016-0736-x doi: 10.1007/s00033-016-0736-x
    [16] Z. Gao, Z. Tan, G. Wu, Energy dissipation for weak solution of incompressible MHD equations, Acta Math. Sci., 33 (2013), 865–871. https://doi.org/10.1016/S0252-9602(13)60046-6 doi: 10.1016/S0252-9602(13)60046-6
    [17] P. Isett, A proof of Onsager's conjecture, Ann. Math., 188 (2018), 871–963. https://doi.org/10.4007/annals.2018.188.3.4 doi: 10.4007/annals.2018.188.3.4
    [18] E. Kang, J. Lee, Remarks on the magnetic helicity and energy conservation for ideal magneto-hydrodynamics, Nonlinearity, 20 (2007), 2681–2689. https://doi.org/10.1088/0951-7715/20/11/011 doi: 10.1088/0951-7715/20/11/011
    [19] L. Kang, X. Deng, Q. Bie, Energy conservation for the nonhomogeneous incompressible ideal Hall-MHD equations, J. Math. Phys., 62 (2021), 031506. https://doi.org/10.1063/5.0042696 doi: 10.1063/5.0042696
    [20] L. Kang, X. Deng, Y. Zhou, Energy conservation for the nonhomogeneous incompressible Hall-MHD equations in a bounded domain, Results Appl. Math., 12 (2021), 100178. https://doi.org/10.1016/J.RINAM.2021.100178 doi: 10.1016/J.RINAM.2021.100178
    [21] Q. Nguyen, P. Nguyen, Onsager's conjecture on the energy conservation for solutions of Euler equations in bounded domains, J. Nonlinear Sci., 29 (2019), 207–213. https://doi.org/10.1007/s00332-018-9483-9 doi: 10.1007/s00332-018-9483-9
    [22] L. Onsager, Statistical hydrodynamics, Nuovo Cim., 6 (1949), 279–287. https://doi.org/10.1007/bf02780991 doi: 10.1007/bf02780991
    [23] A. Shnirelman, On the nonuniqueness of weak solution of the Euler equation, Commun. Pure Appl. Math., 50 (1997), 1261–1286. https://doi.org/10.1002/(SICI)1097-0312(199712)50:12<1261::AID-CPA3>3.0.CO;2-6 doi: 10.1002/(SICI)1097-0312(199712)50:12<1261::AID-CPA3>3.0.CO;2-6
    [24] V. Scheffer, An inviscid flow with compact support in space-time, J. Geom. Anal., 3 (1993), 343–401. https://doi.org/10.1007/BF02921318 doi: 10.1007/BF02921318
    [25] X. Wang, S. Liu, Energy conservation for the weak solutions to the 3D compressible magnetohydrodynamic equations of viscous non-resistive fluids in a bounded domain, Nonlinear Anal. Real, 62 (2021), 103359. https://doi.org/10.1016/J.NONRWA.2021.103359 doi: 10.1016/J.NONRWA.2021.103359
    [26] Y. Wang, B. Zuo, Energy and cross-helicity conservation for the three-dimensional ideal MHD equations in a bounded domain, J. Differ. Equations, 268 (2020), 4079–4101. https://doi.org/10.1016/j.jde.2019.10.045 doi: 10.1016/j.jde.2019.10.045
    [27] Z. Wu, Z. Tan, Regularity and energy dissipation for the nonhomogeneous incompressible MHD equations (in Chinese), Sci. Sin. Math., 49 (2019), 1967–1978. https://doi.org/10.1360/SSM-2019-0203 doi: 10.1360/SSM-2019-0203
    [28] X. Yu, A note on the energy conservation of the ideal MHD equation, Nonlinearity, 22 (2009), 913–922. https://doi.org/10.1088/0951-7715/22/4/012 doi: 10.1088/0951-7715/22/4/012
    [29] Z. Zhang, Energy conservation for the weak solutions to the ideal inhomogeneous magnetohydrodynamic equations in a bounded domain, Nonlinear Anal. Real, 63 (2022), 103397. https://doi.org/10.1016/j.nonrwa.2021.103397 doi: 10.1016/j.nonrwa.2021.103397
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1216) PDF downloads(82) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog