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Abstract: In this article, we study the weighted Lane-Emden equation

divG
(
ω1(z)|∇Gu|p−2∇Gu

)
= ω2(z)|u|q−1u, z = (x, y) ∈ RN = RN1 × RN2 ,

where N = N1 + N2 ≥ 2, p ≥ 2 and q > p − 1, while ωi(z) ∈ L1
loc(R

N) \ {0}(i = 1, 2) are nonnegative
functions satisfying ω1(z) ≤ C‖z‖θG and ω2(z) ≥ C′‖z‖dG for large ‖z‖G with d > θ − p. Here α ≥ 0
and ‖z‖G = (|x|2(1+α) + |y|2)

1
2(1+α) . divG (resp., ∇G) is Grushin divergence (resp., Grushin gradient). We

prove that stable weak solutions to the equation must be zero under various assumptions on d, θ, p, q
and Nα = N1 + (1 + α)N2.

Keywords: stable weak solutions; Liouville-type theorem; Grushin operator; Lane-Emden
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1. Introduction

In this work, we examine the nonexistence of stable weak solutions of the problem

divG
(
ω1(z)|∇Gu|p−2∇Gu

)
= ω2(z)|u|q−1u, z = (x, y) ∈ RN = RN1 × RN2 . (1.1)

Here and thereafter, we assume that p ≥ 2, q > p−1 and ωi(z) ∈ L1
loc(R

N)\{0}(i = 1, 2) are nonnegative
functions. For z = (x, y) ∈ RN = RN1 × RN2 and α ≥ 0, we define the Grushin gradient ∇G and Grushin
divergence divG as

∇Gu = (∇xu, (1 + α)|x|α∇yu),
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divGv = divxv + (1 + α)|x|αdivyv.

The Grushin operator ∆G is denoted by

∆Gu = divG(∇Gu) = ∆xu + (1 + α)2|x|2α∆yu,

which is just the well-known Laplace operator when α = 0.
The anisotropic dilation attached to ∆G is defined by

τδ(z) = (δx, δ1+αy), δ > 0, z = (x, y) ∈ RN1 × RN2 .

It is easy to check that
dτδ(z) = δNαdxdy = δNαdz,

where Nα = N1 + (1 + α)N2 is the homogeneous dimension with respect to the dilation τδ and dxdy
denotes the Lebesgue measure on RN1 × RN2 . The norm of z (also known as the Grushin distance) is
defined by

‖z‖G = (|x|2(1+α) + |y|2)
1

2(1+α) , z = (x, y) ∈ RN = RN1 × RN2 .

The p-Laplace type Grushin operator is given by

∆
p
Gu = divG(|∇Gu|p−2∇Gu).

For x = (x1, x2, ..., xN1), when x goes to 0 this operator is degenerate if p > 2 and is singular as
1 < p < 2. An significant characteristic of the operator exhibits different scaling behaviors in x and
y directions around x = 0. In recent years, the degenerate elliptic operators have been attracted the
interest of many mathematicians and been studied extensively, we refer the reader to [9, 16, 18, 30].

Let us review some results related to our problem. For problem (1.1) in the case α = 0, it becomes
the weighted Lane-Emden equation

−div(ω1(z)|∇u|p−2∇u) = ω2(z)|u|q−1u in RN . (1.2)

Recently, much attention has been focused on studying of the nonexistence and stability of solutions to
nonlinear elliptic equations like (1.2). The definition of stability arises in several branches of physical
sciences, where a system is called in a stable state if it can recover from small perturbations. More
details on physical motivation and recent developments on the topic of stable solutions, we refer to [11].

In the past years, the Liouville property has been refined considerably and emerged as one of the
most powerful tools in the study of initial and boundary value problems for nonlinear PDEs. It turn
out that one can obtain from Liouville-type theorems a variety of results on qualitative properties of
solutions such as universal, pointwise, a priori estimates of local solutions; universal and singularity
estimates; decay estimates; blow-up rate of solutions of nonstationary problems, etc., see [25, 26] and
references therein.

Liouville-type theorems for stable solutions concern about the nonexistence of nontrivial solutions.
The pioneering work in this direction is due to Farina [12], where the author established thoroughly
the Liouville-type theorem for stable classical solutions of problem (1.2) with ω1(z) ≡ 1 ≡ ω2(z)
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and p = 2. He showed that the problem possesses no nontrivial stable C2 solutions if and only if
1 < q < qc(N), where

qc(N) =

 +∞, if N ≤ 10,
(N−2)2−4N+8

√
N−1

(N−2)(N−10) , if N ≥ 11.
(1.3)

Moreover, this exponent is greater than the classical critical exponent N+2
N−2 [15] when N > 2. After

that, above results were generalized to the weighted case in [5, 8, 13, 17, 29]. In [8], under the
restriction that the solutions are locally bounded, the authors presented the nonexistence of nontrivial
stable weak solutions of problem (1.2) with p = 2, ω1(z) ≡ 1 and ω2(z) = |z|d. In [29], this restriction
was withdrawn.
Theorem 1.1. ( [29]) Let u be a stable weak solution of (1.2) with p = 2, ω1(z) ≡ 1 and ω2(z) = |z|d,
where d > −2. Then u is a trivial solution provided 1 < q < q(N, d). Here

q(N, d) =

 +∞, if N ≤ 10 + 4d,
(N−2)(N−6−2d)−2(2+d)2+2(2+d)

√
(2+d)(2N−2+d)

(N−2)(N−10−4d) , if N > 10 + 4d.
(1.4)

In [5], based on the Farina’s approach, Cowan and Fazly established several Liouville-type theorems
for stable positive classical solutions of problem (1.2) with p = 2 under different assumptions on
ωi(i = 1, 2). Later, several attempts have been made to extend Farina’s results to weighted quasilinear
equation (1.2). It is worthy to note that in [6], the authors extended Farina’s results to p-Laplace
equations for the first time. Paper [3] deals with the problem (1.2) with ω1 ≡ 1, the author only
considered the stable C1,δ

loc(RN) solutions, which are locally bounded. Similar works can be found
in [4, 19, 21, 22] and the references therein.

We now consider the case α > 0, the problem (1.1) is weighted quasilinear problem involving
Grushin operator. It is well-known that the Grushin operator belongs to the wide class of subelliptic
operators studied by Franchi et al. in [14](see also [2]). Via Kelvin transform and the method of
moving planes, the Liouville-type theorem has been established by Monticelli [24] (resp., Yu [32]) for
nonnegative classical (resp., weak) solutions of the problem −∆Gu = uq in RN , the optimal exponent is
1 < q < Nα+2

Nα−2 . Recently, Duong and Nguyen [10] studied elliptic equations involving Grushin operator
and advection

−∆Gu + ∇Gw · ∇Gu = ‖z‖sG|u|
q−1u, in RN , s ≥ 0.

By mean of Farina’s approach, the authors obtained several Liouville-type theorems for a class of
stable sign-changing weak solutions.

Very recently, Le [20] considered the elliptic problem

−divG(w1∇Gu) = w2 f (u), in Ω,

with homogeneous Dirichlet boundary condition. Using variable technique, nonexistence of stable
weak solutions is proved under various assumptions on Ω, wi(i = 1, 2) and f . When Ω = RN and f
has power or exponential growth, the author also constructed some examples to show the sharpness of
his results. For other results of Liouville-type theorems related to Grushin operators or more general
subelliptic operators, we refer the reader to [1, 7, 23, 27, 28, 31] and the references therein.
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A natural question is whether the analogous Liouville property holds for equation (1.1) with p ≥
2, α > 0 and ωi . 1(i = 1, 2). The present paper is an attempt to answer this interesting question.

Motivated by the aforementioned works, we prove the nonexistence of nontrivial stable weak
solution to problem (1.1). Since |∇Gu|p−2 is degenerate when p > 2, solutions to (1.1) must be
understood in the weak sense. Moreover, solutions to elliptic equations with Hardy potential may
possess singularities. Therefore, we need to study weak solutions of (1.1) in a suitable weighted
Sobolev space. Based on this reality, we define

‖ψ‖ω1 =
( ∫
RN
ω1(z)|∇Gψ|

pdz
)1/p

for ψ ∈ C∞0 (RN) and denote by W1,p,α(RN;ω1) the closure of C∞0 (RN) with respect to the ‖ · ‖ω1-norm.
Note that for ω1 ∈ L1

loc(R
N),we have C1

0(RN) ⊂ W1,p,α(RN;ω1).Denote also by W1,p,α
loc (RN;ω1) the space

of all functions u such that uψ ∈ W1,p,α(RN;ω1) for all ψ ∈ C1
0(RN).

Definition 1.2. Let X = W1,p,α
loc (RN;ω1), we say that u ∈ X is a weak solution of (1.1) if ω2(z)|u|q ∈

L1
loc(R

N) and for all ψ ∈ C1
0(RN) we have∫

RN
ω1(z)|∇Gu|p−2∇Gu · ∇Gψdz =

∫
RN
ω2(z)|u|q−1uψdz. (1.5)

Definition 1.3. A weak solution u of (1.1) is stable if ω2(z)|u|q−1 ∈ L1
loc(R

N) and for all ψ ∈ C1
0(RN) we

have

q
∫
RN
ω2(z)|u|q−1ψ2dz ≤

∫
RN
ω1(z)

(
|∇Gu|p−2|∇Gψ|

2 + (p − 2)|∇Gu|p−4(∇Gu · ∇Gψ)2
)
dz. (1.6)

In other words, the stability condition translates into the fact that the second variation of the energy
functional

I(u) =

∫
RN

(ω1(z)|∇Gu|p

p
−
ω2(z)|u|q+1

q + 1
)
dz

is nonnegative. Therefore, all the local minima of the functional are stable weak solutions of (1.1).
Remark 1.4. Let u be a stable weak solution of (1.1), by (1.6) and p ≥ 2, it follows that

q
∫
RN
ω2(z)|u|q−1ψ2dz ≤ (p − 1)

∫
RN
ω1(z)|∇Gu|p−2|∇Gψ|

2dz. (1.7)

It is obvious that (1.5)–(1.7) hold for all ψ ∈ W1,p,α(RN;ω1) by density arguments.
Throughout this paper, we assume that the functions ωi(z)(i = 1, 2) satisfy the following

assumptions
(H) ωi(z) ∈ L1

loc(R
N) \ {0}(i = 1, 2) are nonnegative functions. In addition, there exist d > θ − p,

C, C′ > 0 and R0 > 0 such that

ω1(z) ≤ C‖z‖θG, ω2(z) ≥ C′‖z‖dG, ∀‖z‖G ≥ R0.

To facilitate the writing, we denote µ0(p, θ, d) =
(p−θ)(p+3)+4d

p−1 .
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Now, we are ready to give the main result.
Theorem 1.5. Let u ∈ X be a stable weak solution of problem (1.1) with p ≥ 2. Assume that (H) holds.
We further suppose that{

p − 1 < q < ∞, i f Nα ≤ µ0(p, θ, d),
p − 1 < q < qc(p,Nα, θ, d), i f Nα > µ0(p, θ, d)

with the critical exponent

qc(p,Nα, θ, d) = p − 1 +
(
(p − θ + d)

(
p(Nα − p + θ) − 2(p − θ + d)

)
+ 2

√
(p − θ + d)(Nα + d +

Nα + θ − p
p − 1

)
)
÷

(
(Nα − p + θ)

(
Nα − µ0(p, θ, d)

))
.

(1.8)

Then u ≡ 0 in RN .

Remark 1.6. Indeed, the assumption on q in Theorem 1.5 is equivalent to

Nα < p − θ +
(p − θ + d)

(
(p − 1)(p − 2) + 2q + 2

√
q(q − p + 1)

)
(p − 1)(q − p + 1)

. (1.9)

The critical exponent qc(p,Nα, θ, d) can be calculated directly from the above quadratic inequality for
q.Moreover, our result recovers the known result for weighted elliptic problem in [5, Theorem 3] when
α = 0 and p = 2, and the previous result in [13, Theorem 2.3] with α = θ = 0 and p = 2.
Remark 1.7. If α = 0, we obtain

qc(p,N, θ, d) =

p − 1 +
(p − θ + d)

(
p(N − p + θ) − 2(p − θ + d) + 2

√
(p − θ + d)(N + d +

N+θ−p
p−1 )

)
(N − p + θ)(N − µ0(p, θ, d))

.

It is the critical exponent qc in [4, 22]. If α = θ = 0, we have

qc(p,N, 0, d) = p − 1 +
(p + d)

(
p(N − p) − 2(p + d) + 2

√
(p + d)(N + d +

N−p
p−1 )

)
(N − p)(N − µ0(p, 0, d))

,

which is the critical exponent qc in [3]. If α = θ = d = 0, then

qc(p,N, 0, 0) = p − 1 +
p2(N − p) − 2p2 + 2p2

√
N−1
p−1

(N − p)(N − µ0(p, 0, 0))
,

which equals the critical exponent pc in [6]. If p = 2 and α = θ = 0, we conclude

qc(2,N, 0, d) = 1 +
2(2 + d)

(
N − 4 − d +

√
(2 + d)(2N − 2 + d)

)
(N − 2)(N − 10 − 4d)

.

It is the critical exponent p̄(d) in [8]. If p = 2 and α = θ = d = 0, we get

qc(2,N, 0, 0) = 1 +
4
(
N − 4 + 2

√
N − 1

)
(N − 2)(N − 10)

,
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which is the critical exponent pc(N) in [12]. Finally, if p = 2, Theorem 1.5 recovers the known result
for the Grushin operator in [20, Proposition 3], and if α = 0, Theorem 1.5 recovers [22, Theorem 1.5].
Therefore, our conclusion of Theorem 1.5 can be viewed as an expansion of the previous works, which
is therefore interesting and meaningful.

The rest of the paper is devoted to the proof of Theorem 1.5. In the following , C stands for a generic
positive constant which may vary from line to line even in the same line. If this constant depends on
an arbitrary small number ε, then we denote it by Cε.

2. Proofs

We begin with the following proposition.
Proposition 2.1. Let u ∈ X be a stable weak solution of (1.1) with q > p − 1 ≥ 1. Then for every
s ∈ (1, h(p)), where

h(t) = −1 +
2
(
t +

√
t(t − p + 1)

)
p − 1

, t > p − 1 (2.1)

and for any constant m ≥ q+s
q−p+1 , there exists a constant C > 0 depending only on p, q, s and m such

that ∫
RN

(
ω2(z)|u|q+s + ω1(z)|∇Gu|p|u|s−1

)
ϕpmdz ≤ C

∫
RN
ω1(z)

q+s
q−p+1ω2(z)−

p−1+s
q−p+1 |∇Gϕ|

p(q+s)
q−p+1 dz (2.2)

holds for all functions ϕ ∈ C1
0(RN) satisfying 0 ≤ ϕ ≤ 1 and ∇Gϕ = 0 in a neighborhood of {z ∈ RN :

ω2(z) = 0}.
Proof. Some ideas in this proof are inspired by [22, 31]. Since ωi(z)(i = 1, 2) are not necessarily
locally bounded, the solutions of (1.1) are not necessarily locally bounded. To overcome this difficulty,
we shall construct a sequence of suitable cut-off functions. Let n be a positive integer, we denote

δn(t) =

{
|t|

s−1
2 t, |t| ≤ n,

n
s−1
2 t, |t| > n,

νn(t) =

{
|t|s−1t, |t| ≤ n,
ns−1t, |t| > n.

By a direct computation, we obtain that for any t ∈ R, there exists a positive constant C depending only
on s such that

δ2
n(t) = tνn(t), δ′n(t)2 ≤

(1 + s)2

4s
ν′n(t),

|δn(t)|pδ′n(t)2−p + |νn(t)|pν′n(t)1−p ≤ C|t|p−1+s.

(2.3)

Moreover, since u ∈ X we deduce that δn(u), νn(u) ∈ X for any n ∈ Z+.

For any nonnegative function φ ∈ C1
0(RN) satisfying 0 ≤ φ ≤ 1, set ψ = νn(u)φp as a test function in

(1.5). Then we have∫
RN
ω1(z)|∇Gu|pν′n(u)φpdz + p

∫
RN
ω1(z)νn(u)φp−1|∇Gu|p−2∇Gu · ∇Gφdz

=

∫
RN
ω2(z)|u|q−1uνn(u)φpdz.
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Applying Young’s inequality, for any ε > 0,∫
RN
ω1(z)|∇Gu|pν′n(u)φpdz

≤ p
∫
RN
ω1(z)|νn(u)||∇Gu|p−1|∇Gφ|φ

p−1dz +

∫
RN
ω2(z)|u|q−1uνn(u)φpdz

≤ ε

∫
RN

(
ω1(z)(p−1)/p|∇Gu|p−1ν′n(u)(p−1)/pφp−1

)p/(p−1)
dz

+ Cε

∫
RN

(
ω1(z)1/p|νn(u)|ν′n(u)−(p−1)/p|∇Gφ|

)p
dz +

∫
RN
ω2(z)|u|q−1uνn(u)φpdz

= ε

∫
RN
ω1(z)|∇Gu|pν′n(u)φpdz + Cε

∫
RN
ω1(z)|νn(u)|pν′n(u)1−p|∇Gφ|

pdz

+

∫
RN
ω2(z)|u|q−1uνn(u)φpdz,

which implies

(1 − ε)
∫
RN
ω1(z)|∇Gu|pν′n(u)φpdz

≤ Cε

∫
RN
ω1(z)|νn(u)|pν′n(u)1−p|∇Gφ|

pdz +

∫
RN
ω2(z)|u|q−1uνn(u)φpdz.

(2.4)

On the other hand, by virtue of the stability definition, we take ψ = δn(u)φp/2 in (1.7) and yield

q
∫
RN
ω2(z)|u|q−1δ2

n(u)φpdz

≤ (p − 1)
∫
RN
ω1(z)|∇Gu|pδ′n(u)2φpdz

+ p(p − 1)
∫
RN
ω1(z)δ′n(u)|δn(u)||∇Gu|p−1|∇Gφ|φ

p−1dz

+
p2(p − 1)

4

∫
RN
ω1(z)|∇Gu|p−2δ2

n(u)|∇Gφ|
2φp−2dz.

(2.5)

We use Young’s inequality to estimate the last two terms of the right-hand side of (2.5)

p(p − 1)
∫
RN
ω1(z)δ′n(u)|δn(u)||∇Gu|p−1|∇Gφ|φ

p−1dz

≤
ε(p − 1)

2

∫
RN

(
ω1(z)(p−1)/p|∇Gu|p−1δ′n(u)2(p−1)/pφp−1

)p/(p−1)
dz

+ Cε

∫
RN

(
ω1(z)1/p|δn(u)|δ′n(u)(2−p)/p|∇Gφ|

)p
dz

=
ε(p − 1)

2

∫
RN
ω1(z)|∇Gu|pδ′n(u)2φpdz + Cε

∫
RN
ω1(z)|δn(u)|pδ′n(u)2−p|∇Gφ|

pdz
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and

p2(p − 1)
4

∫
RN
ω1(z)|∇Gu|p−2δ2

n(u)|∇Gφ|
2φp−2dz

≤
ε(p − 1)

2

∫
RN

(
ω1(z)(p−2)/p|∇Gu|p−2δ′n(u)2(p−2)/pφp−2

)p/(p−2)
dz

+ Cε

∫
RN

(
ω1(z)2/pδ2

n(u)δ′n(u)2(2−p)/p|∇Gφ|
2
)p/2

dz

=
ε(p − 1)

2

∫
RN
ω1(z)|∇Gu|pδ′n(u)2φpdz + Cε

∫
RN
ω1(z)|δn(u)|pδ′n(u)2−p|∇Gφ|

pdz.

Substituting the above two inequalities into (2.5), one has

q
∫
RN
ω2(z)|u|q−1δ2

n(u)φpdz ≤ (1 + ε)(p − 1)
∫
RN
ω1(z)|∇Gu|pδ′n(u)2φpdz

+ Cε

∫
RN
ω1(z)|δn(u)|pδ′n(u)2−p|∇Gφ|

pdz.
(2.6)

With the help of (2.3), it follows from (2.4) and (2.6) that

q
∫
RN
ω2(z)|u|q−1δ2

n(u)φpdz ≤
(1 + ε)(1 + s)2(p − 1)

4s

∫
RN
ω1(z)|∇Gu|pν′n(u)φpdz

+ Cε

∫
RN
ω1(z)|δn(u)|pδ′n(u)2−p|∇Gφ|

pdz

≤
(1 + ε)(1 + s)2(p − 1)

4s(1 − ε)

∫
RN
ω2(z)|u|q−1uνn(u)φpdz

+ Cε

∫
RN
ω1(z)

(
|δn(u)|pδ′n(u)2−p + |νn(u)|pν′n(u)1−p)|∇Gφ|

pdz

≤
(1 + ε)(1 + s)2(p − 1)

4s(1 − ε)

∫
RN
ω2(z)|u|q−1δ2

n(u)φpdz

+ Cε

∫
RN
ω1(z)|u|s+p−1|∇Gφ|

pdz.

Consequently,

qε

∫
RN
ω2(z)|u|q−1δ2

n(u)φpdz ≤ Cε

∫
RN
ω1(z)|u|p−1+s|∇Gφ|

pdz, (2.7)

where qε = q− (1+ε)(1+s)2(p−1)
4s(1−ε) . Since lim

ε→0+
qε = q0 = q−

(1 + s)2(p − 1)
4s

,we have q0 > 0 under assumption
on s ∈ (1, h(p)), we can fix some ε > 0 sufficiently small such that qε > 0. Therefore,∫

RN
ω2(z)|u|q−1δ2

n(u)φpdz ≤ C
∫
RN
ω1(z)|u|p−1+s|∇Gφ|

pdz, (2.8)

where positive constant C depends only on q, p and s.
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From (2.8) and Fatou’s Lemma, we derive as n→ ∞,∫
RN
ω2(z)|u|q+sφpdz ≤ C

∫
RN
ω1(z)|u|p−1+s|∇Gφ|

pdz. (2.9)

On the other hand, choosing ε = 1/2 in (2.4) and combining (2.3) with (2.8), we can find∫
RN
ω1(z)|∇Gu|pν′n(u)φpdz

≤ C
∫
RN
ω1(z)|νn(u)|pν′n(u)1−p|∇Gφ|

pdz + 2
∫
RN
ω2(z)|u|q−1uνn(u)φpdz

≤ C
∫
RN
ω1(z)|u|p−1+s|∇Gφ|

pdz + 2
∫
RN
ω2(z)|u|q−1δ2

n(u)φpdz

≤ C
∫
RN
ω1(z)|u|p−1+s|∇Gφ|

pdz.

Letting n→ ∞ in above inequality, we have from Fatou’s Lemma that∫
RN
ω1(z)|∇Gu|p|u|s−1φpdz ≤ C

∫
RN
ω1(z)|u|p−1+s|∇Gφ|

pdz. (2.10)

Now, we assert that (2.2) holds true. In fact, we can select some positive constant m � 1 such that

(m − 1)(q + s)
p − 1 + s

≥ m, or m ≥
q + s

q − p + 1
.

Recalling 0 ≤ φ(z) ≤ 1 in RN , we obtain(
φ(z)

) p(m−1)(q+s)
p−1+s ≤

(
φ(z)

)pm
, ∀z ∈ RN .

Then, by (2.9) with φ = ϕm and Hölder’s inequality, one sees∫
RN
ω2(z)|u|q+sϕpmdz ≤ C

∫
RN
ω1(z)|u|p−1+sϕp(m−1)|∇Gϕ|

pdz

≤ C
( ∫
RN

(
ω2(z)

p−1+s
q+s |u|p−1+sϕp(m−1)) q+s

p−1+s dz
) p−1+s

q+s
( ∫
RN

(
ω1(z)ω2(z)−

p−1+s
q+s |∇Gϕ|

p) q+s
q−p+1 dz

) q−p+1
q+s

= C
( ∫
RN
ω2(z)|u|q+sϕ

p(m−1)(q+s)
p−1+s dz

) p−1+s
q+s

( ∫
RN
ω1(z)

q+s
q−p+1ω2(z)−

p−1+s
q−p+1 |∇Gϕ|

p(q+s)
q−p+1 dz

) q−p+1
q+s

≤ C
( ∫
RN
ω2(z)|u|q+sϕpmdz

) p−1+s
q+s

( ∫
RN
ω1(z)

q+s
q−p+1ω2(z)−

p−1+s
q−p+1 |∇Gϕ|

p(q+s)
q−p+1 dz

) q−p+1
q+s

.

(2.11)

Hence, ∫
RN
ω2(z)|u|q+sϕpmdz ≤ C

∫
RN
ω1(z)

q+s
q−p+1ω2(z)−

p−1+s
q−p+1 |∇Gϕ|

p(q+s)
q−p+1 dz. (2.12)

Analogously, take φ = ϕm in (2.10) and combining (2.11) with (2.12), one can achieve∫
RN
ω1(z)|∇Gu|p|u|s−1ϕpmdz ≤ C

∫
RN
ω1(z)|u|p−1+sϕp(m−1)|∇Gϕ|

pdz

≤ C
∫
RN
ω1(z)

q+s
q−p+1ω2(z)−

p−1+s
q−p+1 |∇Gϕ|

p(q+s)
q−p+1 dz.
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Therefore, combining this with (2.12), (2.2) is obtained immediately. This completes the proof. �
Let R > 0, Ω2R = B1(0, 2R) × B2(0, 2R1+α), where Bi ⊂ R

Ni , with i = 1, 2, are open ball centered
at 0, the radii are 2R and 2R1+α, respectively. We consider a cut-off function κ(t) ∈ C∞0 ([0,+∞); [0, 1])
satisfying

κ(t) =

{
1, 0 ≤ t ≤ 1,
0, t ≥ 2.

Moreover, we define

ϕ1,R(x) = κ(
|x|
R

), x ∈ RN1 , ϕ2,R(y) = κ(
|y|

R1+α
), y ∈ RN2

and

ϕR(x, y) = ϕ1,R(x)ϕ2,R(y), (x, y) ∈ RN = RN1 × RN2 . (2.13)

The direct calculations yield

|∇xϕ1,R| ≤ CR−1, |∇yϕ2,R| ≤ CR−(1+α),

|∆xϕ1,R| ≤ CR−2, |∆yϕ2,R| ≤ CR−2(1+α),

|∇GϕR|
2 + |∆GϕR| ≤ CR−2, ∀x ∈ RN1 , y ∈ RN2 ,

R ≤ ‖z‖G ≤ CR, ∀z = (x, y) ∈ Ω2R \ΩR,

(2.14)

where positive constant C is independent of R.
Proof of Theorem 1.5. By contradiction, we assume that (1.1) admits a nontrivial stable weak solution
u. Applying (2.2) with a test function ϕR(x, y) which is given by (2.13), we derive that for all R ≥ R0

(R0 comes from a set of assumptions denoted by (H)), there exists a constant C > 0 independent of R
such that ∫

ΩR

(ω2(z)|u|q+s + ω1(z)|∇Gu|p|u|s−1)dz ≤ CR−
p(q+s)
q−p+1

∫
Ω2R\ΩR

‖z‖
(q+s)θ−(p−1+s)d

q−p+1

G dz ≤ CRµ (2.15)

with

µ = Nα −
(p − θ)(q + s) + (p − 1 + s)d

q − p + 1
.

Here, we have utilized (H) and (2.14).
Clearly, if µ < 0 for some certain s ∈ (1, h(p)), it implies from (2.15) that∫

RN
(ω2(z)|u|q+s + ω1(z)|∇Gu|2|u|s−1)dz = 0

as R → +∞, i.e., u ≡ 0 in RN , which contradicts the assumption about u. Therefore, we obtain the
desired conclusion.

Now, we consider the cases in which µ < 0. Set

g(t) =
(p − θ)

(
t + h(t)

)
+

(
p − 1 + h(t)

)
d

t − p + 1
, t > p − 1,
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where h(t) is given by (2.1). Elementary calculations lead to

lim
t→(p−1)+

h(t) = 1, lim
t→+∞

h(t) = +∞, h′(t) > 0, t > p − 1

and

lim
t→(p−1)+

g(t) = +∞, lim
t→+∞

g(t) = µ0(p, θ, d).

Since

g′(t) =
(p − θ + d)
(t − p + 1)2

(
− p −

t − p + 1√
t(t − p + 1)

)
< 0, t > p − 1,

the function g(t) is decreasing on (p − 1,+∞).
Therefore, if Nα ≤ µ0(p, θ, d), then Nα < g(t) for t > p − 1. Thus if we fix s ∈ (1, h(p)) sufficiently

near to h(p), we see that

µ = Nα −
(p − θ)(q + s) + (p − 1 + s)d

q − p + 1
< 0, q > p − 1,

which implies the nonexistence of nontrivial stable weak solutions of (1.1).
Assume now Nα > µ0(p, θ, d). According to the monotonicity of g(t), there is a unique critical value

qc(p,N, θ, d) > p − 1 such that Nα < g(t) for p − 1 < t < qc(p,N, θ, d). So if we choose s ∈ (1, h(p))
sufficiently near to h(p), we get

µ = Nα −
(p − θ)(q + s) + (p − 1 + s)d

q − p + 1
< 0, p − 1 < q < qc(p,N, θ, d),

which implies the nonexistence of nontrivial stable weak solutions of (1.1). Moreover, qc(p,N, θ, d) can
be derived from the equation Nα = h(p), which are given by (1.8). The proof is finished. �

3. Conclusion

We consider a class of weighted Lane-Emden equation involving Grushin operator. Based on the
approaches by Farina [12] and Le [22], we establish a Liouville-type theorem for the class of stable
sign-changing weak solution under various assumptions.
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