The boundedness of singular and fractional integral operator on Lebesgue and Hardy spaces have been well studied. The theory of Herz space and Herz type Hardy space, as a local version of Lebesgue and Hardy space, have been developed. The main purpose of this paper is to establish the endpoint continuity properties of some multilinear operators related to certain non-convolution type fractional singular integral operators on Herz and Herz type Hardy spaces and the endpoint estimates for the multilinear operators on Herz and Herz type Hardy spaces are obtained.
Citation: Dazhao Chen. Endpoint estimates for multilinear fractional singular integral operators on Herz and Herz type Hardy spaces[J]. AIMS Mathematics, 2021, 6(5): 4989-4999. doi: 10.3934/math.2021293
The boundedness of singular and fractional integral operator on Lebesgue and Hardy spaces have been well studied. The theory of Herz space and Herz type Hardy space, as a local version of Lebesgue and Hardy space, have been developed. The main purpose of this paper is to establish the endpoint continuity properties of some multilinear operators related to certain non-convolution type fractional singular integral operators on Herz and Herz type Hardy spaces and the endpoint estimates for the multilinear operators on Herz and Herz type Hardy spaces are obtained.
[1] | S. Chanillo, A note on commutators, Indiana U. Math. J., 31 (1982), 7-16. doi: 10.1512/iumj.1982.31.31002 |
[2] | W. Chen, G. Hu, Weak type ($H^1$, $L^1$) estimate for multilinear singular integral operator, Adv. Math., 30 (2001), 63-69. |
[3] | J. Cohen, A sharp estimate for a multilinear singular integral on $R^n$, Indiana U. Math. J., 30 (1981), 693-702. doi: 10.1512/iumj.1981.30.30053 |
[4] | J. Cohen, J. O. Gosselin, On multilinear singular integral operators on $R^n$, Studia Math., 72 (1982), 199-223. doi: 10.4064/sm-72-3-199-223 |
[5] | J. Cohe, J. Gosselin, A BMO estimate for multilinear singular integral operators, Illinois J. Math., 30 (1986), 445-465. doi: 10.1215/ijm/1256044539 |
[6] | R. R. Coifman, R. Rochberg, G. Weiss, Factorization theorems for Hardy spaces in several variables, Ann. Math., 103 (1976), 611-635. doi: 10.2307/1970954 |
[7] | Y. Ding, S. Z. Lu, Weighted boundedness for a class rough multilinear operators, Acta Math. Sin., 17 (2001), 517-526. |
[8] | J. Garcia-Cuerva, Hardy spaces and Beurling algebras, J. Lond. Math. Soc., 39 (1989), 499-513. |
[9] | J. Garcia-Cuerva, M. L. Herrero, A theory of Hardy spaces associated to the Herz spaces, P. Lond. Math. Soc., 69 (1994), 605-628. |
[10] | J. Garcia-Cuerva, J. L. R. de Francia, Weighted norm inequalities and related topics, North Holland, 116 (1985). |
[11] | E. Harboure, C. Segovia, J. L. Torrea, Boundedness of commutators of fractional and singular integrals for the extreme values of $p$, Illinois J. Math., 41 (1997), 676-700. doi: 10.1215/ijm/1256068988 |
[12] | S. Z. Lu, D. C. Yang, The decomposition of the weighted Herz spaces and its applications, Sci. China (Ser. A), 38 (1995), 147-158. |
[13] | S. Z. Lu, D. C. Yang, The weighted Herz type Hardy spaces and its applications, Sci. China (Ser. A), 38 (1995), 662-673. |
[14] | S. Z. Lu, D. C. Yang, The continuity of commutators on Herz type spaces, Michigan Math. J., 44 (1997), 255-281. doi: 10.1307/mmj/1029005703 |
[15] | E. M. Stein, Harmonic Analysis: real variable methods, orthogonality and oscillatory integrals, Princeton University Press, 1993. |
[16] | A. Torchinsky, S. Wang, A note on the Marcinkiewicz integral, Colloq. Math., 60-61 (1990), 235-243. |