We use some properties of gamma functions and a summation formula for Kampé de Fériet function $ F_{1:1;1}^{0:3;3} $ to give many double series expansions for $ 1/\pi $ and $ \pi $.
Citation: Long Li. Double series expansions for $ \pi $[J]. AIMS Mathematics, 2021, 6(5): 5000-5007. doi: 10.3934/math.2021294
We use some properties of gamma functions and a summation formula for Kampé de Fériet function $ F_{1:1;1}^{0:3;3} $ to give many double series expansions for $ 1/\pi $ and $ \pi $.
[1] | G. E. Andrews, R. Askey, R. Roy, Special functions, Cambridge University Press, Cambridge, 1999. |
[2] | P. Appell, J. K. de Fériet, Fonctions Hypergéométriques et Hypergéométriques: Polynômes d'Hermite, Gauthier-Villars, 1926. |
[3] | W. N. Bailey, Generalized hypergeometric series, Cambridge University Press, Cambridge, 1935. |
[4] | N. D. Baruah, B. C. Berndt, Ramanujan's series for $1/\pi$ arising from his cubic and quartic theories of elliptic functions, J. Math. Anal. Appl., 341 (2008), 357–371. doi: 10.1016/j.jmaa.2007.10.011 |
[5] | J. M. Borwein, P. B. Borwein, Pi and the AGM, Wiley, New York, 1987. |
[6] | H. H. Chan, S. H. Chan, Z. Liu, Domb's numbers and Ramanujan-Sato type series for $1/\pi, $ Adv. Math., 186 (2004), 396–410. |
[7] | W. Chu, $\pi$-formulas implied by Dougall's summation theorem for $_5F_4$-series, Ramanujan J., 26 (2011), 251–255. doi: 10.1007/s11139-010-9274-x |
[8] | K. S. Chua, Extremal modular lattices, Mckay Thompson series, quagratic iterations, and new series for $1/\pi, $ Exp. Math., 14 (2005), 343–357. |
[9] | J. Guillera, WZ pairs and $q$-analogues of Ramanujan series for $1/\pi$, J. Differ. Equ. Appl., 24 (2018), 1871–1879. doi: 10.1080/10236198.2018.1551380 |
[10] | J. Guillera, Bilateral Ramanujan-like series for $1/\pi^k$ and their congruences, Int. J. Number Theory, 16 (2020), 1969–1988. doi: 10.1142/S1793042120501018 |
[11] | J. Guillera, W. Zudilin, Ramanujan-type formulae for $1/\pi$: the art of translation, Ramanujan Math. Soc. Lect. Notes Ser., 20 (2013), 181–195. |
[12] | V. J. W. Guo, $q$-Analogues of three Ramanujan-type formulas for $1/\pi$, Ramanujan J., 52 (2020), 123–132. doi: 10.1007/s11139-018-0096-6 |
[13] | V. J. W. Guo, J. C. Liu, $q$-Analogues of two Ramanujan-type formulas for $1/\pi$, J. Differ. Equ. Appl., 24 (2018), 1368–1373. doi: 10.1080/10236198.2018.1485669 |
[14] | V. J. W. Guo, W. Zudilin, Ramanujan-type formulae for $1/\pi$: $q$-analogues, Integral Transforms Spec. Funct., 29 (2018), 505–513. doi: 10.1080/10652469.2018.1454448 |
[15] | Z. G. Liu, Gauss summation and Ramanujan type series for $1/\pi$ and $1/{\pi}^2, $ Int. J. Number Theory, 8 (2012), 289–297. |
[16] | Z. G. Liu, A summation formula and Ramanujan type series, J. Math. Anal. Appl., 389 (2012), 1059–1065. doi: 10.1016/j.jmaa.2011.12.048 |
[17] | S. N. Pitre, J. Van der Jeugt, Transformation and summation formulas for Kampé de Fériet series $F_{1:1}^{0:3}(1, 1)$, J. Math. Anal. Appl., 202 (1996), 121–132. doi: 10.1006/jmaa.1996.0306 |
[18] | S. Ramanujan, Modular equations and approximations to $\pi$, Quart. J. Math. Oxford Ser., 45 (1914), 350–372. |
[19] | H. M. Srivastava, P. W. Karlsson, Multiple Gaussian hypergeometric series, Halsted/Ellis Horwood/Wiley, New York/Chichester/New York, 1985. |
[20] | C. Wei, $q$-Analogues of several $\pi$-formulas, Proc. Amer. Math. Soc., 148 (2020), 2287–2296. doi: 10.1090/proc/14664 |
[21] | C. Wei, D. Gong, Extensions of Ramanujan's two formulas for $1/\pi, $ J. Number Theory, 133 (2013), 2206–2216. |
[22] | C. Wei, D. Gong, J. Li, $\pi$-formulas with free parameters, J. Math. Anal. Appl., 396 (2012), 880–887. doi: 10.1016/j.jmaa.2012.07.039 |
[23] | R. M. Young, An introduction to nonharmonic Fourier series, Academic Press, New York, 1980. |