Research article

On some refinements for inequalities involving zero-balanced hypergeometric function

  • Received: 08 June 2020 Accepted: 13 August 2020 Published: 19 August 2020
  • MSC : 33E05, 33C05

  • In the article, we present an elegant double inequality for the ratio of the zero-balanced hypergeometric functions, which improve and refine some previously known results and also give a positive answer the question by proposed by Ismail.

    Citation: Tie-Hong Zhao, Zai-Yin He, Yu-Ming Chu. On some refinements for inequalities involving zero-balanced hypergeometric function[J]. AIMS Mathematics, 2020, 5(6): 6479-6495. doi: 10.3934/math.2020418

    Related Papers:

    [1] Ye-Cong Han, Chuan-Yu Cai, Ti-Ren Huang . Monotonicity, convexity properties and inequalities involving Gaussian hypergeometric functions with applications. AIMS Mathematics, 2022, 7(4): 4974-4991. doi: 10.3934/math.2022277
    [2] Li Xu, Lu Chen, Ti-Ren Huang . Monotonicity, convexity and inequalities involving zero-balanced Gaussian hypergeometric function. AIMS Mathematics, 2022, 7(7): 12471-12482. doi: 10.3934/math.2022692
    [3] A. Belafhal, N. Nossir, L. Dalil-Essakali, T. Usman . Integral transforms involving the product of Humbert and Bessel functions and its application. AIMS Mathematics, 2020, 5(2): 1260-1274. doi: 10.3934/math.2020086
    [4] Xi-Fan Huang, Miao-Kun Wang, Hao Shao, Yi-Fan Zhao, Yu-Ming Chu . Monotonicity properties and bounds for the complete p-elliptic integrals. AIMS Mathematics, 2020, 5(6): 7071-7086. doi: 10.3934/math.2020453
    [5] Fei Wang, Bai-Ni Guo, Feng Qi . Monotonicity and inequalities related to complete elliptic integrals of the second kind. AIMS Mathematics, 2020, 5(3): 2732-2742. doi: 10.3934/math.2020176
    [6] Chuan-Yu Cai, Qiu-Ying Zhang, Ti-Ren Huang . Properties of generalized (p,q)-elliptic integrals and generalized (p,q)-Hersch-Pfluger distortion function. AIMS Mathematics, 2023, 8(12): 31198-31216. doi: 10.3934/math.20231597
    [7] Tie-Hong Zhao, Miao-Kun Wang, Yu-Ming Chu . A sharp double inequality involving generalized complete elliptic integral of the first kind. AIMS Mathematics, 2020, 5(5): 4512-4528. doi: 10.3934/math.2020290
    [8] Xian Hemingway . The Generalized Riemann Hypothesis on elliptic complex fields. AIMS Mathematics, 2023, 8(11): 25772-25803. doi: 10.3934/math.20231315
    [9] Abdelhamid Zaidi, Saleh Almuthaybiri . Explicit evaluations of subfamilies of the hypergeometric function 3F2(1) along with specific fractional integrals. AIMS Mathematics, 2025, 10(3): 5731-5761. doi: 10.3934/math.2025264
    [10] Saima Naheed, Shahid Mubeen, Gauhar Rahman, M. R. Alharthi, Kottakkaran Sooppy Nisar . Some new inequalities for the generalized Fox-Wright functions. AIMS Mathematics, 2021, 6(6): 5452-5464. doi: 10.3934/math.2021322
  • In the article, we present an elegant double inequality for the ratio of the zero-balanced hypergeometric functions, which improve and refine some previously known results and also give a positive answer the question by proposed by Ismail.


    Let a,b,cR with c0,1,2,. Then the Gaussian hypergeometric function F(a,b;c;r) [1,2,3] is defined by

    F(a,b;c;r)=2F1(a,b;c;r)=n=0(a)n(b)n(c)nn!rn(|r|<1), (1.1)

    where (a)0=1, (a)n=a(a+1)(a+2)(a+n1)=Γ(a+n)/Γ(a) for nN={1,2,} is the Pochhammer symbol and Γ(x)=0tx1etdt is the classical Euler gamma function [4,5]. If c=a+b, then F(a,b;a+b;r) is said to be zero-balanced. In particular, the complete elliptic integral K(r) [6,7] and generalized complete elliptic integral Ka(r) (r(0,1),a(0,1/2]) [8] of the first kind are the special cases of the Gaussian hypergeometric function F(a,b;c;r). Indeed, K(r) and Ka(r) can be expressed by

    K(r)=π2F(1/2,1/2;1;r2)

    and

    Ka(r)=π2F(a,1a;1;r2),r(0,1). (1.2)

    In 2016, Takeuchi [9] introduced the complete p-elliptic integral Kp(r) of the first kind in terms of the Gaussian hypergeometric functions as follows

    Kp(r)=πp2F(1/p;11/p;1;rp),

    where πp is given by

    πp2=1pB(1/p,11/p)=πpsin(π/p)

    and

    B(a,b)=10ta1(1t)b1dt=Γ(a)Γ(b)Γ(a+b)

    is the Beta function.

    Recently, the Gaussian hypergeometric function and its special cases have attracted the attention of many researchers [10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25] due to they have wide applications in pure and applied mathematics [26,27,28,29,30,31,32,33,34,35,36,37,38,39,40].

    Anderson et al. [41] proved that the double inequality

    K(r)K(r)>11+r (1.3)

    holds for all r(0,1).

    Motivated by inequality (1.3), many researchers provided its improvements, variants, refinements and generalizations. For example, Alzer and Richards [42] proved that the double inequality

    11+σ(a)r<Ka(r)Ka(r)<11+τar (1.4)

    holds for all a(0,1/2] and r(0,1) with the best possible factors σ(a)=a(1a) and τa=0.

    Recently, Yin et al. [43] generalized inequality (1.4) to the case of complete p-elliptic integral of the first kind Kp(r) and a sharp improvement of (1.4) was presented by Zhao et al. in [8]. Ismail [42, p. 1669] asked whether the inequality (1.4) can be extended to the zero-balanced hypergeometric function. Inspired by this question, Richards [44] proved the following result which is to answer the question by Ismail from another point of view.

    Theorem A. (See [44]) Let a,b>0. Then the double inequality

    1(1+r)λ(a,b)<F(a,b;a+b;r2)F(a,b;a+b;r)<1(1+r)μ(a,b)

    holds for all r(0,1) with the best possible exponents λ(a,b)=ab/(a+b) and μ(a,b)=0.

    The main purpose of this paper is to generalize the inequality (1.4) to the case of zero-balanced hypergeometric function and also make some refinements of (1.4) and Theorem A under certain restriction of a,b, which gives an affirmative answer to the question by Ismail. Our main result is the following Theorem 1.1.

    Throughout this paper, we mainly focus on the parameters satisfying a+b6ab/5 for a,b>0. By the symmetry, our parameters might be only consider as 0<a<b and a+b6ab/5, which is equivalent to

    {(a,b)| 0<a56, b>0}{(a,b)| 56<a53, a<b5a6a5}. (1.5)

    For convenience, we denote σ(a,b) and τ(a,b) by σ and τ simply if no risk for confusion, where

    σ(a,b)=aba+bandτ(a,b)=ab(a+bab+1)2(a+b)(a+b+1).

    Theorem 1.1. Let a,b>0 with a+b6ab/5. Then the double inequality

    1+τr2+αr31+σr<F(a,b;a+b;r2)F(a,b;a+b;r)<1+τr2+βr31+σr (1.6)

    holds for all r(0,1) if and only if αα0 and ββ0, where

    α0=α0(a,b)=ab(a+1)(b+1)[a(2+a)+(1a)(2+a)b+(1a)b2]3(a+b)2(a+b+1)(a+b+2),β0=β0(a,b)=ab(a+1)(b+1)2(a+b)(1+a+b).

    Remark 1.2. For later use, we need discuss about the sign of α0 and α0+τ for a,b>0 with a+b6ab/5.

    ● Let ˆα(a,b)=a(2+a)+(1a)(2+a)b+(1a)b2. Then it is easy to see that ˆα(a,b)>0 for 0<a1 and b>0. Moreover, it follows from (1.5) that

    ˆα(a,b)ˆα(a,5a6a5)=3a2[(2a3)2+1]2(6a5)2>0

    for 1<a5/3 and a<b5a/(6a5). This yields α0<0.

    ● By calculations, we obtain

    α0+τ=ab6(a+b)2(1+a+b)(2+a+b)[a(1+a)(2+a)+1125[(53a)(50+330a+223a2)+294a3]b+(1+a)(32a+2a2)b2+(2a1)(a1)b3].

    From the above expression, we clearly see that α0+τ>0 for 0<a1/2 (or 1a5/3) and b>0, and α0+τ<0 for 1/2<a5/6 and sufficiently large b>0.

    As mentioned in (1.2), if b=1a, then F(a,b;a+b;r2)/F(a,b;a+b;r) reduces to the ratio of generalized complete elliptic integral of the first kind Ka(r)/Ka(r) and a(1a)1/4 for 0<a<1. That is to say Theorem 1.1 in [8] can be derived from our Theorem 1.1 as a corollary.

    Corollary 1.3. Let a(0,1/2]. Then the double inequality

    1+τ(a)r2+λ(a)r31+σ(a)r<Ka(r)Ka(r)<1+τ(a)r2+μ(a)r31+σ(a)r (1.7)

    holds for all r(0,1), where σ(a)=σ(a,1a),τ(a)=τ(a,1a) and λ(a)=α0(a,1a), μ(a)=β0(a,1a) are defined in the literature [8].

    Remark 1.4. Corollary 1.3 gives an affirmative answer to the question by Ismail. Moreover, the bounds for inequality (1.7) are better than (1.4). Indeed, from λ(a)<0, σ(a)=τ(a)+μ(a) and τ(a)+λ(a)=a(1a)[(12a)(6+13a+33a2)+2a3(25+4a)]/36>0 for a(0,1/2], we obtain

    1+τ(a)r2+λ(a)r31+σ(a)r=11+σ(a)r+r21+σ(a)r[τ(a)+λ(a)r]>11+σ(a)r+r21+σ(a)r[τ(a)+λ(a)]>11+σ(a)r

    and

    1+τ(a)r2+μ(a)r31+σ(a)r<1+τ(a)r+μ(a)r1+σ(a)r=1

    for r(0,1) and a(0,1/2].

    Remark 1.5. Under the assumption of Theorem 1.1, the upper bound of (1.6) is better than that in Theorem A due to

    1+τr2+βr31+σr<1+τr+βr1+σr=1

    from σ=τ+β0. On the other hand, in order to compare the lower bound of (1.6) and Theorem A, it suffices to take into account the sign of f(r):=(1+τr2+α0r3)(1+r)σ(1+σr).

    Differentiation yields

    f(r)=(1+r)σ1[σ+2τr+(3α0+2τ+στ)r2+α0(3+σ)r3]σ,f(r)=(1+r)σ2ˆf(r), (1.8)

    where

    ˆf(r)=2τσ+σ2+2(3α0+2τ+2στ)r+(2+σ)(6α0+τ+στ)r2+α0(σ+2)(σ+3)r3.

    It follows from

    2τσ+σ2=a2b2(a+b)2(1+a+b),3α0+2τ+2στ=a2b2(5+3a+3b+ab)(a+b)2(1+a+b)(2+a+b)

    and α0<0 that ˆf(r) can be regarded as the special polynomial defined in Lemma 2.1. We can verify but miss the details that ˆf(1)<0 for a,b>0 with a+b6ab/5. This in conjunction with Lemma 2.1 implies that there exists r(0,1) such that ˆf(r)>0 for r(0,r) and ˆf(r)<0 for r(r,1). Combining this with (1.8) and f(0)=f(0)=0, we conclude that f(r)>0 for r(0,r] and f(r) is strictly concave on (r,1).

    For a,b>0 with a+b6ab/5, we have the following two conclusion:

    ● if f(1)0, then f(r)>min{f(r),f(1)}0 for r(r,1). This yields the lower bound of (1.6) is better than that in Theorem A for r(0,1) and we refer to see the domain of a,b illustrated in Figure 1;

    Figure 1.  Visualized the domain {(a,b)| a,b>0,a+b6ab/5,f(1)0}.

    ● if f(1)<0, then there exists r(r,1) such that the lower bound of (1.6) is better than that in Theorem A for r(0,r).

    In this section, we introduce some notations and present some technical lemmas, which will be used in proving our main result.

    Let a,b>0 and

    Δn:=Δn(a,b)=(a)n(b)nn!(a+b)n.

    Then we clearly see from (1.1) that F(a,b;a+b;r) can be expressed simply as

    F(a,b;a+b;r)=n=0Δnrn. (2.1)

    It is easy to verify that Δn satisfies the recurrence relation

    Δn+1Δn=(n+a)(n+b)(a+b+n)(n+1) (2.2)

    and also Δn is strictly decreasing for n0 if a+bab.

    The following lemma provides a simple criterion to determine the sign of a class of special polynomial.

    Lemma 2.1. (See [45, Lemma 7) Let n,mN{0} with n>m and Pn(t) be the polynomial of degree n defined by

    Pn(t)=mi=0aitini=m+1aiti,

    where am,an>0 and ai0 for 0in1 with im. Then there exist t0(0,) such that Pn(t0)=0 and Pn(t)>0 for t(0,t0) and Pn(t)<0 for t(t0,).

    Lemma 2.2. (1) For a,b>0, then nΔn(a,b) is strictly increasing for n1. In particular,

    Δn(a,b)Δm(a,b)<mn (2.3)

    for m>n1.

    (2) For a,b>0 with a+b6ab/5, then Δn+1/Δn is strictly increasing for n1.

    (3) For a,b>0 with a+bab, then Δn+1/Δn>Δ2n+2/Δ2n holds for n0.

    Proof. (1) From the recurrence relation (2.2) of Δn, we clearly see that

    (n+1)Δn+1nΔn=n+1n(a+n)(b+n)(a+b+n)(n+1)=1+abn(a+b+n)>1

    for a,b>0 and n1. This yields the monotonicity of nΔn(a,b) with respect to n and inequality (2.3) follows directly from the monotonicity of nΔn(a,b).

    (2) Taking the differentiation of (2.2) with respect to n yields

    (Δn+1/Δn)n=δ1(n;a,b)(n+1)2(a+b+n)2, (2.4)

    where

    δ1(n;a,b)=a2+a(1a)b+(1a)b2+2(a+bab)n+n2.

    ● If 0<a1 and b>0, then we clearly see that δ1(n;a,b)>0 for n1.

    ● If 1<a5/3, then it follows from (1.5) that

    δ1(n;a,b)δ(1;a,b)=(a+1)2(a1)(a+2)b(a1)b2(a+1)2(a1)(a+2)5a6a5(a1)(5a6a5)2=4+3(a1)[4+(a1)(10+(a1)2+a2)](6a5)2>0

    for n1.

    Therefore, the proof is completed from (2.4) and δ1(n;a,b)>0.

    (3) From (2.2) we clearly see that

    Δn+1ΔnΔ2n+2Δ2n=(n+a)(n+b)(a+b+n)(n+1)(2n+a)(2n+b)(2n+1+a)(2n+1+b)(a+b+2n)(2n+1)(a+b+2n+1)(2n+2)=abδ2(n;a,b)2(n+1)(2n+1)(a+b+n)(a+b+2n)(1+a+b+2n), (2.5)

    where

    δ2(n;a,b)=(a+b)(1+a+bab)+[3(1+2a+2b)+a+bab]n+4(3+a+b)n2+8n3.

    Combining this with a+bab and (2.5) yields the desired result.

    Lemma 2.3. Let a,b>0 with a+b6ab/5 and ρn(a,b)=(1+σ)Δn+22(α0+τ)Δ2n+22Δ2n+4. Then ρn(a,b)>0 for n2.

    Proof. Let ˆρn(a,b)=(1+σ)Δn+22Δ2n+4. Then Remark 1.2 makes us to know that the sign of α0+τ can not be determined. We divide into two cases to complete the proof by mathematical induction.

    Case 1 α0+τ0. It suffices to show that ˆρn(a,b)>0 for n0.

    From the definition of Δn, we compute that

    ˆρ0(a,b)=a2(a+1)b2(b+1)η(a,b)12(a+b)2(1+a+b)(2+a+b)(3+a+b), (2.6)

    where

    η(a,b)=36+17a+a2+(17+2aa2)b+(1a)b2.

    It follows from 0<a1 that η(a,b)>0. For a>1, we clearly see that η(a,b)>0 from (1.5) and Lemma 2.1 together with

    η(a,5a6a5)=6[24+212(a1)+(a1)2(338+104a+a2)](6a5)2>0.

    This in conjunction with (2.6) yields ˆρ0(a,b)>0.

    We assume that ˆρk(a,b)>0, namely, (1+σ)Δk+2>2Δ2k+4 for k0. By the induction hypothesis, it follows from Lemma 2.2(3) and n=k+2 that

    ˆρk+1(a,b)=(1+σ)Δk+2Δk+3Δk+22Δ2k+6>2Δ2k+4Δk+3Δk+22Δ2k+6=2Δ2k+4(Δk+3Δk+2Δ2k+6Δ2k+4)>0.

    This completes the proof of Case 1.

    Case 2 α0+τ>0.

    By simple calculations, ρ2(a,b) can be simplified as

    ρ2(a,b)=ab3i=0(a+i)3j=0(b+j)60480(a+b)2i=0(a+b+i)7j=0(a+b+j)7k=0ϵk(a)bk, (2.7)

    where

    ϵ0(a)=2a(1+a)(2+a)(823200+465754a+87277a2+5546a3+23a4),ϵ1(a)=3292800+10782032a+13070784a2+7204178a3+2041437a4+313859a5+25539a6+891a7,ϵ2(a)=6802216+13070784a+8341952a2+1941253a3+2474a467079a59902a6458a7,ϵ3(a)=4790032+7204178a+1941253a2896662a3577922a4121105a511511a6423a7,ϵ4(a)=1477354+2041437a+2474a2577922a3227680a436779a52588a656a7,ϵ5(a)=207922+313859a67079a2121105a336779a44330a5168a6,ϵ6(a)=11230+25539a9902a211511a32588a4168a5,ϵ7(a)=(1a)(46+937a+479a2+56a3).

    Obviously, it follows that ϵ0(a)>0,ϵ1(a)>0 for a>0 and ϵ7(a)0 for 0<a1 and ϵ7(a)<0 for 1<a5/3. Moreover, ϵk(a) (k=2,3,,6) is the special polynomial defined in Lemma 2.1. It follows from Lemma 2.1 and

    ϵ2(5/3)=1305072134722187,ϵ3(5/3)=95252967281,ϵ4(5/3)=1666165122187,ϵ5(5/3)=87250384243,ϵ6(5/3)=132656027

    that ϵ2(a)>0,ϵ3(a)>0 for 0<a5/3 and there exits ak(0,5/3) (k=4,5,6) such that ϵk(a)>0 for 0<a<ak and ϵk(a)<0 for ak<a5/3. The roots ak can be computed numerically as follows a4=1.65774>a5=1.41613>a6=1.22785>1. So

    ● for 0<a1, then it follows that 7k=0ϵk(a)bk>0;

    ● for 1<a5/3, then we can consider the following intervals (1,a6], (a6,a5], (a5,a4], (a4,5/3] and 7k=0ϵk(a)bk can be regarded as the special polynomial defined in Lemma 2.1 on each such interval, which yields 7k=0ϵk(a)bk>0 following from (1.5) and Lemma 2.1 together with

    7k=0ϵk(a)(5a6a5)k=72a2(6a5)7[48(295386449(a1)2+15384558(a21)+1526700a2)+(a1)3(12215090768+17108173200a+8769780982a2+3825548386a3(a1)+10871964835a4+18178058803a5+6741509385a6+1047476909a7+64085484a8+772338a9)]>0.

    This in conjunction with (2.7) implies ρ2(a,b)>0.

    Suppose that ρk(a,b)>0 for k2. We now prove that ρk+1(a,b)>0.

    The induction hypothesis enables us to know that

    (1+σ)Δk+2>2(α0+τ)Δ2k+2+2Δ2k+4. (2.8)

    It follows from Lemma 2.2(2) and (3) with n=k+2 that

    Δk+3Δk+2Δ2k+4Δ2k+2>Δk+3Δk+2Δ2k+6Δ2k+4>0.

    This in conjunction with (2.8) yields

    ρk+1(a,b)=(1+σ)Δk+2Δk+3Δk+22(α0+τ)Δ2k+42Δ2k+6>[2(α0+τ)Δ2k+2+2Δ2k+4]Δk+3Δk+22(α0+τ)Δ2k+42Δ2k+6=2Δ2k+4[(α0+τ)Δ2k+2Δ2k+4(Δk+3Δk+2Δ2k+4Δ2k+2)+(Δk+3Δk+2Δ2k+6Δ2k+4)]>0.

    Lemma 2.4. Let a,b>0 with a+b6ab/5 and

    An=Δn+2α0Δ2n+1τΔ2n+2Δ2n+4,Bn=σΔn+2α0Δ2n+2τΔ2n+3Δ2n+5.

    Then (i) An>0; (ii) An+Bn>0 for n0.

    Proof. (ⅰ) By Lemma 2.2(2) and Bernoulli's inequality we know that

    Δn+2Δ2n+1=Δn+2Δn+3Δn+3Δn+4Δ2nΔ2n+1(Δ2nΔ2n+1)n1=[1+a+bab+2n(a+2n)(b+2n)]n11+(n1)(a+bab+2n)(a+2n)(b+2n)

    for n2. This in conjunction with (2.2) and the monotonicity of Δn with respect to n gives

    AnΔ2n+1=Δn+2Δ2n+1α0τΔ2n+2Δ2n+1Δ2n+4Δ2n+1Δn+2Δ2n+1α0(τ+1)Δ2n+2Δ2n+11+(n1)(a+bab+2n)(a+2n)(b+2n)α0(τ+1)(a+2n+1)(b+2n+1)(a+b+2n+1)(2n+2)1+(n1)(a+bab+2n)(a+b+2n+1)(2n+2)α0(τ+1)(a+2n+1)(b+2n+1)(a+b+2n+1)(2n+2)=δ3(n;a,b)12(a+b)2(1+a+b)(2+a+b)(1+n)(1+a+b+2n), (2.9)

    where δ3(n;a,b)=ζ0(a,b)+ζ1(a,b)n+ζ2(a,b)n2 and ζ0(a,b)=5k=0ε0k(a)bk, ζ1(a,b)=5k=0ε1k(a)bk, ζ2(a,b)=4k=0ε2k(a)bk, and

    ε00(a)=6a2(1+a)(2+a),ε01(a)=a(24+56a+29a2+4a3+a4),ε02(a)=2(6+28a+17a24a32a4),ε03(a)=18+29a8a222a310a4a5,ε04(a)=2(3+2a2a25a3a4),ε05(a)=a(1a)(1+a),ε10(a)=6a3(1+a)(2+a),ε11(a)=2a2(18+28a+3a24a3),ε12(a)=2a(18+20a12a28a3+3a4),ε13(a)=2(6+28a12a226a33a42a5),ε14(a)=2(9+3a8a23a34a4),ε15(a)=2(1a)(3a+2a2),ε20(a)=12a2(1+a)(2+a),ε21(a)=4a[12+25a+a2(9a)],ε22(a)=4[6+25a+a2(3a2a+6)],ε23(a)=49(3+a+a2)[7+2(53a)(2+3a)],ε24(a)=4125[(53a)(75+20a+87a2)+11a3].

    From the above expressions, we clearly see that ζ2(a,b)>0 for 0<a5/3 and b>0. Moreover,

    2ζ2(a,b)+ζ1(a,b)=6a2(1+a)(2+a)(4+a)+2a[48+118a+46a2+a2(2a)+4a2(4a2)]b+2[24+118a+12a2+16a2(2a)+4a4+3a5]b2+2(42+64a16a226a311a42a5)b3+2(21a+4a211a34a4)b4+2(1a)(3a+2a2)b5,

    which gives 2ζ2(a,b)+ζ1(a,b)>0 for 0<a1. By the same argument as in Case 2 of Lemma 2.3, 2ζ2(a,b)+ζ1(a,b) can be regarded as the special polynomial of b defined in Lemma 2.1 for 1<a5/3, which implies 2ζ2(a,b)+ζ1(a,b)>0 from Lemma 2.1 and

    2ζ2(a,5a6a5)+ζ1(a,5a6a5)=12a4(6a5)5[23168(a1)+2940a+(a1)2(32043+6028a+20528a2+14472a3+768a4)]>0.

    From the above discussion, we clearly see that for n2,

    δ3(n;a,b)n[2ζ2(a,b)+ζ1(a,b)]+ζ0(a,b)2[2ζ2(a,b)+ζ1(a,b)]+ζ0(a,b)=6a2(1+a)(2+a)(9+2a)+3a[72+176a+75a2+5a2(4a2)]b+6[18+88a+11a2+12a2(2a)+2a4+2a5]b2+3(62+95a24a242a318a43a5)b3+6(15+2a29a33a4)b4+3(1a)(4a+3a2)b5:=ˆζ(a,b). (2.10)

    Similarly, it follows from (2.10) that ˆζ(a,b)>0 for 0<a1 and ˆζ(a,b)>0 for 1<a5/3 from Lemma 2.1 and

    ˆζ(a,5a6a5)=108a4(6a5)5[652+(a1)(1098(a31)+5202a+2908a2(a21)+338a3+11a4+189a5)]>0.

    This in conjunction with (2.9) and (2.10) implies that An>0 for n2.

    It remains to verify the sign of A0 and A1. We only give the details of calculations for A0 and similar for A1.

    By the definition of Δn, A0 can be rewritten as

    A0=a(1+a)b(1+b)ˆζ0(a,b)8(a+b)3(1+a+b)2(2+a+b)(3+a+b),

    where

    ˆζ0(a,b)=2a2(1+a)(2+a)(3+a)+a[24+70a+51a2+6a3+a3(2a)]b+[2(6a)+2a2+a(18+13a+a2)(4a2)]b2+(22+51a14a224a33a4)b3+(12+8a13a23a3)b4+(1a)(2+a)b5.

    The same argument as in (2.10) enables us to know that ˆζ0(a,b)>0 for 0<a1 and ˆζ0(a,b)>0 for 1<a5/3 from Lemma 2.1 and

    ˆζ0(a,5a6a5)=12a4(6a5)5[834+(a1)(334+2134a+2301a2(a1)+1722a3+2952a4+306a5)]>0.

    (ⅱ) We first verify the sign of A0+B0 and A1+B1. Since the method is similar as above, we only give some necessary expression for A0+B0 and then similar for A1+B1.

    By calculations, we obtain

    A0+B0=a(1+a)b(1+b)ˆζ1(a,b)120(a+b)3(1+a+b)2(2+a+b)(3+a+b)(4+a+b),

    where

    ˆζ1(a,b)=6a2(1+a)(2+a)(3+a)(4+a)+a(288+2580a+3836a2+1919a3+358a4+19a5)b+(2+a)(3+a)[24+410a+431a2+2a2(2a)(18+7a)]b2+(300+3836a+2877a2666a3869a4187a511a6)b3+(210+1919a+379a2869a3346a433a5)b4+(60+358a78a2187a333a4)b5+(1a)(2+a)(3+11a)b6.

    We can compute easily that ˆζ1(a,b)>0 for 0<a1 and ˆζ1(a,b)>0 for 1<a5/3 from Lemma 2.1 and

    ˆζ1(a,5a6a5)=36a4(6a5)6[59520+(a1)(32020+164020a+367670a2+a3(a1)(1030750+709949a)+42672a5+179016a6+7446a7))]>0.

    For n2, it follows from α0<0 and Lemma 2.3 together with the monotonicity of Δn with respect to n that

    An+Bn=(1+σ)Δn+2α0(Δ2n+1+Δ2n+2)τ(Δ2n+2+Δ2n+3)(Δ2n+4+Δ2n+5)(1+σ)Δn+22(α0+τ)Δ2n+22Δ2n+4=ρn(a,b)>0.

    Lemma 2.5. Let a,b>0 with a+bab and

    Cn=σΔn+1β0Δ2nτΔ2n+1Δ2n+3,Dn=Δn+2β0Δ2n+1τΔ2n+2Δ2n+4.

    Then (i) Cn<0; (ii) Cn+Dn<0 for n0.

    Proof. (ⅰ) By calculations, we obtain

    C0=a(1+a)b(1+b)[(a+b)(4+3a+3b)+2(a+b+3)(a+bab)]6(a+b)2(1+a+b)(2+a+b)<0. (2.11)

    The relation σ=β0+τ allows us to rewrite Cn as

    Cn=(β0+τ)Δn+1β0Δ2nτΔ2n+1Δ2n+3=β0(Δn+12nn+1Δ2n)+τ(Δn+12n+1n+1Δ2n+1)+ˆCn,

    where

    ˆCn=n1n+1β0Δ2n+nn+1τΔ2n+1Δ2n+3.

    From Lemma 2.2(1) it suffices to show ˆCn<0 for n1.

    For n1, Lemma 2.2(1) and τ,β0>0 together with the monotonicity of Δn with respect to n lead to

    ˆCn<(n1n+1β0+nn+1τ)Δ2nΔ2n+3<Δ2n+3[(n1n+1β0+nn+1τ)2n+32n1]:=Δ2n+3ˆCn. (2.12)

    Simplifying ˆCn gives rise to

    ˆCn=14(a+b)(1+a+b)n(1+n)[3a(1+a)b(1+b)+2(2(a+b+1)(a+bab)+a2b2)n+4(1+a+b)(a+bab)n2]<0.

    This in conjunction with (2.11) and (2.12) completes the proof of (ⅰ).

    (ⅱ) For n0, it follows from Lemma 2.2(1) and σ=τ+β0 together with the monotonicity of Δn with respect to n that

    Cn+Dn=σΔn+1+Δn+2β0(Δ2n+Δ2n+1)τ(Δ2n+1+Δ2n+2)(Δ2n+3+Δ2n+4)<σΔn+1+Δn+22(τ+β0)Δ2n+22Δ2n+4=σ(Δn+12Δ2n+2)+Δn+22Δ2n+4<0.

    This completes the proof.

    Proof. Define

    φa,b(r)=(1+σr)F(a,b;a+b;r2)(1+τr2+α0r3)F(a,b;a+b;r)

    and

    ϕa,b(r)=(1+σr)F(a,b;a+b;r2)(1+τr2+β0r3)F(a,b;a+b;r).

    In order to prove the inequalities (1.6) is valid, it suffices to show φa,b(r)>0 and ϕa,b(r)<0 for r(0,1).

    From (2.1), we can rewrite φa,b(r) and ϕa,b(r), in terms of power series, as

    φa,b(r)=(1+σr)n=0Δnr2n(1+τr2+α0r3)n=0Δnrn=r4[n=0(An+Bnr)r2n], (3.1)
    ϕa,b(r)=(1+σr)n=0Δnr2n(1+τr2+β0r3)n=0Δnrn=r3[n=0(Cn+Dnr)r2n], (3.2)

    where An,Bn and Cn,Dn are defined in Lemma 2.4 and Lemma 2.5, respectively.

    From (3.1) and (3.2), we only need to prove that An+Bnr>0 and Cn+Dnr<0 for r(0,1) and n0.

    Case 1 An+Bnr>0.

    ● If Bn0, then it follows from Lemma 2.4(i) that An+BnrAn>0 for r(0,1);

    ● If Bn<0, then Lemma 2.4(ii) enables us to know that An+Bnr>An+Bn>0 for r(0,1).

    Case 2 Cn+Dnr<0.

    ● If Dn0, then it follows from Lemma 2.5(i) that Cn+DnrCn<0 for r(0,1);

    ● If Dn>0, then from Lemma 2.5(ii) we clearly see that Cn+Dnr<Cn+Dn<0 for r(0,1).

    We are now in a position to prove α0 and β0 are the best possible constants.

    Let

    Φa,b(r)=(1+σr)F(a,b;a+b;r2)(1+τr2)F(a,b;a+b;r)r3F(a,b;a+b;r). (3.3)

    Then we clearly see that

    {limr0+Φa,b(r)=ab(a+1)(b+1)[a(2+a)+(1a)(2+a)b+(1a)b2]3(a+b)2(a+b+1)(a+b+2)=α0,limr1Φa,b(r)=ab(a+1)(b+1)2(a+b)(1+a+b)=β0. (3.4)

    For α0<c<β0, then it follows from (3.4) that there exist sufficiently small r1,r2(0,1) such that Φa,b(r)<c for r(0,r1) and Φa,b(r)>c for r(1r2,1). In other words,

    F(a,b;a+b;r2)F(a,b;a+b;r)<1+τr2+cr31+σr,r(0,r1)

    and

    F(a,b;a+b;r2)F(a,b;a+b;r)>1+τr2+cr31+σr,r(1r2,1).

    This completes the proof of Theorem 1.1.

    Remark 3.1. In the proof of Theorem A [44], the parameters a and b are required to meet the condition that a+b>ab, although this is still more relaxed than our parameter's condition a+b6ab/5 in Theorem 1.1.

    It is natural to ask that can our parameter's condition be relaxed to a+b>ab? From Lemma 2.5, we clearly see that the upper bound in Theorem 1.1 still holds for a+bab but the lower bound is not true. The reason is that A0(a,b)<0 for 3/2a3 and a+b=ab. More precisely,

    A0(a,aa1)=(1a2)(2a1)[(3a)(2a3)(43a2+72a72)+5a4]648(a2+a1)2(a2+2a2)(a2+3a3)<0

    for 3/2a3. By the continuity, it follows from (3.1) that there exists a sufficiently small ra,b(0,1) such that φa,b(r)<0 for r(0,ra,b) when a and b lie in a very narrow strip near the curve segment {(a,b)| 3/2a3,a+b=ab}. We focus on the condition that a+b6ab/5 just to make the calculation simpler. Of course, one can give some refinements for our parameter condition.

    To this end, numerical experiment results allow us to pose the following conjecture.

    Conjecture. Let a,b>0 with a+b6ab/5 and Φa,b(r) be defined as in (3.3). Then Φa,b(r) is strictly increasing from (0,1) onto (α0,β0).

    This paper deals with the zero-balanced hypergeometric function 2F1(a,b;a+b;r). In this study, we present an elegant double inequality for 2F1(a,b;a+b;r2)/2F1(a,b;a+b;r), which gives some refinements for some previously known results and also answers to the question by Ismail in the affirmative.

    In this paper, we have established a sharp double inequality involving the ratio of zero-balanced hypergeometric function 2F1(a,b;a+b;r2)/2F1(a,b;a+b;r). More precisely, the double inequality

    1+τr2+α0r31+σr<F(a,b;a+b;r2)F(a,b;a+b;r)<1+τr2+β0r31+σr

    holds for all r(0,1) with the best possible constants α0 and β0, where

    σ=aba+b,τ=ab(a+bab+1)2(a+b)(a+b+1),α0=ab(a+1)(b+1)[a(2+a)+(1a)(2+a)b+(1a)b2]3(a+b)2(a+b+1)(a+b+2),β0=ab(a+1)(b+1)2(a+b)(1+a+b).

    The authors would like to thank the anonymous referees for their valuable comments and suggestions, which led to considerable improvement of the article.

    This work was supported by the National Natural Science Foundation of China (Grant Nos. 11971142, 61673169, 11701176, 11871202) and the Natural Science Foundation of Zhejiang Province (Grant No. LY19A010012).

    The authors declare that they have no competing interests.



    [1] G. J. Hai, T. H. Zhao, Monotonicity properties and bounds involving the two-parameter generalized Grötzsch ring function, J. Inequal. Appl., 2020 (2020), 1-17. doi: 10.1186/s13660-019-2265-6
    [2] T. H. Zhao, L. Shi, Y. M. Chu, Convexity and concavity of the modified Bessel functions of the first kind with respect to Hölder means, RACSAM, 114 (2020), 1-14. doi: 10.1007/s13398-019-00732-2
    [3] M. K. Wang, Z. Y. He, Y. M. Chu, Sharp power mean inequalities for the generalized elliptic integral of the first kind, Comput. Meth. Funct. Th., 20 (2020), 111-124. doi: 10.1007/s40315-020-00298-w
    [4] T. H. Zhao, Y. M. Chu, H. Wang, Logarithmically complete monotonicity properties relating to the gamma function, Abstr. Appl. Anal., 2011 (2011), 1-13.
    [5] J. M. Shen, Z. H. Yang, W. M. Qian, et al. Sharp rational bounds for the gamma function, Math. Inequal. Appl., 23 (2020), 843-853.
    [6] M. K. Wang, H. H. Chu, Y. M. Li, et al. Answers to three conjectures on convexity of three functions involving complete elliptic integrals of the first kind, Appl. Anal. Discrete Math., 14 (2020), 255- 271.
    [7] M. K. Wang, Y. M. Chu, Y. M. Li, et al. Asymptotic expansion and bounds for complete elliptic integrals, Math. Inequal. Appl., 23 (2020), 821-841.
    [8] T. H. Zhao, M. K. Wang, Y. M. Chu, A sharp double inequality involving generalized complete elliptic integral of the first kind, AIMS Math., 5 (2020), 4512-4528. doi: 10.3934/math.2020290
    [9] S. Takeuchi, A new form of the generalized complete elliptic integrals, Kodai Math. J., 39 (2016), 202-226. doi: 10.2996/kmj/1458651700
    [10] I. A. Baloch, Y. M. Chu, Petrović-type inequalities for harmonic h-convex functions, J. Funct. Space., 2020 (2020), 1-7.
    [11] M. U. Awan, N. Akhtar, S. Iftikhar, et al. New Hermite-Hadamard type inequalities for npolynomial harmonically convex functions, J. Inequal. Appl., 2020 (2020), 1-12. doi: 10.1186/s13660-019-2265-6
    [12] M. Adil Khan, J. Pečarić, Y. M. Chu, Refinements of Jensen's and McShane's inequalities with applications, AIMS Math., 5 (2020), 4931-4945. doi: 10.3934/math.2020315
    [13] S. Rashid, R. Ashraf, M. A. Noor, et al. New weighted generalizations for differentiable exponentially convex mapping with application, AIMS Math., 5 (2020), 3525-3546. doi: 10.3934/math.2020229
    [14] M. A. Khan, M. Hanif, Z. A. Khan, et al. Association of Jensen's inequality for s-convex function with Csiszár divergence, J. Inequal. Appl., 2019 (2019), 1-14. doi: 10.1186/s13660-019-1955-4
    [15] S. Rashid, İ. İşcan, D. Baleanu, et al. Generation of new fractional inequalities via n polynomials s-type convexixity with applications, Adv. Differ. Equ., 2020 (2020), 1-20. doi: 10.1186/s13662-019-2438-0
    [16] S. Z. Ullah, M. A. Khan, Y. M. Chu, A note on generalized convex functions, J. Inequal. Appl., 2019 (2019), 1-10. doi: 10.1186/s13660-019-1955-4
    [17] Y. Khurshid, M. A. Khan, Y. M. Chu, Conformable fractional integral inequalities for GG- and GA-convex function, AIMS Math., 5 (2020), 5012-5030. doi: 10.3934/math.2020322
    [18] M. A. Latif, S. Rashid, S. S. Dragomir, et al. Hermite-Hadamard type inequalities for co-ordinated convex and qausi-convex functions and their applications, J. Inequal. Appl., 2019 (2019), 1-33. doi: 10.1186/s13660-019-1955-4
    [19] W. M. Qian, W. Zhang, Y. M. Chu, Bounding the convex combination of arithmetic and integral means in terms of one-parameter harmonic and geometric means, Miskolc Math. Notes, 20 (2019), 1157-1166. doi: 10.18514/MMN.2019.2334
    [20] T. Abdeljawad, S. Rashid, H. Khan, et al. On new fractional integral inequalities for p-convexity within interval-valued functions, Adv. Differ. Equ., 2020 (2020), 1-17. doi: 10.1186/s13662-019-2438-0
    [21] S. S. Zhou, S. Rashid, F. Jarad, et al. New estimates considering the generalized proportional Hadamard fractional integral operators, Adv. Differ. Equ., 2020 (2020), 1-15. doi: 10.1186/s13662-019-2438-0
    [22] S. Hussain, J. Khalid, Y. M. Chu, Some generalized fractional integral Simpson's type inequalities with applications, AIMS Math., 5 (2020), 5859-5883. doi: 10.3934/math.2020375
    [23] L. Xu, Y. M. Chu, S. Rashid, et al. On new unified bounds for a family of functions with fractional q-calculus theory, J. Funct. Space., 2020 (2020), 1-9.
    [24] S. Rashid, A. Khalid, G. Rahman, et al. On new modifications governed by quantum Hahn's integral operator pertaining to fractional calculus, J. Funct. Space., 2020 (2020), 1-12.
    [25] J. M. Shen, S. Rashid, M. A. Noor, et al. Certain novel estimates within fractional calculus theory on time scales, AIMS Math., 5 (2020), 6073-6086. doi: 10.3934/math.2020390
    [26] H. X. Qi, M. Yussouf, S. Mehmood, et al. Fractional integral versions of Hermite-Hadamard type inequality for generalized exponentially convexity, AIMS Math., 5 (2020), 6030-6042. doi: 10.3934/math.2020386
    [27] H. Kalsoom, M. Idrees, D. Baleanu, et al. New estimates of q1q2-Ostrowski-type inequalities within a class of n-polynomial prevexity of function, J. Funct. Space., 2020 (2020), 1-13.
    [28] H. Ge-JiLe, S. Rashid, M. A. Noor, et al. Some unified bounds for exponentially tgs-convex functions governed by conformable fractional operators, AIMS Math., 5 (2020), 6108-6123. doi: 10.3934/math.2020392
    [29] A. Iqbal, M. A. Khan, N. Mohammad, et al. Revisiting the Hermite-Hadamard integral inequality via a Green function, AIMS Math., 5 (2020), 6087-6107. doi: 10.3934/math.2020391
    [30] M. B. Sun, Y. M. Chu, Inequalities for the generalized weighted mean values of g-convex functions with applications, RACSAM, 114 (2020), 1-12. doi: 10.1007/s13398-019-00732-2
    [31] T. Abdeljawad, S. Rashid, Z. Hammouch, et al. Some new local fractional inequalities associated with generalized (s, m)-convex functions and applications, Adv. Differ. Equ., 2020 (2020), 1-27.
    [32] X. Z. Yang, G. Farid, W. Nazeer, et al. Fractional generalized Hadamard and Fejér-Hadamard inequalities for m-convex function, AIMS Math., 5 (2020), 6325-6340. doi: 10.3934/math.2020407
    [33] S. Rashid, F. Jarad, Y. M. Chu, A note on reverse Minkowski inequality via generalized proportional fractional integral operator with respect to another function, Math. Probl. Eng., 2020 (2020), 1-12.
    [34] S. Rashid, M. A. Noor, K. I. Noor, et al. Ostrowski type inequalities in the sense of generalized K-fractional integral operator for exponentially convex functions, AIMS Math., 5 (2020), 2629- 2645.
    [35] Y. Khurshid, M. Adil Khan, Y. M. Chu, Conformable integral version of Hermite-Hadamard-Fejér inequalities via η-convex functions, AIMS Math., 5 (2020), 5106-5120. doi: 10.3934/math.2020328
    [36] S. Rashid, F. Jarad, H. Kalsoom, et al. On Pólya-Szegö and ĆebyĆev type inequalities via general-ized k-fractional integrals, Adv. Differ. Equ., 2020 (2020), 1-18. doi: 10.1186/s13662-019-2438-0
    [37] S. Y. Guo, Y. M. Chu, G. Farid, et al. Fractional Hadamard and Fej´er-Hadamard inequaities associated with exponentially (s, m)-convex functions, J. Funct. Space., 2020 (2020), 1-10.
    [38] I. Abbas Baloch, A. A. Mughal, Y. M. Chu, et al. A variant of Jensen-type inequality and related results for harmonic convex functions, AIMS Math., 5 (2020), 6404-6418. doi: 10.3934/math.2020412
    [39] M. U. Awan, S. Talib, A. Kashuri, et al. Estimates of quantum bounds pertaining to new q-integral identity with applications, Adv. Differ. Equ., 2020 (2020), 1-15. doi: 10.1186/s13662-019-2438-0
    [40] M. U. Awan, S. Talib, M. A. Noor, et al. Some trapezium-like inequalities involving functions having strongly n-polynomial preinvexity property of higher order, J. Funct. Space., 2020 (2020), 1-9.
    [41] G. D. Anderson, M. K. Vamanamurthy, M. Vuorinen, Functional inequalities for complete elliptic integrals and ratios, SIAM J. Math. Anal., 21 (1990), 536-549. doi: 10.1137/0521029
    [42] H. Alzer, K. Richards, Inequalities for the ratio of complete elliptic integrals, Proc. Amer. Math. Soc., 145 (2017), 1661-1670.
    [43] L. Yin, L. G. Huang, Y. L. Wang, et al. An inequality for generalized complete elliptic integral, J. Inequal. Appl., 2017 (2017), 1-6. doi: 10.1186/s13660-016-1272-0
    [44] K. C. Richards, A note on inequalities for the ratio of zero-balanced hypergeometric functions, Proc. Amer. Math. Soc., 6B (2019), 15-20.
    [45] Z. H. Yang, Y. M. Chu, X. J. Tao, A double inequality for the trigamma function and its applications, Abstr. Appl. Anal., 2014 (2014), 1-9.
  • This article has been cited by:

    1. Jing-Feng Tian, Zhenhang Yang, Ming-Hu Ha, Hong-Jie Xing, A family of high order approximations of Ramanujan type for perimeter of an ellipse, 2021, 115, 1578-7303, 10.1007/s13398-021-01021-7
    2. Shu-Bo Chen, Saima Rashid, Muhammad Aslam Noor, Rehana Ashraf, Yu-Ming Chu, A new approach on fractional calculus and probability density function, 2020, 5, 2473-6988, 7041, 10.3934/math.2020451
    3. Xi-Fan Huang, Miao-Kun Wang, Hao Shao, Yi-Fan Zhao, Yu-Ming Chu, Monotonicity properties and bounds for the complete p-elliptic integrals, 2020, 5, 2473-6988, 7071, 10.3934/math.2020453
    4. Tie-Hong Zhao, Zai-Yin He, Yu-Ming Chu, Sharp Bounds for the Weighted Hölder Mean of the Zero-Balanced Generalized Complete Elliptic Integrals, 2020, 1617-9447, 10.1007/s40315-020-00352-7
    5. Thabet Abdeljawad, Saima Rashid, A. A. El-Deeb, Zakia Hammouch, Yu-Ming Chu, Certain new weighted estimates proposing generalized proportional fractional operator in another sense, 2020, 2020, 1687-1847, 10.1186/s13662-020-02935-z
    6. Thabet Abdeljawad, Saima Rashid, Zakia Hammouch, İmdat İşcan, Yu-Ming Chu, Some new Simpson-type inequalities for generalized p-convex function on fractal sets with applications, 2020, 2020, 1687-1847, 10.1186/s13662-020-02955-9
    7. Shuang-Shuang Zhou, Saima Rashid, Muhammad Aslam Noor, Khalida Inayat Noor, Farhat Safdar, Yu-Ming Chu, New Hermite-Hadamard type inequalities for exponentially convex functions and applications, 2020, 5, 2473-6988, 6874, 10.3934/math.2020441
    8. Shu-Bo Chen, Saima Rashid, Muhammad Aslam Noor, Zakia Hammouch, Yu-Ming Chu, New fractional approaches for n-polynomial P-convexity with applications in special function theory, 2020, 2020, 1687-1847, 10.1186/s13662-020-03000-5
    9. Muhammad Uzair Awan, Sadia Talib, Artion Kashuri, Muhammad Aslam Noor, Khalida Inayat Noor, Yu-Ming Chu, A new q-integral identity and estimation of its bounds involving generalized exponentially μ-preinvex functions, 2020, 2020, 1687-1847, 10.1186/s13662-020-03036-7
    10. Saad Ihsan Butt, Muhammad Umar, Saima Rashid, Ahmet Ocak Akdemir, Yu-Ming Chu, New Hermite–Jensen–Mercer-type inequalities via k-fractional integrals, 2020, 2020, 1687-1847, 10.1186/s13662-020-03093-y
    11. Mohammad Khishe, An automatic COVID-19 diagnosis from chest X-ray images using a deep trigonometric convolutional neural network, 2023, 1368-2199, 1, 10.1080/13682199.2023.2178094
    12. MohammadKazem Rostamian, Soroush Maddah, Yasser Rostamiyan, Influence of sinusoidal shock generator on mixing performance of hydrogen and air co-flow jets in dual-combustor ramjet, 2022, 195, 00945765, 109, 10.1016/j.actaastro.2022.03.002
    13. Si Yuanlei, Bandar Almohsen, M. Sabershahraki, Alibek Issakhov, Muhammad Asif Zahoor Raja, Nanomaterial migration due to magnetic field through a porous region utilizing numerical modeling, 2021, 785, 00092614, 139162, 10.1016/j.cplett.2021.139162
    14. Jorge E. Macías-Díaz, Muhammad Bilal Khan, Hleil Alrweili, Mohamed S. Soliman, Some Fuzzy Inequalities for Harmonically s-Convex Fuzzy Number Valued Functions in the Second Sense Integral, 2022, 14, 2073-8994, 1639, 10.3390/sym14081639
    15. Muhammad Bilal Khan, Hatim Ghazi Zaini, Jorge E. Macías-Díaz, Savin Treanțǎ, Mohamed S. Soliman, Some integral inequalities in interval fractional calculus for left and right coordinated interval-valued functions, 2022, 7, 2473-6988, 10454, 10.3934/math.2022583
    16. Siyuan Liu, S. Rezaei, S.A. Najati, Mohamed S. Mohamed, Novel wave solutions to a generalized third-order nonlinear Schrödinger’s equation, 2022, 37, 22113797, 105457, 10.1016/j.rinp.2022.105457
    17. Te Ma, Mahdi Aghaabbasi, Mujahid Ali, Rosilawati Zainol, Amin Jan, Abdeliazim Mustafa Mohamed, Abdullah Mohamed, Nonlinear Relationships between Vehicle Ownership and Household Travel Characteristics and Built Environment Attributes in the US Using the XGBT Algorithm, 2022, 14, 2071-1050, 3395, 10.3390/su14063395
    18. Omar Dheyauldeen Salahdin, Hamzah H Kzar, Maria Jade Catalan Opulencia, Adnan Hashim Abdulkadhim, Ali Thaeer Hammid, Abdol Ghaffar Ebadi, Potential application of AlP nanosheet semiconductor in the detection of toxic phosgene, thiophosgene, and formaldehyde gases, 2022, 37, 0268-1242, 095015, 10.1088/1361-6641/ac7b9f
    19. Muhammad Bilal Khan, Gustavo Santos-García, Hüseyin Budak, Savin Treanțǎ, Mohamed S. Soliman, Some new versions of Jensen, Schur and Hermite-Hadamard type inequalities for (p,J)-convex fuzzy-interval-valued functions, 2023, 8, 2473-6988, 7437, 10.3934/math.2023374
    20. Syed M Hussain, Faisal Shahzad, Wasim Jamshed, Mohammad Kalimuddin Ahmad, Zulfiqar Rehman, Imran Ullah, Thermal scrutinization of magetohydrodynamics CuO engine oil nanofluid flow across a horizontal surface via Koo–Kleinstreuer–Li modeling: A thermal case study, 2022, 0954-4089, 095440892211311, 10.1177/09544089221131147
    21. Muhammad Salman Khan, Maria Samreen, Muhammad Ozair, Takasar Hussain, E. M. Elsayed, J. F. Gómez-Aguilar, On the qualitative study of a two-trophic plant–herbivore model, 2022, 85, 0303-6812, 10.1007/s00285-022-01809-0
    22. Muhammad Bilal Hafeez, Marek Krawczuk, Hasan Shahzad, Amjad Ali Pasha, Mohammad Adil, Simulation of hybridized nanofluids flowing and heat transfer enhancement via 3-D vertical heated plate using finite element technique, 2022, 12, 2045-2322, 10.1038/s41598-022-15560-5
    23. Limei Fan, Zhansheng Cheng, Juan Du, Parvaneh Delir Kheirollahi Nezhad, A computational study on the Al-doped CuO nanocluster for CO gas sensor applications, 2022, 153, 0026-9247, 321, 10.1007/s00706-022-02906-y
    24. Neelu Kumari Kumarasamy Subramaniam, Youssef Trabelsi, Ali Azarkaman, Homa Farmani, Advanced nanostructures plasmonics noninvasive sensors for type 1 diabetes, 2022, 54, 0306-8919, 10.1007/s11082-022-03879-2
    25. Muhammad Bilal Khan, Jorge E. Macías-Díaz, Mohamed S. Soliman, Muhammad Aslam Noor, Some New Integral Inequalities for Generalized Preinvex Functions in Interval-Valued Settings, 2022, 11, 2075-1680, 622, 10.3390/axioms11110622
    26. Fuzhang Wang, Waleed Hamali, Musawa Yahya Almusawa, Taher A. Nofal, Mahmoud M. Selim, Juan Zhang, Simulation of spiral tube during melting utilizing multi-type nanoparticles, 2022, 213, 09204105, 110353, 10.1016/j.petrol.2022.110353
    27. Ali Aldrees, Mohsin Ali Khan, Muhammad Atiq Ur Rehman Tariq, Abdeliazim Mustafa Mohamed, Ane Wai Man Ng, Abubakr Taha Bakheit Taha, Multi-Expression Programming (MEP): Water Quality Assessment Using Water Quality Indices, 2022, 14, 2073-4441, 947, 10.3390/w14060947
    28. Saade Abdalkareem Jasim, Indrajit Patra, Maria Jade Catalan Opulencia, Kadda Hachem, Rosario Mireya Romero Parra, Mohammad Javed Ansari, Abduladheem Turki Jalil, Moaed E. Al-Gazally, Mahin Naderifar, Mehrdad Khatami, Reza Akhavan-Sigari, Green synthesis of spinel copper ferrite (CuFe2O4) nanoparticles and their toxicity, 2022, 11, 2191-9097, 2483, 10.1515/ntrev-2022-0143
    29. Parisa Miry, Vahid Safarifard, Morteza Moradi, Abouzar Massoudi, Impact of linker/metal tuning on the performance of two-dimensional Ni3(HITP)2 MOF-based Mg ion batteries, 2022, 34, 24522627, 100382, 10.1016/j.flatc.2022.100382
    30. Basem H. Elesawy, Ahmad El Askary, Nasser S. Awwad, Hala A. Ibrahium, P. D. Nezhad, Mohd Shkir, A density functional theory study of Au-decorated gallium nitride nano-tubes as chemical sensors for the recognition of sulfonamide, 2022, 43, 1741-5993, 482, 10.1080/17415993.2022.2074794
    31. Cunhong Li, Yan Xu, Abdol Ghaffar Ebadi, The electronic response of the aluminum phosphide nanotube to different concentrations of carbon disulfide molecules, 2022, 153, 0026-9247, 339, 10.1007/s00706-022-02912-0
    32. A. A. Menazea, Nasser S. Awwad, Hala A. Ibrahium, M. Derakh, Mohammed S. Alqahtani, DNA Nucleobase Interaction with Silicon Carbide Nanosheet, 2022, 14, 1876-990X, 11355, 10.1007/s12633-022-01781-w
    33. Muhammad Adil Khan, Hidayat Ullah, Tareq Saeed, Hamed H. Alsulami, Z. M. M. M. Sayed, Ahmed Mohammed Alshehri, Fahd Jarad, Estimations of the Slater Gap via Convexity and Its Applications in Information Theory, 2022, 2022, 1563-5147, 1, 10.1155/2022/1750331
    34. Kamsing Nonlaopon, B. Günay, Shahram Rezapour, Musaad S. Aldhabani, A.M. Alotaibi, S.K. Elagan, On novel application of piece-wise fractional operators for a predator–prey model, 2022, 39, 22113797, 105683, 10.1016/j.rinp.2022.105683
    35. Saade Abdalkareem Jasim, Forat H. Alsultany, Mustafa Z. Mahmoud, Dmitry Olegovich Bokov, Wanich Suksatan, Investigations of chemical sensing properties of Al24N24, B24N24, and B24P24 nanoclusters toward carbamazepine: A DFT study, 2022, 142, 13877003, 109644, 10.1016/j.inoche.2022.109644
    36. Piyu Li, Fuzhang Wang, Waleed Hamali, Saad Althobaiti, Awad Musa, Nidal H. Abu-Hamdeh, Thermal behavior of heat storage system with incorporating nanomaterial, 2022, 31, 2214157X, 101827, 10.1016/j.csite.2022.101827
    37. Israr Ilyas, Adeel Zafar, Muhammad Afzal, Muhammad Javed, Raid Alrowais, Fadi Althoey, Abdeliazim Mohamed, Abdullah Mohamed, Nikolai Vatin, Advanced Machine Learning Modeling Approach for Prediction of Compressive Strength of FRP Confined Concrete Using Multiphysics Genetic Expression Programming, 2022, 14, 2073-4360, 1789, 10.3390/polym14091789
    38. Waleed Hamali, Musawa Yahya Almusawa, Efficiency of nanoparticles on heat transfer of working fluid in presence of twisted tape, 2022, 36, 2214157X, 102178, 10.1016/j.csite.2022.102178
    39. Muhammad Bilal Khan, Hatim Ghazi Zaini, Gustavo Santos-García, Muhammad Aslam Noor, Mohamed S. Soliman, New Class Up and Down λ-Convex Fuzzy-Number Valued Mappings and Related Fuzzy Fractional Inequalities, 2022, 6, 2504-3110, 679, 10.3390/fractalfract6110679
    40. Lirong Wang, Guodao Zhang, Xuesong Yin, Hongkai Zhang, Mohammad Ghalandari, Optimal control of renewable energy in buildings using the machine learning method, 2022, 53, 22131388, 102534, 10.1016/j.seta.2022.102534
    41. Saade Abdalkareem Jasim, Moaed E. Al-Gazally, Maria Jade Catalan Opulencia, Mustafa M. Kadhim, Ahmed B. Mahdi, Ali Thaeer Hammid, Abdol Ghaffar Ebadi, Toxic hydrazoic acid vapor detection and adsorption by different metal-decorated BN nanotubes: A first-principles study, 2022, 1212, 2210271X, 113721, 10.1016/j.comptc.2022.113721
    42. Ehsan Kianfar, The Effects of SiO2/Al2O3 and H2O/Al2O3 Molar Ratios on SAPO-34 Catalyst in the Methanol to Olefin Process, 2023, 15, 1876-990X, 381, 10.1007/s12633-022-02008-8
    43. Rana Safdar Ali, Shahid Mubeen, Sabila Ali, Gauhar Rahman, Jihad Younis, Asad Ali, Umair Ali, Generalized Hermite–Hadamard-Type Integral Inequalities forh-Godunova–Levin Functions, 2022, 2022, 2314-8888, 1, 10.1155/2022/9113745
    44. Muhammad Bilal Khan, Adriana Cătaş, Omar Mutab Alsalami, Some New Estimates on Coordinates of Generalized Convex Interval-Valued Functions, 2022, 6, 2504-3110, 415, 10.3390/fractalfract6080415
    45. Gustavo Santos-García, Muhammad Bilal Khan, Hleil Alrweili, Ahmad Aziz Alahmadi, Sherif S. M. Ghoneim, Hermite–Hadamard and Pachpatte Type Inequalities for Coordinated Preinvex Fuzzy-Interval-Valued Functions Pertaining to a Fuzzy-Interval Double Integral Operator, 2022, 10, 2227-7390, 2756, 10.3390/math10152756
    46. Hasanen M. Hussen, Wissam H. Alawee, Hayder A. Dhahad, Narjes Turki Khalifa, Saad Althobaiti, Amira M. Hussin, Solidification of water in a thermal storage unit equipped with nanoparticle, 2022, 55, 2352152X, 105339, 10.1016/j.est.2022.105339
    47. Mustafa M. Kadhim, Mohanad Hatem Shadhar, Khalidah Salih Merzah, Hadeer Jasem, Safa K. Hachim, Ahmed Mahdi Rheima, Roya Ahmadi, Propylthiouracil drug adsorption on pristine, Cu, Ag, and Au decorated AlP nanosheets, 2022, 444, 03759601, 128236, 10.1016/j.physleta.2022.128236
    48. Fei Long, Shami A.M. Alsallami, S. Rezaei, Kamsing Nonlaopon, E.M. Khalil, New interaction solutions to the (2+1)-dimensional Hirota–Satsuma–Ito equation, 2022, 37, 22113797, 105475, 10.1016/j.rinp.2022.105475
    49. Maryam Darvish, Navid Nasrabadi, Farnoush Fotovat, Setareh Khosravi, Mehrdad Khatami, Samira Jamali, Elnaz Mousavi, Siavash Iravani, Abbas Rahdar, Biosynthesis of Zn-doped CuFe2O4 nanoparticles and their cytotoxic activity, 2022, 12, 2045-2322, 10.1038/s41598-022-13692-2
    50. K. Nonlaopon, B. Günay, Mohamed S. Mohamed, S.K. Elagan, S.A. Najati, Shahram Rezapour, On extracting new wave solutions to a modified nonlinear Schrödinger’s equation using two integration methods, 2022, 38, 22113797, 105589, 10.1016/j.rinp.2022.105589
    51. S. U. Mamatha, R. L. V. Renuka Devi, N. Ameer Ahammad, Nehad Ali Shah, B. Madhusudhan Rao, C. S. K. Raju, M. Ijaz Khan, Kamel Guedri, Multi-linear regression of triple diffusive convectively heated boundary layer flow with suction and injection: Lie group transformations, 2023, 37, 0217-9792, 10.1142/S0217979223500078
    52. Hani Sait, Cooling a plate lithium-ion battery using a thermoelectric system and evaluating the geometrical impact on the performance of heatsink connected to the system, 2022, 52, 2352152X, 104692, 10.1016/j.est.2022.104692
    53. Ghassan Fadhil Smaisim, Doaa Basim mohammed, Ahmed M. Abdulhadi, Khusniddin Fakhriddinovich Uktamov, Forat H. Alsultany, Samar Emad Izzat, Mohammad Javed Ansari, Hamzah H. Kzar, Moaed E. Al-Gazally, Ehsan Kianfar, Nanofluids: properties and applications, 2022, 104, 0928-0707, 1, 10.1007/s10971-022-05859-0
    54. Raed Qahiti, Transportation of ferrofluid due to non-uniform magnetic force through a curved permeable container, 2022, 2190-5509, 10.1007/s13204-021-02285-6
    55. Yi Zhao, Ehab E. Elattar, Muhammad Altaf Khan, Mohammed Asiri, Pongsakorn Sunthrayuth, The dynamics of the HIV/AIDS infection in the framework of piecewise fractional differential equation, 2022, 40, 22113797, 105842, 10.1016/j.rinp.2022.105842
    56. Hassan Shokouhandeh, Mehrdad Ahmadi Kamarposhti, Fariba Asghari, Ilhami Colak, Kei Eguchi, Distributed Generation Management in Smart Grid with the Participation of Electric Vehicles with Respect to the Vehicle Owners’ Opinion by Using the Imperialist Competitive Algorithm, 2022, 14, 2071-1050, 4770, 10.3390/su14084770
    57. A A Menazea, Nasser S Awwad, Hala A Ibrahium, Khadijah H Alharbi, Mohammed S Alqahtani, Titanium doping effect on the sensing performance of ZnO nanosheets toward phosgene gas, 2022, 97, 0031-8949, 055816, 10.1088/1402-4896/ac6382
    58. Si Yuanlei, Bassem F. Felemban, Ali Bahadar, Yahya Ali Rothan, Mahmoud M. Selim, Investigation of nanofluid flow within a duct with complicated swirl flow device using numerical computing technology, 2022, 33, 0129-1831, 10.1142/S0129183122500954
    59. Zhenhang Yang, Jingfeng Tian, Absolute Monotonicity Involving the Complete Elliptic Integrals of the First Kind with Applications, 2022, 42, 0252-9602, 847, 10.1007/s10473-022-0302-x
    60. Muhammad Bilal Khan, Hakeem A. Othman, Michael Gr. Voskoglou, Lazim Abdullah, Alia M. Alzubaidi, Some Certain Fuzzy Aumann Integral Inequalities for Generalized Convexity via Fuzzy Number Valued Mappings, 2023, 11, 2227-7390, 550, 10.3390/math11030550
    61. Tiehong Zhao, Miaokun Wang, Yuming Chu, On the Bounds of the Perimeter of an Ellipse, 2022, 42, 0252-9602, 491, 10.1007/s10473-022-0204-y
    62. Saade Abdalkareem Jasim, Maria Jade Catalan Opulencia, Ali Majdi, Dildora Zukhriddinovna Yusupova, Yasser Fakri Mustafa, Ali Thaeer Hammid, Parvaneh Delir Kheirollahi Nezhad, Investigation of crotonaldehyde adsorption on pure and Pd-decorated GaN nanotubes: A density functional theory study, 2022, 348-349, 00381098, 114741, 10.1016/j.ssc.2022.114741
    63. Ye-Cong Han, Chuan-Yu Cai, Ti-Ren Huang, Monotonicity, convexity properties and inequalities involving Gaussian hypergeometric functions with applications, 2022, 7, 2473-6988, 4974, 10.3934/math.2022277
    64. Mohammad Arefi, Shayan Mannani, L. Collini, Electro-magneto-mechanical formulation of a sandwich shell subjected to electro-magneto-mechanical considering thickness stretching, 2022, 22, 1644-9665, 10.1007/s43452-022-00514-5
    65. Ehsan Kianfar, A review of recent advances in carbon dioxide absorption–stripping by employing a gas–liquid hollow fiber polymeric membrane contactor, 2022, 0170-0839, 10.1007/s00289-022-04626-z
    66. Muajebah Hidan, Mohamed Akel, Hala Abd-Elmageed, Mohamed Abdalla, Solution of fractional kinetic equations involving extended (k,τ)-Gauss hypergeometric matrix functions, 2022, 7, 2473-6988, 14474, 10.3934/math.2022798
    67. Shumin Wei, Afshin Azari, Leila Saedi, Novel heteroborospherene as drug delivery systems for favipiravir drug: Ab-initio study, 2022, 796, 00092614, 139552, 10.1016/j.cplett.2022.139552
    68. Juan Zhang, Hassan Abdulwahab Anjal, Ahmed Msmali, Fuzhang Wang, Taher A. Nofal, Mahmoud M. Selim, Heat transfer of nanomaterial with involve of MHD through an enclosure, 2022, 30, 2214157X, 101747, 10.1016/j.csite.2021.101747
    69. R. Sivaraman, Maria Jade Catalan Opulencia, Ali Majdi, Indrajit Patra, Mohammed Kadhem Abid, Ali Thaeer Hammid, Maryam Derakhshandeh, Design a promising non-precious electro-catalyst for oxygen reduction reaction in fuel cells, 2023, 48, 03603199, 6308, 10.1016/j.ijhydene.2022.04.241
    70. Xin Liu, Yi-Peng Xu, Hamdi Ayed, Yahya Ali Rothan, Mahmoud M. Selim, Modeling for solidification of paraffin equipped with nanoparticles utilizing fins, 2022, 45, 2352152X, 103763, 10.1016/j.est.2021.103763
    71. R. Sivaraman, Indrajit Patra, Maria Jade Catalan Opulencia, Rafid Sagban, Himanshu Sharma, Abduladheem Turki Jalil, Abdol Ghaffar Ebadi, Evaluating the potential of graphene-like boron nitride as a promising cathode for Mg-ion batteries, 2022, 917, 15726657, 116413, 10.1016/j.jelechem.2022.116413
    72. Jinyuan Wang, Yi-Peng Xu, Raed Qahiti, M. Jafaryar, Mashhour A. Alazwari, Nidal H. Abu-Hamdeh, Alibek Issakhov, Mahmoud M. Selim, Simulation of hybrid nanofluid flow within a microchannel heat sink considering porous media analyzing CPU stability, 2022, 208, 09204105, 109734, 10.1016/j.petrol.2021.109734
    73. Majid Reza Akbarizadeh, Mina Sarani, Samaneh Darijani, Study of antibacterial performance of biosynthesized pure and Ag-doped ZnO nanoparticles, 2022, 33, 2037-4631, 613, 10.1007/s12210-022-01079-4
    74. Ali Aldrees, Hamad Hassan Awan, Muhammad Faisal Javed, Abdeliazim Mustafa Mohamed, Prediction of water quality indexes with ensemble learners: Bagging and boosting, 2022, 168, 09575820, 344, 10.1016/j.psep.2022.10.005
    75. Yaser Heidari, Mohsen Irani Rahaghi, Mohammad Arefi, Buckling analysis of FG cylindrical nano shell integrated with CNTRC patches, 2022, 1745-5030, 1, 10.1080/17455030.2022.2086320
    76. Kamsing Nonlaopon, Sachin Kumar, S. Rezaei, Fatimah S. Bayones, S.K. Elagan, Some optical solutions to the higher-order nonlinear Schrödinger equation with Kerr nonlinearity and a local fractional derivative, 2022, 36, 22113797, 105430, 10.1016/j.rinp.2022.105430
    77. M. Zakarya, Ahmed I.Saied, Ghada AlNemer, H. M. Rezk, Guotao Wang, A Study on Some New Reverse Hilbert-Type Inequalities and Its Generalizations on Time Scales, 2022, 2022, 2314-4785, 1, 10.1155/2022/6285367
    78. Zaid Mohammed Mohammed Mahdi Sayed, Muhammad Adil Khan, Shahid Khan, Josip Pečarić, Hugo Leiva, A Refinement of the Integral Jensen Inequality Pertaining Certain Functions with Applications, 2022, 2022, 2314-8888, 1, 10.1155/2022/8396644
    79. Muhammad Bilal Khan, Adriana Cătaş, Najla Aloraini, Mohamed S. Soliman, Some New Versions of Fractional Inequalities for Exponential Trigonometric Convex Mappings via Ordered Relation on Interval-Valued Settings, 2023, 7, 2504-3110, 223, 10.3390/fractalfract7030223
    80. S. Rezaei, Shahram Rezapour, Jehad Alzabut, Robert de Sousa, B.M. Alotaibi, S.A. El-Tantawy, Some novel approaches to analyze a nonlinear Schrodinger’s equation with group velocity dispersion: Plasma bright solitons, 2022, 35, 22113797, 105316, 10.1016/j.rinp.2022.105316
    81. Ya-jun Chen, Tie-hong Zhao, On the monotonicity and convexity for generalized elliptic integral of the first kind, 2022, 116, 1578-7303, 10.1007/s13398-022-01211-x
    82. Mehrdad Ahmadi Kamarposhti, Ilhami Colak, Hassan Shokouhandeh, Celestine Iwendi, Sanjeevikumar Padmanaban, Shahab S. Band, Optimum operation management of microgrids with cost and environment pollution reduction approach considering uncertainty using multi‐objective NSGAII algorithm, 2022, 1752-1416, 10.1049/rpg2.12579
    83. Wang Xifeng, Zhang Xiaoluan, Ibrahim Mahariq, Mohamed Salem, Mohammad Ghalandari, Farhad Ghadak, Mostafa Abedini, Performance Optimization of the Helical Heat Exchanger With Turbulator, 2022, 9, 2296-598X, 10.3389/fenrg.2021.789316
    84. Fan Zhang, Weimao Qian, Hui Zuo Xu, Optimal bounds for Seiffert-like elliptic integral mean by harmonic, geometric, and arithmetic means, 2022, 2022, 1029-242X, 10.1186/s13660-022-02768-2
    85. Muhammad Bilal Khan, Gustavo Santos-García, Muhammad Aslam Noor, Mohamed S. Soliman, New Hermite–Hadamard Inequalities for Convex Fuzzy-Number-Valued Mappings via Fuzzy Riemann Integrals, 2022, 10, 2227-7390, 3251, 10.3390/math10183251
    86. Ahmad Rajabizadeh, Maryam Alihosseini, Hawraz Ibrahim M. Amin, Haider Abdulkareem Almashhadani, Faride Mousazadeh, Marcos Augusto Lima Nobre, Maryam Dehghani Soltani, Shapari Sharaki, Abduladheem Turki Jalil, Mustafa M. Kadhim, The Recent Advances of Metal–Organic Frameworks in Electric Vehicle Batteries, 2022, 1574-1443, 10.1007/s10904-022-02467-x
    87. Waleed Hamali, Musawa Yahya Almusawa, Transient heat transfer of NEPCM during solidification using Galerkin method, 2022, 35, 2214157X, 102114, 10.1016/j.csite.2022.102114
    88. Meznah M. Alanazi, Areej A. Al-Moneef, Ghaffar Ebadi, Hossam Donya, Potential application of different metal-decorated boron nitride nanosheets as chemical sensors for trichlorosilane detection, 2022, 448, 03759601, 128303, 10.1016/j.physleta.2022.128303
    89. Bandar Almohsen, Computational modeling of a complex container with nanofluid carrier fluid and magnetic force, 2022, 1745-5030, 1, 10.1080/17455030.2022.2096945
    90. Shen-Yang Tan, Ti-Ren Huang, Yu-Ming Chu, Functional inequalities for Gaussian hypergeometric function and generalized elliptic integral of the first kind, 2021, 71, 1337-2211, 667, 10.1515/ms-2021-0012
    91. Abdulilah Mohammad Mayet, Seyed Mehdi Alizadeh, Karina Shamilyevna Nurgalieva, Robert Hanus, Ehsan Nazemi, Igor M. Narozhnyy, Extraction of Time-Domain Characteristics and Selection of Effective Features Using Correlation Analysis to Increase the Accuracy of Petroleum Fluid Monitoring Systems, 2022, 15, 1996-1073, 1986, 10.3390/en15061986
    92. Qingji Tian, Yi-Peng Xu, Nidal H. Abu-Hamdeh, Abdullah M. Abusorrah, Mahmoud M. Selim, Flow structure and fuel mixing of hydrogen multi-jets in existence of upstream divergent ramp at supersonic combustion chamber, 2022, 121, 12709638, 107299, 10.1016/j.ast.2021.107299
    93. Muhammad Bilal Khan, Jorge E. Macías-Díaz, Savin Treanțǎ, Mohamed S. Soliman, Some Fejér-Type Inequalities for Generalized Interval-Valued Convex Functions, 2022, 10, 2227-7390, 3851, 10.3390/math10203851
    94. Zhenping Zhou, Xin Liu, Ping Li, B24N24 nanocage as an electronic sensor for metronidazole drug: density functional theory studies, 2022, 28, 1610-2940, 10.1007/s00894-022-05127-6
    95. Ali A Rajhi, Sagr Alamri, Ghaffar Ebadi, Retracted: A density functional theory investigation on the Au-decorated zinc oxide nanosheet as a chemical sensor for mesalamine drug detection, 2022, 97, 0031-8949, 045401, 10.1088/1402-4896/ac51c7
    96. Amjad Ali Pasha, Nazrul Islam, Wasim Jamshed, Mohammad Irfan Alam, Abdul Gani Abdul Jameel, Khalid A. Juhany, Radi Alsulami, Statistical analysis of viscous hybridized nanofluid flowing via Galerkin finite element technique, 2022, 137, 07351933, 106244, 10.1016/j.icheatmasstransfer.2022.106244
    97. Li-E Yan, Nidal H. Abu-Hamdeh, Rashad A.R. Bantan, Mahmoud M. Selim, Heat storage unit for melting of paraffin considering hybrid nanomaterial and helical tubes, 2021, 44, 2352152X, 103427, 10.1016/j.est.2021.103427
    98. Ali Rostamian, Keivan Fallah, Yasser Rostamiyan, Javad Alinejad, Application of computational fluid dynamics for detection of high risk region in middle cerebral artery (MCA) aneurysm, 2023, 34, 0129-1831, 10.1142/S0129183123500195
    99. Tie-Hong Zhao, Barkat Ali Bhayo, Yu-Ming Chu, Inequalities for Generalized Grötzsch Ring Function, 2022, 22, 1617-9447, 559, 10.1007/s40315-021-00415-3
    100. Yahya Ali Rothan, Simulation of physical behavior of nanomaterial during freezing within a container, 2022, 36, 0217-9849, 10.1142/S0217984922501184
    101. Xinglong Liu, Zahir Shah, Mohammed R. Alzahrani, Numerical modeling of nanofluid exergy loss within tube with multi-helical tapes, 2022, 137, 2190-5444, 10.1140/epjp/s13360-021-02327-6
    102. Saade Abdalkareem Jasim, Ahmed M. Mohsen, Usama S. Altimari, Mustafa Z. Mahmoud, Yehya M. Ahmed, Maryam Derakhshandeh, The CH3F and CH3Cl detection by the BeO nanotube in the presence of environmental gases, 2022, 153, 0026-9247, 331, 10.1007/s00706-022-02907-x
    103. Tie-Hong Zhao, Zhong-Hua Shen, Yu-Ming Chu, Sharp power mean bounds for the lemniscate type means, 2021, 115, 1578-7303, 10.1007/s13398-021-01117-0
    104. Nastaran Chokhachi Zadeh Moghadam, Saade Abdalkareem Jasim, Fuad Ameen, Dalal H. Alotaibi, Marcos A. L. Nobre, Hanen Sellami, Mehrdad Khatami, Nickel oxide nanoparticles synthesis using plant extract and evaluation of their antibacterial effects on Streptococcus mutans, 2022, 45, 1615-7591, 1201, 10.1007/s00449-022-02736-6
    105. Tie-Hong Zhao, Wei-Mao Qian, Yu-Ming Chu, On approximating the arc lemniscate functions, 2022, 53, 0019-5588, 316, 10.1007/s13226-021-00016-9
    106. Adel Almarashi, Irreversibility and thermal analysis of ferrofluid with numerical modeling, 2021, 136, 2190-5444, 10.1140/epjp/s13360-021-02106-3
    107. Mohammed N. Ajour, Muhyaddin J. H. Rawa, Ahmad H. Milyani, Meicheng Li, Mahmoud M. Selim, RETRACTED ARTICLE: Nanomaterial heat transfer through a complex shaped solar system considering variable magnetic field, 2022, 2190-5509, 10.1007/s13204-021-02319-z
    108. Firoozeh Abolhasani Zadeh, Saade Abdalkareem Jasim, Mohammad Javed Ansari, Dmitry Olegovich Bokov, Ghulam Yasin, Lakshmi Thangavelu, Maryam Derakhshandeh, Boron carbide nanotube as targeted drug delivery system for melphalan anticancer drug, 2022, 354, 01677322, 118796, 10.1016/j.molliq.2022.118796
    109. Zhongliang Shen, Shuaixian Yu, Shichuang Zheng, Taher A. Nofal, Awad Musa, Z. Li, Numerical study of multi-jet with upstream divergent ramp at supersonic cross flow, 2022, 127, 12709638, 107689, 10.1016/j.ast.2022.107689
    110. Yahya Ali Rothan, Numerical investigation for augmentation of performance of solar absorber utilizing perforated tape and nanomaterial, 2022, 102, 0044-2267, 10.1002/zamm.202100542
    111. Muhammad Bilal Khan, Gustavo Santos-García, Muhammad Aslam Noor, Mohamed S. Soliman, New Class of Preinvex Fuzzy Mappings and Related Inequalities, 2022, 10, 2227-7390, 3753, 10.3390/math10203753
    112. Guangli Fan, Adel Almarashi, Peixi Guo, Nidal H. Abu-Hamdeh, Abdullah M. Abusorrah, R. Moradi, Comparison of convergent/divergent ramp on fuel mixing of single jet at supersonic crossflow, 2022, 120, 12709638, 107236, 10.1016/j.ast.2021.107236
    113. Yahya Ali Rothan, Modeling approach for nanomaterial convective migration with inclusion of Lorentz force, 2022, 102, 0044-2267, 10.1002/zamm.202100204
    114. Yinghong Qin, Numerical modeling of energy storage unit during freezing of paraffin utilizing Al2O3 nanoparticles and Y-shape fin, 2021, 44, 2352152X, 103452, 10.1016/j.est.2021.103452
    115. Yahya Ali Rothan, Physical features of ferrofluid under the impact of magnetic force inside a complex domain, 2022, 36, 0217-9849, 10.1142/S0217984922500026
    116. Syed Modassir Hussain, Wasim Jamshed, Amjad Ali Pasha, Mohammad Adil, Mohammad Akram, Galerkin finite element solution for electromagnetic radiative impact on viscid Williamson two-phase nanofluid flow via extendable surface, 2022, 137, 07351933, 106243, 10.1016/j.icheatmasstransfer.2022.106243
    117. Musaad S. Aldhabani, Kamsing Nonlaopon, S. Rezaei, Fatimah S.Bayones, S.K. Elagan, Sobhy A.A. El-Marouf, Abundant solitary wave solutions to a perturbed Schrödinger equation with Kerr law nonlinearity via a novel approach, 2022, 35, 22113797, 105385, 10.1016/j.rinp.2022.105385
    118. Xiujun Zhang, Ghulam Farid, Ayşe Kübra Demirel, Chahn Yong Jung, Muhammad Arif, ( p , h )-Convex Functions Associated with Hadamard and Fejér-Hadamard Inequalities via k -Fractional Integral Operators, 2022, 2022, 2314-8888, 1, 10.1155/2022/3832330
    119. Muhammad Adil Khan, Hidayat Ullah, Tareq Saeed, Some estimations of the Jensen difference and applications, 2023, 46, 0170-4214, 5863, 10.1002/mma.8873
    120. Guangli Fan, Hassan Abdulwahab Anjal, Raed Qahiti, Nidal H. Abu-Hamdeh, Abdullah M. Abusorrah, Jin Xu, Hailong Zhang, Zhixiong Li, Comparison of different lobe-injectors on fuel mixing characteristics of single jet at the supersonic combustion chamber, 2021, 119, 12709638, 107193, 10.1016/j.ast.2021.107193
    121. Yahya Ali Rothan, Modeling for freezing of PCM enhanced with nano-powders within a duct, 2022, 137, 2190-5444, 10.1140/epjp/s13360-022-02505-0
    122. Hamdi Ayed, Modeling of nanomaterial transportation within an enclosure with imposing external magnetic source, 2022, 2190-5509, 10.1007/s13204-021-02136-4
    123. Xiaoqing Xu, Weiqi Wang, Lu Lu, Jingzheng Zhang, Jia Luo, Magnesium oxide nanotube as a promising material for detection of methamphetamine drug: theoretical study, 2022, 28, 1610-2940, 10.1007/s00894-022-05151-6
    124. Muhammad Bilal Khan, Savin Treanțǎ, Mohamed S. Soliman, Generalized Preinvex Interval-Valued Functions and Related Hermite–Hadamard Type Inequalities, 2022, 14, 2073-8994, 1901, 10.3390/sym14091901
    125. Li Xu, Lu Chen, Ti-Ren Huang, Monotonicity, convexity and inequalities involving zero-balanced Gaussian hypergeometric function, 2022, 7, 2473-6988, 12471, 10.3934/math.2022692
    126. Bardia Mortezagholi, Emad Movahed, Amirhossein Fathi, Milad Soleimani, Armita Forutan Mirhosseini, Negar Zeini, Mehrdad Khatami, Mahin Naderifar, Bahman Abedi Kiasari, Mehran Zareanshahraki, Plant‐mediated synthesis of silver‐doped zinc oxide nanoparticles and evaluation of their antimicrobial activity against bacteria cause tooth decay, 2022, 85, 1059-910X, 3553, 10.1002/jemt.24207
    127. Murad Ali Shah, Kejia Pan, Muhammad Ibrahim, Tareq Saeed, Use of neural network and machine learning in optimizing heat transfer and entropy generated in a cavity filled with nanofluid under the influence of magnetic field: A numerical study, 2022, 139, 09557997, 113, 10.1016/j.enganabound.2022.03.012
    128. Ying Lai, Peng Liu, Potential application of BC3 nanotube for removal of bisphenol from water; density functional theory study, 2022, 357, 01677322, 119147, 10.1016/j.molliq.2022.119147
    129. Ghassan Fadhil Smaisim, Azher M. Abed, Hayder Al-Madhhachi, Salema K. Hadrawi, Hasan Mahdi M. Al-Khateeb, Ehsan Kianfar, Graphene-Based Important Carbon Structures and Nanomaterials for Energy Storage Applications as Chemical Capacitors and Supercapacitor Electrodes: a Review, 2023, 13, 2191-1630, 219, 10.1007/s12668-022-01048-z
    130. Mohammed Zwawi, Treatment of ferrofluid through a sinusoidal cavity with impose of magnetic source, 2022, 2190-5509, 10.1007/s13204-022-02361-5
    131. Xiao-Yong Shen, Hong-Qin Xu, M. Barzegar Gerdroodbary, S. Valiallah Mousavi, Amir Musa Abazari, S. Misagh Imani, Numerical simulation of blood flow effects on rupture of aneurysm in middle cerebral artery, 2022, 33, 0129-1831, 10.1142/S0129183122500309
    132. Haiwei Yang, Yahya Ali Rothan, Saad Althobaiti, Mahmoud M. Selim, Simulation for influence of Y-shape fin on phase change of paraffin inside triplex pipe with using Al2O3 nanoparticles, 2022, 46, 2352152X, 103878, 10.1016/j.est.2021.103878
    133. Menglin Qin, Sajjad Haider, Shaukat Khan, Alibek Issakhov, Mahmoud M. Selim, RETRACTED ARTICLE: Study for Lorentz force impact on irreversibility of nanomaterial with considering the permeable zone, 2022, 2190-5509, 10.1007/s13204-021-02183-x
    134. Menglin Qin, Bandar Almohsen, M. Sabershahraki, Alibek Issakhov, Investigation of water freezing with inclusion of nanoparticle within a container with fins, 2022, 2190-5509, 10.1007/s13204-021-02139-1
    135. Saade Abdalkareem Jasim, Moaed E. Al-Gazally, Hasan Sh. Majdi, Yasir Salam Karim, Maria Jade Catalan Opulencia, Mustafa M. Kadhim, Ali Thaeer Hammid, Yasser Fakri Mustafa, Parvaneh Delir Kheirollahi Nezhad, Gallium and scandium doping effect on the sensing performance of aluminum phosphide nanotubes toward toxic ethylene oxide gas, 2022, 441, 03759601, 128145, 10.1016/j.physleta.2022.128145
    136. Masoome Sadeghi, Asal Yousefi Siavoshani, Mahdiye Bazargani, Abduladheem Turki Jalil, Mojtaba Ramezani, Mohammad Reza Poor Heravi, Dichlorosilane adsorption on the Al, Ga, and Zn-doped fullerenes, 2022, 153, 0026-9247, 427, 10.1007/s00706-022-02926-8
    137. Muhammad Bilal Khan, Aleksandr Rakhmangulov, Najla Aloraini, Muhammad Aslam Noor, Mohamed S. Soliman, Generalized Harmonically Convex Fuzzy-Number-Valued Mappings and Fuzzy Riemann–Liouville Fractional Integral Inequalities, 2023, 11, 2227-7390, 656, 10.3390/math11030656
    138. Sagr Alamri, Ali A. Rajhi, M. Derakhshande, Potential detection of C2N2 gas by the pure, Al, and Cu-doped graphynes: a DFT study, 2022, 48, 0892-7022, 574, 10.1080/08927022.2022.2036338
    139. Chuan-Yu Cai, Lu Chen, Ti-Ren Huang, Yuming Chu, New properties for the Ramanujan R-function, 2022, 20, 2391-5455, 724, 10.1515/math-2022-0045
    140. Ahmad Banji Jafar, Sharidan Shafie, Imran Ullah, Rabia Safdar, Wasim Jamshed, Amjad Ali Pasha, Mustafa Mutiur Rahman, Syed M. Hussain, Aysha Rehman, El Sayed M. Tag El Din, Mohamed R. Eid, Mixed convection flow of an electrically conducting viscoelastic fluid past a vertical nonlinearly stretching sheet, 2022, 12, 2045-2322, 10.1038/s41598-022-18761-0
    141. Xue-De Luan, Yi-Peng Xu, Hamdi Ayed, Mahmoud M. Selim, Heat transfer treatment of nanomaterial with considering turbulator effects, 2022, 131, 07351933, 105787, 10.1016/j.icheatmasstransfer.2021.105787
    142. Yahya Ali Rothan, Investigation of hybrid nanomaterial application in melting process of paraffin enhanced with nanoparticles, 2021, 96, 0031-8949, 125253, 10.1088/1402-4896/ac3877
    143. Daniyal Irfan, Maria Jade Catalan Opulencia, Saade Abdalkareem Jasim, Odilkhon R. Salimov, Ahmed B. Mahdi, Azher M. Abed, A. Sarkar, Systematically theoretical investigation the effect of nitrogen and iron-doped graphdiyne on the oxygen reduction reaction mechanism in proton exchange membrane fuel cells, 2022, 47, 03603199, 17341, 10.1016/j.ijhydene.2022.03.209
    144. Menglin Qin, Adel Almarashi, Ziyad Jamil Talabany, Sajjad Haider, Shaukat Khan, Mahmoud M. Selim, Charging of phase change material layers though air heat exchanger considering TiO2 nanomaterial, 2022, 47, 2352152X, 103652, 10.1016/j.est.2021.103652
    145. Xinrui Qi, Maawiya Ould Sidi, Iskander Tlili, Talib K. Ibrahim, Mohamed Abdelghany Elkotb, M.A. El-Shorbagy, Zhixiong Li, Optimization and sensitivity analysis of extended surfaces during melting and freezing of phase changing materials in cylindrical Lithium-ion battery cooling, 2022, 51, 2352152X, 104545, 10.1016/j.est.2022.104545
    146. Kamsing Nonlaopon, Shahram Rezapour, Musaad S. Aldhabani, Samirah H. Alsulami, S.K. Elagan, On an efficient approach to solutions of a perturbed nonlinear Schrödinger’s equation, 2022, 39, 22113797, 105738, 10.1016/j.rinp.2022.105738
    147. Syed M. Hussain, B. Shankar Goud, Prakash Madheshwaran, Wasim Jamshed, Amjad Ali Pasha, Rabia Safdar, Misbah Arshad, Rabha W. Ibrahim, Mohammad Kalimuddin Ahmad, Effectiveness of Nonuniform Heat Generation (Sink) and Thermal Characterization of a Carreau Fluid Flowing across a Nonlinear Elongating Cylinder: A Numerical Study, 2022, 7, 2470-1343, 25309, 10.1021/acsomega.2c02207
    148. Omar Dheyauldeen Salahdin, Hamidreza Sayadi, Reena Solanki, Rosario Mireya Romero Parra, Mohaimen Al-Thamir, Abduladheem Turki Jalil, Samar Emad Izzat, Ali Thaeer Hammid, Luis Andres Barboza Arenas, Ehsan Kianfar, Graphene and carbon structures and nanomaterials for energy storage, 2022, 128, 0947-8396, 10.1007/s00339-022-05789-2
    149. Fuzhang Wang, Rebwar Nasir Dara, Ahmed Msmali, Taher A. Nofal, Awad Musa, Nidal H. Abu-Hamdeh, Simulation for discharging of phase change material within a porous duct utilizing multi layers, 2022, 213, 09204105, 110305, 10.1016/j.petrol.2022.110305
    150. Jian Wang, Wissam H. Alawee, Hayder A. Dhahad, Taher A. Nofal, Awad Musa, Ping Xu, Numerical study for solidification of water inside a storage tank considering copper oxide nanoparticles, 2022, 52, 2352152X, 104683, 10.1016/j.est.2022.104683
    151. Saima Rashid, Rehana Ashraf, Fahd Jarad, Strong interaction of Jafari decomposition method with nonlinear fractional-order partial differential equations arising in plasma via the singular and nonsingular kernels, 2022, 7, 2473-6988, 7936, 10.3934/math.2022444
    152. Hamed Sadeghi, Hajar Q. Alijani, Shahla Hashemi-Shahraki, Mahin Naderifar, Seyedeh-Sharifeh Rahimi, Firoozeh Abolhasani Zadeh, Siavash Iravani, Mojtaba Haghighat, Mehrdad Khatami, Iron oxyhydroxide nanoparticles: green synthesis and their cytotoxicity activity against A549 human lung adenocarcinoma cells, 2022, 33, 2037-4631, 461, 10.1007/s12210-022-01065-w
    153. Abeer S. Alnahdi, Saleem Nasir, Taza Gul, Couple stress ternary hybrid nanofluid flow in a contraction channel by means of drug delivery function, 2023, 03784754, 10.1016/j.matcom.2023.02.021
    154. Murad Ali Shah, Kejia Pan, Muhammad Ibrahim, Tareq Saeed, Syed Ibrahim, Numerical study and optimization of important parameters of non-Newtonian nanofluid turbulent flow in a channel with triangular vortex generators using artificial neural network, 2022, 139, 09557997, 94, 10.1016/j.enganabound.2022.03.022
    155. Muhammad Bilal Khan, Gustavo Santos-García, Savin Treanțǎ, Mohamed S. Soliman, New Class Up and Down Pre-Invex Fuzzy Number Valued Mappings and Related Inequalities via Fuzzy Riemann Integrals, 2022, 14, 2073-8994, 2322, 10.3390/sym14112322
    156. Menglin Qin, Hamdi Ayed, Alibek Issakhov, Mahmoud M. Selim, RETRACTED ARTICLE: Modeling of nanomaterial transportation over a sheet with involving MHD effect, 2022, 2190-5509, 10.1007/s13204-021-02168-w
    157. Xuexiao You, Muhammad Adil Khan, Hidayat Ullah, Tareq Saeed, Improvements of Slater’s Inequality by Means of 4-Convexity and Its Applications, 2022, 10, 2227-7390, 1274, 10.3390/math10081274
    158. Saade Abdalkareem Jasim, Hawraz Ibrahim M. Amin, Ahmad Rajabizadeh, Marcos Augusto Lima Nobre, Fariba Borhani, Abduladheem Turki Jalil, Marwan Mahmood Saleh, Mustafa M. Kadhim, Mehrdad Khatami, Synthesis characterization of Zn-based MOF and their application in degradation of water contaminants, 2022, 86, 0273-1223, 2303, 10.2166/wst.2022.318
    159. Jun Song, Didi Wu, Mohammad Arefi, Modified couple stress and thickness-stretching included formulation of a sandwich micro shell subjected to electro-magnetic load resting on elastic foundation, 2022, 18, 22149147, 1935, 10.1016/j.dt.2022.04.015
    160. Hui-Zuo Xu, Wei-Mao Qian, Yu-Ming Chu, Sharp bounds for the lemniscatic mean by the one-parameter geometric and quadratic means, 2022, 116, 1578-7303, 10.1007/s13398-021-01162-9
    161. JunRu Liu, Hadi jabbari, Mustafa M. Kadhim, Mohammad Javed Ansari, Abdol Ghaffar Ebadi, Design organic material with acceptor-π-donor configuration for high performance solar cells, 2022, 1212, 2210271X, 113729, 10.1016/j.comptc.2022.113729
    162. Ahmad El Askary, Basem H. Elesawy, Nasser S. Awwad, Hala A. Ibrahium, Mohd. Shkir, Different metal-decorated aluminum phosphide nanotubes as hydrazine sensors for biomedical applications, 2022, 28, 1610-2940, 10.1007/s00894-022-05102-1
    163. Hamad Hassan Awan, Arshad Hussain, Muhammad Faisal Javed, Yanjun Qiu, Raid Alrowais, Abdeliazim Mustafa Mohamed, Dina Fathi, Abdullah Mossa Alzahrani, Predicting Marshall Flow and Marshall Stability of Asphalt Pavements Using Multi Expression Programming, 2022, 12, 2075-5309, 314, 10.3390/buildings12030314
    164. Muhammad Bilal Khan, Hakeem A. Othman, Aleksandr Rakhmangulov, Mohamed S. Soliman, Alia M. Alzubaidi, Discussion on Fuzzy Integral Inequalities via Aumann Integrable Convex Fuzzy-Number Valued Mappings over Fuzzy Inclusion Relation, 2023, 11, 2227-7390, 1356, 10.3390/math11061356
    165. Hamdi Ayed, Couple stress and Darcy Forchheimer hybrid nanofluid flow on a vertical plate by means of double diffusion Cattaneo–Christov analysis, 2023, 32, 1674-1056, 040205, 10.1088/1674-1056/ac7bfb
    166. Muhammad Bilal Khan, Jorge E. Macías-Díaz, Saeid Jafari, Abdulwadoud A. Maash, Mohamed S. Soliman, Pre-Invexity and Fuzzy Fractional Integral Inequalities via Fuzzy Up and Down Relation, 2023, 15, 2073-8994, 862, 10.3390/sym15040862
    167. Muhammad Bilal Khan, Aziz Ur Rahman, Abdulwadoud A. Maash, Savin Treanțǎ, Mohamed S. Soliman, Some New Estimates of Fuzzy Integral Inequalities for Harmonically Convex Fuzzy-Number-Valued Mappings via up and down Fuzzy Relation, 2023, 12, 2075-1680, 365, 10.3390/axioms12040365
    168. Sharif Ullah, Ikram Ullah, Amir Ali, Soret and Dufour effects on dissipative Jeffrey nanofluid flow over a curved surface with nonlinear slip, activation energy and entropy generation, 2023, 1745-5030, 1, 10.1080/17455030.2022.2164380
    169. BoAn Xiao, Electrochemical sensor based on Bimetallic phosphosulfide Zn–Ni–P–S Nanocomposite -reduced graphene oxide for determination of Paraoxon Ethyl in agriculture wastewater, 2022, 17, 14523981, 220672, 10.20964/2022.06.72
    170. Muhammad Bilal Khan, Eze R. Nwaeze, Cheng-Chi Lee, Hatim Ghazi Zaini, Der-Chyuan Lou, Khalil Hadi Hakami, Weighted Fractional Hermite–Hadamard Integral Inequalities for up and down Ԓ-Convex Fuzzy Mappings over Coordinates, 2023, 11, 2227-7390, 4974, 10.3390/math11244974
    171. Shanhe Wu, Muhammad Adil Khan, Shah Faisal, Tareq Saeed, Eze R. Nwaeze, Derivation of Hermite-Hadamard-Jensen-Mercer conticrete inequalities for Atangana-Baleanu fractional integrals by means of majorization, 2024, 57, 2391-4661, 10.1515/dema-2024-0024
    172. H.M. Srivastava, Shakir Malik, M.I. Qureshi, Bilal Bhat, Some zero-balanced terminating hypergeometric series and their applications, 2023, 37, 0354-5180, 7367, 10.2298/FIL2322367S
    173. Tareq Saeed, Adriana Cătaș, Muhammad Bilal Khan, Ahmed Mohammed Alshehri, Some New Fractional Inequalities for Coordinated Convexity over Convex Set Pertaining to Fuzzy-Number-Valued Settings Governed by Fractional Integrals, 2023, 7, 2504-3110, 856, 10.3390/fractalfract7120856
    174. Saade Abdalkareem Jasim, Andrés Alexis Ramírez-Coronel, Ameer A. Alameri, I.B. Sapaev, Yasser Fakri Mustafa, Abduladheem Turki Jalil, Qutaiba A. Qasim, Munther Abosaooda, Phenytoin drug detection study through the B24N24 and Al24N24 nano-clusters in gas and solvent phase: DFT, TD-DFT, and thermodynamic study, 2023, 153, 13877003, 110887, 10.1016/j.inoche.2023.110887
    175. Tareq Saeed, Muhammad Bilal Khan, Savin Treanță, Hamed H. Alsulami, Mohammed Sh. Alhodaly, Study of Log Convex Mappings in Fuzzy Aunnam Calculus via Fuzzy Inclusion Relation over Fuzzy-Number Space, 2023, 11, 2227-7390, 2043, 10.3390/math11092043
    176. Ling Zhu, A new upper bound for the complete elliptic integral of the first kind, 2023, 117, 1578-7303, 10.1007/s13398-023-01453-3
    177. Ebrahem A. Algehyne, Izharul Haq, Zehba Raizah, Fuad S. Alduais, Anwar Saeed, Ahmed M. Galal, Heat transport phenomenon of the MHD water-based hybrid nanofluid flow over a rotating disk with velocity slips, 2024, 38, 0217-9792, 10.1142/S0217979224501005
    178. Chao Luo, Wanhe Yao, Xu Gao, Degradation of a Reactive Orange 16 in textile wastewater treatment using CuO/ZnO nanocomposite as photocatalyst, 2022, 17, 14523981, 220732, 10.20964/2022.07.26
    179. Yajun Chen, Jiahui Wu, Tiehong Zhao, On the absolute monotonicity of generalized elliptic integral of the first kind, 2023, 117, 1578-7303, 10.1007/s13398-023-01472-0
    180. Wei-Dong Jiang, Sharp inequalities for the complete elliptic integrals of the first and second kinds, 2023, 17, 1452-8630, 388, 10.2298/AADM200613020J
    181. Mohamed J. Saadh, Durgesh Singh, Diego Mayorga, Anjan Kumar, María Albuja, Ahmad Ismael Saber, Mohammed Ahmed Mustafa, Yasser Elmasry, Noubu Sun, The potential of 2D carbon nitride monolayer as an efficient adsorbent for capturing mercury: A DFT study, 2024, 141, 09259635, 110566, 10.1016/j.diamond.2023.110566
    182. Chaoran Li, Yongjun Xiao, Jianfang Liu, Guangzhou Li, Yugao Zhu, Determination of Anabolic Steroid as Doping Agent in Serum and Urine of Athletes by Using an Electrochemical Sensor Based on the Graphene-Gold Hybrid Nanostructure, 2022, 17, 14523981, 220766, 10.20964/2022.07.70
    183. Muhammad Adil Khan, Asadullah Sohail, Hidayat Ullah, Tareq Saeed, Estimations of the Jensen Gap and Their Applications Based on 6-Convexity, 2023, 11, 2227-7390, 1957, 10.3390/math11081957
    184. Jiahui Wu, Tiehong Zhao, On the Absolute Monotonicity of the Logarithmic of Gaussian Hypergeometric Function, 2024, 50, 1017-060X, 10.1007/s41980-024-00889-6
    185. Tie-hong Zhao, Yu-ming Chu, Sharp power-type Heronian and Lehmer means inequalities for the complete elliptic integrals, 2023, 38, 1005-1031, 467, 10.1007/s11766-023-4223-9
    186. Tie-Hong Zhao, Miao-Kun Wang, Sharp double-exponent type bounds for the lemniscate sine function, 2024, 18, 1452-8630, 148, 10.2298/AADM230417005Z
    187. Abdul Basir, Muhammad Adil Khan, Hidayat Ullah, Yahya Almalki, Saowaluck Chasreechai, Thanin Sitthiwirattham, Derivation of Bounds for Majorization Differences by a Novel Method and Its Applications in Information Theory, 2023, 12, 2075-1680, 885, 10.3390/axioms12090885
    188. Zhiyang Liu, Yan Liu, Zhongyu Tan, Ying Liu, Linglong Meng, Sheng Yang, Electrochemical Determination of Rutin in Herbal Samples Using CuO/CNT composite Modified Glassy Carbon Electrode, 2022, 17, 14523981, 220724, 10.20964/2022.07.22
    189. Ziyi Wang, Yumang Zhang, Synthesis of Pt/GO composite as an electrochemical sensor for determination of synthetic corticosteroid triamcinolone as doping agents in sports, 2022, 17, 14523981, 220769, 10.20964/2022.07.67
    190. Muhammad Bilal Khan, Ali Althobaiti, Cheng-Chi Lee, Mohamed S. Soliman, Chun-Ta Li, Some New Properties of Convex Fuzzy-Number-Valued Mappings on Coordinates Using Up and Down Fuzzy Relations and Related Inequalities, 2023, 11, 2227-7390, 2851, 10.3390/math11132851
    191. Zaid Mohammed Mohammed Mahdi Sayed, Muhammad Adil Khan, Shahid Khan, Josip Pecaric, Refinement of the classical Jensen inequality using finite sequences, 2024, 53, 2651-477X, 608, 10.15672/hujms.1270585
    192. Fenzhao Liu, Hydrothermal Synthesis and Electrochemical Properties of LiNi0.8Co0.2-xMgxO2 Cathode Material for Lithium Ion Batteries, 2022, 17, 14523981, 220742, 10.20964/2022.07.36
    193. Tareq Saeed, Muhammad Adil Khan, Shah Faisal, Hamed H. Alsulami, Mohammed Sh. Alhodaly, New conticrete inequalities of the Hermite-Hadamard-Jensen-Mercer type in terms of generalized conformable fractional operators via majorization, 2023, 56, 2391-4661, 10.1515/dema-2022-0225
    194. Chen Hai-sheng, Zhu Ye-cheng, Optimal power-type Heronian and Lehmer means inequalities for the complete elliptic integrals, 2024, 1065-2469, 1, 10.1080/10652469.2024.2392281
    195. Muhammad Adil Khan, Hidayat Ullah, Tareq Saeed, Zaid M. M. M. Sayed, Salha Alshaikey, Emad E. Mahmoud, Daniel Maria Busiello, Determination of Novel Estimations for the Slater Difference and Applications, 2024, 2024, 1099-0526, 1, 10.1155/2024/8481103
    196. Muhammad Bilal Khan, Jorge E. Macías-Díaz, Ali Althobaiti, Saad Althobaiti, Some New Properties of Exponential Trigonometric Convex Functions Using up and down Relations over Fuzzy Numbers and Related Inequalities through Fuzzy Fractional Integral Operators Having Exponential Kernels, 2023, 7, 2504-3110, 567, 10.3390/fractalfract7070567
    197. Jiahui Wu, Tiehong Zhao, On the power series related to zero-balanced hypergeometric function, 2025, 0019-5588, 10.1007/s13226-025-00768-8
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5718) PDF downloads(309) Cited by(195)

Figures and Tables

Figures(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog