Research article Special Issues

Monotonicity, convexity properties and inequalities involving Gaussian hypergeometric functions with applications

  • In this paper, we mainly prove monotonicity and convexity properties of certain functions involving zero-balanced Gaussian hypergeometric function F(a,b;a+b;x). We generalize conclusions of elliptic integral to Gaussian hypergeometric function, and get some accurate inequalities about Gaussian hypergeometric function.

    Citation: Ye-Cong Han, Chuan-Yu Cai, Ti-Ren Huang. Monotonicity, convexity properties and inequalities involving Gaussian hypergeometric functions with applications[J]. AIMS Mathematics, 2022, 7(4): 4974-4991. doi: 10.3934/math.2022277

    Related Papers:

    [1] Li Xu, Lu Chen, Ti-Ren Huang . Monotonicity, convexity and inequalities involving zero-balanced Gaussian hypergeometric function. AIMS Mathematics, 2022, 7(7): 12471-12482. doi: 10.3934/math.2022692
    [2] Feng Qi, Kottakkaran Sooppy Nisar, Gauhar Rahman . Convexity and inequalities related to extended beta and confluent hypergeometric functions. AIMS Mathematics, 2019, 4(5): 1499-1507. doi: 10.3934/math.2019.5.1499
    [3] Georgia Irina Oros . Carathéodory properties of Gaussian hypergeometric function associated with differential inequalities in the complex plane. AIMS Mathematics, 2021, 6(12): 13143-13156. doi: 10.3934/math.2021759
    [4] A. Belafhal, N. Nossir, L. Dalil-Essakali, T. Usman . Integral transforms involving the product of Humbert and Bessel functions and its application. AIMS Mathematics, 2020, 5(2): 1260-1274. doi: 10.3934/math.2020086
    [5] Miguel Vivas-Cortez, Muhammad Zakria Javed, Muhammad Uzair Awan, Artion Kashuri, Muhammad Aslam Noor . Generalized $ (p, q) $-analogues of Dragomir-Agarwal's inequalities involving Raina's function and applications. AIMS Mathematics, 2022, 7(6): 11464-11486. doi: 10.3934/math.2022639
    [6] Moquddsa Zahra, Dina Abuzaid, Ghulam Farid, Kamsing Nonlaopon . On Hadamard inequalities for refined convex functions via strictly monotone functions. AIMS Mathematics, 2022, 7(11): 20043-20057. doi: 10.3934/math.20221096
    [7] Shuang-Shuang Zhou, Ghulam Farid, Chahn Yong Jung . Convexity with respect to strictly monotone function and Riemann-Liouville fractional Fejér-Hadamard inequalities. AIMS Mathematics, 2021, 6(7): 6975-6985. doi: 10.3934/math.2021409
    [8] Muhammad Aslam Noor, Khalida Inayat Noor . Higher order strongly general convex functions and variational inequalities. AIMS Mathematics, 2020, 5(4): 3646-3663. doi: 10.3934/math.2020236
    [9] Chuan-Yu Cai, Qiu-Ying Zhang, Ti-Ren Huang . Properties of generalized $ (p, q) $-elliptic integrals and generalized $ (p, q) $-Hersch-Pfluger distortion function. AIMS Mathematics, 2023, 8(12): 31198-31216. doi: 10.3934/math.20231597
    [10] Hengxiao Qi, Muhammad Yussouf, Sajid Mehmood, Yu-Ming Chu, Ghulam Farid . Fractional integral versions of Hermite-Hadamard type inequality for generalized exponentially convexity. AIMS Mathematics, 2020, 5(6): 6030-6042. doi: 10.3934/math.2020386
  • In this paper, we mainly prove monotonicity and convexity properties of certain functions involving zero-balanced Gaussian hypergeometric function F(a,b;a+b;x). We generalize conclusions of elliptic integral to Gaussian hypergeometric function, and get some accurate inequalities about Gaussian hypergeometric function.



    For a,b,cR with c0,1,2,, the Gaussian hypergeometric function is defined by [1,3]

    F(a,b;c;x)=2F1(a,b;c;x)=n=0(a,n)(b,n)(c,n)n!xn,x(1,1), (1.1)

    where (a,n) is the shifted fractional function, namely (a,n)=a(a+1)(a+2)(a+n1) for n=1,2,3,, and (a,0)=1 for a0. The function F(a,b;c;x) is called zero-balanced when c=a+b.

    Firstly, we introduce the following properties of the function F(a,b;c;x) at x=1:

    (1) For a+b<c (See [13]),

    F(a,b;c;1)=Γ(c)Γ(cab)Γ(ca)Γ(cb). (1.2)

    (2) For a+b=c (See [1,6]),

    B(a,b)F(a,b;c;x)+log(1x)=R(a,b)+O((1x)log(1x)),x1. (1.3)

    The above asymptotical formula was raised by Ramanujan, where

    B(a,b)=Γ(a)Γ(b)Γ(a+b),

    is the classical beta function and

    R(a,b)=ψ(a)ψ(b)2γ,

    ψ(z)=Γ(z)/Γ(z), Re(z)>0 is the digamma function and γ is called Euler-Mascheroni constant defined by

    γ=limn(nk=11klogn)=0.577156649.

    For a+b<c, we have (See [2], Theorem 1.19(10)]),

    F(a,b;c;x)=(1x)cabF(ca,cb;c;x). (1.4)

    From the uniform convergence of the termwise first derivative of (1,1) in [1], it follows that

    ddxF(a,b;c;x)=abcF(a+1,b+1;c+1;x),x(1,1). (1.5)

    It is well known that F(a,b;c;x) has been widely applied in many fields of mathematics and physics. Many special functions in mathematical physics and even some common elementary functions are particular or limiting cases of F(a,b;c;x) in [1,10]. For example, Legendre's complete elliptic integrals of the first kind, are defined by

    K(r)=π/201(1r2sin2θ)1/2dθ=π2F(12,12;1;r2),
    K(r)=K(r).

    Here and hereafter we always let r=1r2 for r(0,1).

    For a(0,1), we can use zero-balanced Gaussian hypergeometric function to define generalized elliptic integrals Ka(r) and Ka(r) of the first kind on (0,1) as follow [7]:

    Ka(r)=π2F(a,1a;1;r2), (1.6)
    Ka(r)=Ka(r). (1.7)

    If a=1/2, then we get complete elliptic integrals K(r) and K(r).

    During the past decades, many properties are revealed for F(a,b;c;x) (See [5,17,18,21,22,28,30]), K(r) and Ka(r) (See [4,8,9,15,16,19,20,23,24,25,26,27,29]) by showing the monotonicity and cancavity properties of certain combinations defined in terms of these special functions and other elementary functions. From these analytic properties, we can get some inequalities of F(a,b;c;x) and Ka(r).

    For r(0,1), one kind of known elegant functional inequalities for Ka(r) are of the following form

    sin(πa)c1+(1c1)r2<Ka(r)log[eR(a)/2/r]<sin(πa)c2+(1c2)r2, (1.8)

    where R(a)=R(a,1a)=2γψ(a)ψ(1a), with constants c1,c2(0,1). For example, Wang and Chu [19] proved that

    sin(πa)A1+(1A1)r2<Ka(r)log[eR(a)/2/r]<sin(πa)A2+(1A2)r2 (1.9)

    for r(0,1), where A1=R(a)/B(a) and A2=1a(1a).

    In present paper, we try to generalize the above inequality (1.9) to zero-balanced hypergeometric function.

    In 1999, Qiu and Vuorinen [12] considered the ratio function xF(a,b;a+b;x)/log[eR/(1x)], and obtained the following theorem:

    Theorem 1.1. ([12], Theorem 2.1])Let a,b(0,) with R(a,b)0. Then the function

    F(x)=F(a,b;a+b;x)R(a,b)log(1x) (1.10)

    is strictly decreasing from (0,1) onto (1/B(a,b),1/R(a,b)). In particular, K((1r2))/log(4/r) is strictly decreasing from (0,1) onto (1,π/log16).

    It is natural to think about the monotonicity of the reciprocal of F(x), that is

    f(x)=1/F(x)=R(a,b)log(1x)F(a,b;a+b;x), (1.11)

    and the relationship between the monotonicity of the function f(x) and the value of R(a,b). Thus we consider the following questions:

    Question 1.2. For a,b>0, is the function f(x) stictly increasing or decreasing on (0,1)? What's the relationship between the monotonicity of the function f(x) and the value of R(a,b)?

    Let f(x) be in (1.11) and

    f1(x)=f(x)R(a,b)x, (1.12)
    f2(x)=B(a,b)f(x)1x, (1.13)
    f3(x)=c+xf(x). (1.14)

    In [7], Huang, Qiu and Ma considered the above functions for the particular case of a+b=1 and obtained the following theorems:

    Theorem 1.3. ([7], Theorem 1.1])Let f(x) be as in (1.11), f1(x) be as in (1.12), and f2(x) be as in (1.13).If a+b=1, then we have the following conclusions:

    (1) f(x) is convex on (0,1).

    (2) f1(x) is strictly increasing from (0, 1) onto (1abR(a,b),B(a,b)R(a,b)).

    (3) f2(x) is strictly increasing from (0, 1) onto (B(a,b)R(a,b),abB(a,b)).

    Theorem 1.4. ([7], Theorem 1.2])Let f(x) be as in (1.11) and f3(x) be as in (1.14). If a+b=1, then we have the following conclusions:

    (1) f3(x) is strictly decreasing from (0,1) onto ((c+1)/B(a,b),c/R(a,b)) if and only if cR(a,b)/(1abR(a,b)).

    (2) f3(x) is strictly increasing form (0,1) onto (c/R(a,b),(c+1)/B(a,b)) if and only if 0<c1/(ab)1. Moreover f3(x) is concave on (0,1) provided that 0<c1/(ab)1.

    (3) If 1/(ab)1<c<R(a,b)/(1abR(a,b), then there exists a unique number x0=x0(a,c)(0,1), depending on a and c, such that f3(x) is strictly increasing on (0,x0), and decreasing on (x0,1).

    For the particular case of a+b=1, Theorem 1.3 and 1.4 actually obtain the conclusions of generalized elliptical integral Ka(r). In light of the above results, we are trying to extend the above theorem to the zero-balanced hypergeometric function and it is natural to consider the following questions:

    Question 1.5. Whether Theorem 1.3 and 1.4 can be extended to zero-balanced hypergeometric function?

    The purpose of this paper is to give complete answers to Question 1.2 and 1.5. This paper is organized as follows. The preliminaries we needed are listed in Section 2, and the main results and their complete proofs of this paper are listed in Section 3. As applications, inequalities of hypergeometric function are displayed in Section 4.

    Before proving our main results, we firstly introduce the following important lemmas, which will be used in the proofs of main results.

    Lemma 2.1. (See [11], Lemma 2.1]) Let <a<b<, f,g:[a,b]R becontinuous on [a,b] and differentiable on (a,b), andg(x)0 on (a,b). If f(x)/g(x) isincreasing (decreasing) on (a,b), then so are the functions

    f(x)f(a)g(x)g(a),f(x)f(b)g(x)g(b).

    If f(x)/g(x) is strictly monotone, then themonotonicity in the conclusion is also strict.

    Lemma 2.2. (See [14], Lemma 1.1]) Suppose that the power series f(x)=n=0anxn and g(x)=n=0bnxn have the radius of convergence r>0 and that bn>0 for all n{0,1,2,}. Let h(x)=f(x)/g(x).If the sequence {an/bn} is (strictly) increasing (decreasing), then h(x) is also (strictly) increasing (decreasing) on (0,r).

    Lemma 2.3. For a(0,), the following function

    R(a,1/a)=2γψ(a)ψ(1/a)

    is decreasing from (0,1] onto [0,), and increasing from (1,) onto (0,).

    Proof. Firstly, we consider the monotonicity of ϕ(x)=xψ(x), x(0,+). From the formula

    ψn(x)=(1)n+1+0tnext1etdt,

    we have

    ϕ(x)=xψ(x)=+0xtext1etdt=v=xt=+0evv/x1ev/xdv.

    Differentiating ϕ(x) gives

    ϕ(x)=+0evv/x2(1ev/x)2(v/x+1ev/x1)dv.

    Let y=v/x, it is not difficult to find eyy1>0 for y>0. It implies (v/x+1)/ev/x1<0 and ϕ(x)<0. Hence ϕ(x) is a decreasing function on (0,+).

    Next by the monotonicity of ϕ(x)=xψ(x) and

    dR(a,1/a)da=aψ(a)+ψ(1/a)/aa,

    we have

    dR(a,1/a)da=ϕ(a)+ϕ(1/a)a{0,0<a1,>0,a>1.

    The proof of this lemma is completed.

    Lemma 2.4. For a,b>0 and ab1, we have R(a,b)0.

    Proof. Firstly, we let b=1/a, then R(a,1/a)=2γψ(a)ψ(1/a). By Lemma 2.3, we obtain R(a,1/a) is decreasing from (0,1] onto [0,), and increasing from (1,) onto (0,). Hence the equation R(a,1/a)=0 has only one zero point a=1, that is ab=1 and R(a,b)=0 have only one intersection point (a,b)=(1,1).

    Next, we can easily find some special points (a,b) such that ab>1 and R(a,b)0, such as (3,0.4) and (4,0.4). Since the symmetry of the two regions, ab1 and R(a,b)0, we obtain that if ab1, then R(a,b)0.

    Lemma 2.5. For a,b>0 and ab1. If 0c1/(ab)1, then the function

    f4(x)=F(a,b;a+b;x)+2aba+bF(a,b;a+b+1;x)+a2b2(c+x)(a+b)(a+b+1)F(a+1,b+1;a+b+2;x) (2.1)

    is a decreasing function and f4(x)<0 on (0,1).

    Proof. According to (1.1)

    f4(x)=n=0(a,n)(b,n)(a+b,n)n!xn+2aba+bn=0(a,n)(b,n)(a+b+1,n)n!xn+a2b2(a+b)(a+b+1)[cn=0(a+1,n)(b+1,n)(a+b+2,n)n!xn+xn=0(a+1,n)(b+1,n)(a+b+2,n)n!xn]=n=0(a,n)(b,n)(a+b,n)n!xn+n=02(a,n+1)(b,n+1)(a+b,n+1)n!xn+n=0abc(a,n+1)(b,n+1)(a+b,n+2)n!xn+n=0ab(a,n+1)(b,n+1)(a+b,n+2)n!n2+(a+b+1)n(a+n)(b+n)xn=n=0(a,n)(b,n)(a+b,n+2)n!{[ab(c+1)1]n2+[ab(c+1)(a+b)+3ab2a2b1]n+a2b2c+2ab(a+b)(a2+b2)(a+b)}xn. (2.2)

    Since 0c1/(ab)1, we have ab(c+1)10. Hence

    ab(c+1)(a+b)+3ab2a2b1ab[ab/(a+b)+3]2a2b1=3abab1:=u(a,b)

    and

    a2b2c+2ab(a+b)(a2+b2)(a+b)a2b2[1/(ab)1]+2ab(a+b)(a2+b2)(a+b)=aba2b2+2ab(a+b)(a2+b2)(a+b):=v(a,b).

    Since

    u(a,b)a=3b1=0,u(a,b)b=3a1=0,

    there is a extremal point (1/3,1/3) of u(a,b), and u(1/3,1/3)=4/3<0. Since

    u(a,0)=a1<0, u(a,1/a)=2a1/a0,

    we have u(a,b)0. Hence ab(c+1)(a+b)+3ab2a2b10.

    Similarly, since

    v(a,b)a=b2ab2+2b(a+b)+2ab2a1=0v(a,b)b=a2a2b+2a(a+b)+2ab2b1=0,

    we have that (ab)[2(a+b)2ab+3]=0. Since 2(a+b)2ab+3>0, a=b, there is an extremal point (a,b)=(a0,a0), where a0 is the solution of equation 2a3+6a2a1=0 and v(a0,a0)<0. Since

    v(a,0)=a2a<0, v(a,1/a)=(a+1/a)2+(a+1/a)+20,

    we have v(a,b)0. Hence a2b2c+2ab(a+b)(a2+b2)(a+b)0. Therefore, f4(x) is a decreasing function on (0,1), and

    f4(0+)=1+2aba+b+a2b2c(a+b)(a+b+1)=(a+b)(a+b+1)+2ab(a+b+1)+a2b2c(a+b)(a+b+1)v(a,b)(a+b)(a+b+1)0.

    Hence f4(x)<0 on (0,1).

    In the following statement, we always let R=R(a,b),B=B(a,b) for (a,b)(0,).

    Theorem 3.1. Let a,b(0,). The function

    f(x)=Rlog(1x)F(a,b;a+b;x) (3.1)

    is strictly increasing from (0,1) onto (R,B).

    Proof. Differentiating f(x) gives

    f(x)=F(a,b;a+b;x)/(1x)aba+bF(a+1,b+1;a+b+1;x)logeR1xF(a,b;a+b;x)2=F(a,b;a+b;x)aba+bF(a,b;a+b+1;x)logeR1x(1x)F(a,b;a+b;x)2.=g1(x)g2(x), (3.2)

    where g1(x)=F(a,b;a+b;x)[ab/(a+b)]F(a,b;a+b+1;x)log[eR/(1x)], g2(x)=(1x)F(a,b;a+b;x)2.

    For x(0,1), g2(x)>0. If g1(x)>0, then f(x) is a ratio of two positive functions, and f(x) is strictly increasing on (0,1).

    By (1.1) and (1.3), g1(0)=1abR/(a+b) and

    g1(1)=limx1F(a,b;a+b;x)aba+bF(a,b;a+b+1;x)logeR1x=limx1Rlog(1x)Baba+bΓ(a+b+1)Γ(a+1)Γ(b+1)logeR1x=0.

    By (1.5), we obtain

    g1(x)=a2b2(a+b)(a+b+1)F(a+1,b+1;a+b+2;x)logeR1x.

    Case 1. If R0, then log[eR/(1x)]0, g1(x)0 on (0,1). Therefore, g1(x) is decreasing and positive and f(x)=g1(x)/g2(x)>0.

    Case 2. If R<0, then log[eR/(1x)] is increasing on (0,1), log[eR/(1x)]<0 on (0,1eR) and log[eR/(1x)]>0 on [1eR,1). Therefore, g1(x)>0 on (0,1eR) and g1(x)<0 on [1eR,1). Moreover, g1(x) is increasing on (0,1eR) and decreasing on [1eR,1). Meanwhile, g1(0)=1abR/(a+b)>0 and g1(1)=0. Hence g1(x)>0 and f(x)=g1(x)/g2(x)>0 on (0,1).

    In summary, no matter what value R takes, f(x)>0 on (0,1). By (1.1) and (1.3), we obtain f(0)=R/F(a,b;a+b;0)=R and

    f(1)=limx1Rlog(1x)F(a,b;a+b;x)=limx1Rlog(1x)Rlog(1x)B=B.

    Hence f(x) is strictly increasing from (0,1) onto (R,B).

    Remark 3.2. From the above proof, it can be known that no matter what value R takes, f(x) is an increasing function. Hence Theorem 3.1 answers Question 1.2.

    Remark 3.3. (1) For R0, Rlog(1x)>0 and f(x)>0 for x(0,1). Acorrding to Theorem 3.1, it is easy to know that F(x)=1/f(x) in Theorem 1.1 is strictly decresing on (0,1).

    (2) For R<0, there exists unique point x0(0,1) such that Rlog(1x)=0, that is x0=1eR. Acorrding to Theorem 3.1, we can know that F(x)=1/f(x) is strictly decreasing from (0,x0) onto (,1/R) and strictly decreasing from (x0,1) onto (1/B,+).

    Theorem 3.4. For (a,b)D1={(a,b)|a,b>0,(a+b)(a+b+1)ab(2a+2b+3)>0} as shown in the Figure 1, the function f(x)is convex on (0,1).

    Figure 1.  The regions D1,D2.

    Proof. By (1.1)(1.5), we obtain g1(1)=0 and

    g2(1)=limx1F(a,b;a+b;x)211x=limx12aba+b11xF(a,b;a+b;x)F(a,b;a+b+1;x)1(1x)2=limx12BF(a,b;a+b;x)11x=limx12ab(a+b)B11xF(a,b;a+b+1;x)1(1x)2=limx12B2(1x)=0.

    and

    g1(x)g2(x)=a2b2(a+b)(a+b+1)F(a+1,b+1;a+b+2;x)logeR1xF(a,b;a+b;x)2+2aba+bF(a,b;a+b;x)F(a,b;a+b+1;x)=ablogeR1xF(a,b;a+b;x)ab(a+b)(a+b+1)F(a+1,b+1;a+b+2;x)F(a,b;a+b;x)2aba+bF(a,b;a+b+1;x)=abf(x)h(x),

    where

    h(x)=ab(a+b)(a+b+1)F(a+1,b+1;a+b+2;x)F(a,b;a+b;x)2aba+bF(a,b;a+b+1;x).

    By (1.1), h(x) can be written as

    h(x)=n=0(a,n+1)(b,n+1)(a+b,n+2)n!xn/n=0(12aba+b+n)(a,n)(b,n)(a+b,n)n!xn=n=0Anxn/n=0Bnxn,

    where

    An=(a,n+1)(b,n+1)(a+b,n+2)n!,Bn=(12aba+b+n)(a,n)(b,n)(a+b,n)n!.

    Let

    Cn=AnBn=(a+n)(b+n)(a+b+n+1)(a+b2ab+n)=1(1+a+b2ab)n+(a+b)(a+b+1)ab(2a+2b+3)n2+(1+2a+2b2ab)n+(a+b+1)(a+b2ab)=1p(n)q(n),

    where p(n)=(1+a+b2ab)n+(a+b)(a+b+1)ab(2a+2b+3), q(n)=n2+(1+2a+2b2ab)n+(a+b+1)(a+b2ab).

    We can easily obtain a+b2ab>0 by (a+b)(a+b+1)ab(2a+2b+3)>0. Hence Cn>0, q(n) is positive and increasing and p(n) is positive and increasing for nN. Meanwhile, q(n)p(n)=n2+(a+b)n+ab is positive and increasing for nN. It implies 0<p(n)/q(n)<1 and p(n)/q(n) is decreasing for nN. Hence h(x) is positive and increasing on (0,1) by Lemma 2.2

    Case 1. For R0, we have g1(x)/g2(x)=abf(x)h(x) is positive and increasing on (0,1). According to Lemma 2.1, f(x)=g1(x)/g2(x) is increasing and f(x) is convex on (0,1).

    Case 2. For R<0, we have

    f(x){<0,0<x<1eR,0,x1eR.,g1(x){>0,0<x<1eR,0,x1eR.

    Hence g1(x) is positive and increasing on (0,1eR).

    Differentiating g2(x) gives

    g2(x)=F(a,b;a+b;x)2+2ab/(a+b)F(a,b;a+b;x)F(a,b;a+b+1;x)=F(a,b;a+b;x)[F(a,b;a+b;x)22ab/(a+b)F(a,b;a+b+1;x)]=F(a,b;a+b;x)n=0(12aba+b+n)(a,n)(b,n)(a+b,n)n!xn<0

    Hence g2(x) is positive and decreasing on (0,1). Moreover, f(x)=g1(x)/g2(x) is positive and increasing on (0,1eR). For x[1eR,1), f(x)0 and g1(x)/g2(x)=abf(x)h(x) is non-negative and increasing. Hence f(x) is increasing on [1eR,1). Therefore, f(x) is increasing and f(x) is convex on (0,1).

    Remark 3.5. Theorem 3.4 is a generalization of Theorem 1.3(1) for a(0,1) and a+b=1.

    Theorem 3.6. Let f1(x) be as in (1.12) and f2(x) be in (1.13). If (a,b)D1, then we have the following conclusions:

    (1) f1(x) is strictly increasing from (0,1) onto (1abR/(a+b),BR).

    (2) f2(x) is strictly increasing from (0,1) onto (BR,abB).

    Proof. (1) By (1.3) and (1.5), we obtain

    f1(0+)=limx0+f(x)Rx=limx0+f(x)=1abRa+b.

    and

    f1(1)=limx1f(x)Rx=f(1)R=BR.

    By Lemma 2.1, we obtain

    f1(x)=xf(x)f(x)+Rx2

    and

    (xf(x)f(x)+R)=xf(x)+f(x)f(x)=xf(x).

    If (a,b)D1, then f(x)>0 and xf(x)f(x)+R is strictly increasing on (0,1). Since xf(x)f(x)+R0 as x0. Hence xf(x)f(x)+R>0 on (0,1), and f1(x) is strictly increasing from (0,1) onto (1ab/(a+b)R,BR).

    (2) By (1.3) and l'Hopital's Rule, we obtain

    f2(0+)=limx0+Bf(x)1x=Bf(0+)=BR,

    and

    f2(1)=limx1Bf(x)1x=f(1)=abB.

    Since Bf(x)0 and 1x0 as x1 and

    ddx(Bf(x))ddx(1x)=f(x)1=f(x),

    the monotonicity of f2(x) follows from Lemma 3.1 and the convexity of f(x) when (a,b)D1. Hence f2(x) is strictly increasing from (0,1) onto (BR,abB).

    Remark 3.7. If (a,b)D1, then we have a general conclusion of Theorem 1.3.

    Theorem 3.8. If c0 and (a,b)D1D2, where D2={(a,b)|a,b>0,R(a,b)>0} as shown in the Figure 1, the function

    f3(x)=c+xf(x)=(c+x)F(a,b;a+b;x)Rlog(1x)

    is strictly decreasing from (0,1) onto ((c+1)/B,c/R) if and only if cR/(1abR/(a+b))>0.

    Proof. If (a,b)D2, then R>0 and f3(x)=(c+x)/f(x)>0 on (0,1), Next by Theorem 3.1, we obtain

    f3(0+)=limx0+c+xf(x)=cf(0+)=cR.

    and

    f3(1)=limx1c+xf(x)=c+1f(1)=c+1B.

    Let g3(x)=f(x)(c+x)f(x). Then f3(x)=g3(x)/[f(x)]2 and g3(x)=(c+x)f(x). By Theorem 2.2, if (a,b)D1, then f(x)>0 and g3(x)<0 for x(0,1). f(0)=1abR/(a+b) and f(1)=abB. It follows from the above that g3(x) is strictly decreasing from (0,1) onto (B(c+1)abB,Rc(1abR/(a+b))). Hence g3(x)<0 if and only if Rc(1abR/(a+b))0. Therefore, f3(x) is strictly decreasing on (0,1) if and only if Rc(1abR/(a+b))0.

    Theorem 3.9. If c0 and (a,b)D3, where D3={(a,b)|a,b>0,ab<1} as shown in the Figure 2, the function

    f3(x)=(c+x)F(a,b;a+b;x)Rlog(1x)

    is strictly increasing from (0,1) onto (c/R,(c+1)/B) if and only if c1/(ab)1.

    Proof. By Lemma 2.4, if (a,b)D3, then (a,b)D2.

    Figure 2.  The regions D1,D2,D3.

    Differentiating f3(x) gives

    f3(x)=f5(x)(1x)(logeR1x)2,

    where

    f5(x)=logeR1x[(1x)F(a,b;a+b;x)+aba+b(c+x)F(a,b;a+b+1;x)](c+x)F(a,b;a+b;x).

    Next, differentiating f5(x) gives

    f5(x)=logeR1xf4(x),

    where

    f4(x)=F(a,b;a+b;x)+2aba+bF(a,b;a+b+1;x)+a2b2(c+x)(a+b)(a+b+1)F(a+1,b+1;a+b+2;x).

    By Lemma 2.4 and 2.5,

    f5(x)=logeR1xf4(x)0,

    hence f5(x) is a decreasing function on (0,1)

    By (1.2),

    f5(1)=limx1logeR1xab(c+1)a+bΓ(a+b+1)Γ(a+1)Γ(b+1)c+1BlogeR1x=0

    Hence we have f5(x)>0 and f3(x)>0 on (0,1). It implies f3(x) is strictly increasing from (0,1) onto (c/R,(c+1)/B).

    Suppose c>1/(ab)1,

    limx1a2b2(a+b)(a+b+1)(c+x)F(a+1,b+1;a+b+2;x)F(a,b;a+b;x)1=limx1a2b2(c+1)(a+b)(a+b+1)B(a,b)B(a+1,b+1)R(a+1,b+1)log(1x)R(a,b)log(1x)=ab(c+1)1>0.

    For the function

    f4(x)=F(a,b;a+b;x)+2aba+bF(a,b;a+b+1;x)+a2b2(c+x)(a+b)(a+b+1)F(a+1,b+1;a+b+2;x)

    we have limx1f4(x)=+. It implies there is a δ>0 such that f5(x)=log[eR/(1x)]f4(x)>0 on (1δ,1). So f5(x) is increasing on (1δ,1). Since f5(1)=0, f5(x)<0 and f3(x)=f5(x)/[(1x)log[eR/(1x)]]2<0 on (1δ,1). Hence f3(x) is decreasing on (1δ,1). This is a contradiction, since f(x) is an increasing function on (0,1). Hence c1/(ab)1.

    Remark 3.10. Theorem 3.8 is a general conclusion of Theorem 1.4 (1) in region D1D2 and Theorem 3.9 is a general conclusion of Theorem 1.4 (2) in region D3.

    From our main Theorems, we can easily obtain several asymptotically sharp inequalities for F(a,b;a+b;x). Let x=r2, we can get the inequalities of generalized elliptic integral Ka(r).

    Corollary 4.1. Let (a,b)D1D2 and c>0. Then for the inequalities

    log[eR/(1x)]RF(a,b;a+b;x)c+xc, (4.1)
    log[eR/(1x)]RF(a,b;a+b;x)c+xc, (4.2)

    we have the following conclusions:

    (1) (4.1) holds if and only if cR/(BR).

    (2) (4.2) holds if and only if cR/(1abR/(a+b)).

    Proof. Since

    (4.1)f(x)Rc+xc, (4.2)f(x)Rc+xc,

    By Theorem 3.1, f(x) is strictly increasing from (0,1) onto (R,B). Hence f1(x)=(f(x)R)/x>0 on (0,1).

    For (a,b)D1D2, R>0,

    (4.1)cf1(x)RcRf1(x)cRf1(1)cRBR;
    (4.2)cf1(x)RcRf1(x)cRf1(0+)cR1abRa+b.

    Corollary 4.2. Let (a,b)D1 and c>0. Then for the inequalities

    log[eR/(1x)]BF(a,b;a+b;x)c+xc+1, (4.3)
    log[eR/(1x)]BF(a,b;a+b;x)c+xc+1, (4.4)

    we have the following conclusions:

    (1) (4.3) holds if and only if cR/(BR).

    (2) (4.4) holds if and only if c1/(ab)1.

    Proof. Since

    (4.3)f(x)Bc+xc+1, (4.4)f(x)Bc+xc+1,

    By Theorem 3.1, f(x) is strictly increasing from (0,1) onto (R,B). Hence f2(x)=(Bf(x))/(1x)>0 on (0,1).

    (4.3)B(1x)(c+1)(Bf(x))B(c+1)Bf(x)1x=(c+1)f2(x)cBf2(x)1cBf2(0+)1=RBR;

    Similary,

    (4.4)B(c+1)f2(x)cBf2(x)1cBf2(1)1=1ab1.

    Corollary 4.3. Let (a,b)D1 and c>0. Then

    max{abBx+(1ab)B,(1abR/(a+b))x+R}<log[eR/(1x2)]F(a,b;a+b;x)<(BR)x+R (4.5)

    for x(0,1), with equality in each instance if and only if x0.

    Proof. It follows from the monotonicity properties of f1(x) and f2(x) given in Theorem 3.5 that

    (1abR/(a+b))x+R<log[eR/(1x)]F(a,b;a+b;x)<(BR)x+R,
    abBx+(1ab)B<log[eR/(1x)]F(a,b;a+b;x)<(BR)x+R.

    Hence we have (4.5) for x(0,1), with equality in each instance if and only if x0.

    Corollary 4.4. Let (a,b)D1D2 and C1=R/(1abR/(a+b)). Then

    C1+1B(C1+x)<F(a,b;a+b;x)log[eR/(1x)]<C1R(C1+x) (4.6)

    for x(0,1).

    Proof. It follows from the monotonicity properties of f3(x) of Theorem 3.7 that

    c+1B(c+x)<F(a,b;a+b;x)log[eR/(1x)]<cR(c+x)

    for cR/(1abR/(a+b)) and x(0,1). Let c=C1, we have (4.6).

    Corollary 4.5. Let (a,b)D3 and C2=1/(ab)1. Then

    C2R(C2+x)<F(a,b;a+b;x)log[eR/(1x)]<C2+1B(C2+x) (4.7)

    for r(0,1). In particular, if (a,b)D1D3, then

    max{C1+1B(C1+x),C2R(C2+x)}<F(a,b;a+b;x)log[eR/(1x)]<min{C1R(C1+x),(C2+1)B(C2+x)} (4.8)

    for x(0,1), with equality in each instance if and only if x0.

    Proof. The proof is similar to the proof of Corollary 4.4. Using the monotonicity properties of f3(x) of Theorem 3.8 that

    cR(c+x)<F(a,b;a+b;x)log[eR/(1x)]<c+1B(c+x)

    for c1/(ab)1 and x(0,1). And let c=C2, we have (4.7).

    If (a,b)D1D3, then (4.6) and (4.7) both holds. Hence we have (4.8) for x(0,1), with equality in each instance if and only if x0.

    Remark 4.6. Acorrding to the above Corollaries, let a+b=1 and x=r2, we can obtain the conculsions of genelized ellptic integral Ka(r) in [7].

    The authors would like to thank the anonymous referees for their valuable comments and suggestions, which led to considerable improvement of the article. This research was supported by the China Scholarship Council and the Natural Science Foundation of China (Grant No. 11401531, 11671360).

    The authors declare that they have no competing interests.



    [1] M. Abramowitz, I. A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, US Government printing office, 1964.
    [2] G. D. Anderson, M. K. Vamanamurthy, M. K. Vuorinen, Conformal invariants, inequalities, and quasiconformal maps, New York: John Wiley & Sons, 1997.
    [3] G. E. Andrews, R. Askey, R. Roy, Special functions, Cambridge university press, 1999.
    [4] Á. Baricz, Turán type inequalities for generalized complete elliptic integrals, Math. Z., 256 (2007), 895. http://dx.doi.org/10.1007/s00209-007-0111-x doi: 10.1007/s00209-007-0111-x
    [5] R. W. Barnard, K. Pearce, K. C. Richards, An inequality involving the generalized hypergeometric function and the arc length of an ellipse, SIAM J. Math. Anal., 31 (2000), 693–699. http://dx.doi.org/10.1137/S0036141098341575 doi: 10.1137/S0036141098341575
    [6] R. Bhatia, R. C. Li, An interpolating family of means, Communications on Stochastic Analysis, 6 (2012), 3. http://dx.doi.org/10.31390/cosa.6.1.03 doi: 10.31390/cosa.6.1.03
    [7] T. R. Huang, S. L. Qiu, X. Y. Ma, Monotonicity properties and inequalities for the generalized elliptic integral of the first kind, J. Math. Anal. Appl., 469 (2019), 95–116. http://dx.doi.org/10.1016/j.jmaa.2018.08.061 doi: 10.1016/j.jmaa.2018.08.061
    [8] T. R. Huang, S. Y. Tan, X. H. Zhang, Monotonicity, convexity, and inequalities for the generalized elliptic integrals, J. Inequal. Appl., 2017 (2017), 278. http://dx.doi.org/10.1186/s13660-017-1556-z doi: 10.1186/s13660-017-1556-z
    [9] E. Neuman, Inequalities and bounds for generalized complete elliptic integrals, J. Math. Anal. Appl., 373 (2011), 203–213. http://dx.doi.org/10.1016/j.jmaa.2010.06.060 doi: 10.1016/j.jmaa.2010.06.060
    [10] F. W. J. Olver, D. W. Lozier, R. F. Boisvert, C. W. Clark, NIST handbook of mathematical functions hardback and CD-ROM, Cambridge university press, 2010.
    [11] S. Ponnusamy, M. Vuorinen, Asymptotic expansions and inequalities for hypergeometric function, Mathematika, 44 (1997), 278–301. http://dx.doi.org/10.1112/S0025579300012602 doi: 10.1112/S0025579300012602
    [12] S. L. Qiu, M. Vuorinen, Infinite products and normalized quotients of hypergeometric functions, SIAM J. Math. Anal., 30 (1999), 1057–1075. http://dx.doi.org/10.1137/S0036141097326805 doi: 10.1137/S0036141097326805
    [13] E. D. Rainville, Special functions, New York: The Macmillan Company, 1960.
    [14] S. Simić, M. Vuorinen, Landen inequalities for zero-balanced hypergeometric functions, Abstr. Appl. Anal., 2012 (2012), 932061. http://dx.doi.org/10.1155/2012/932061 doi: 10.1155/2012/932061
    [15] S. Takeuchi, Legendre-type relations for generalized complete elliptic integrals, Journal of Classical Analysis, 9 (2016), 35–42. http://dx.doi.org/10.7153/jca-09-04 doi: 10.7153/jca-09-04
    [16] S. Takeuchi, A new form of the generalized complete elliptic integrals, Kodai Math. J., 39 (2016), 202–226. http://dx.doi.org/10.2996/kmj/1458651700 doi: 10.2996/kmj/1458651700
    [17] M. K. Wang, Y. M. Chu, Refinements of transformation inequalities for zero-balanced hypergeometric functions, Acta Math. Sci., 37 (2017), 607–622. http://dx.doi.org/10.1016/S0252-9602(17)30026-7 doi: 10.1016/S0252-9602(17)30026-7
    [18] M. K. Wang, Y. M. Chu, Landen inequalities for a class of hypergeometric functions with applications, Math. Inequal. Appl., 21 (2018), 521–537. http://dx.doi.org/10.7153/mia-2018-21-38 doi: 10.7153/mia-2018-21-38
    [19] M. K. Wang, Y. M. Chu, S. L. Qiu, Some monotonicity properties of generalized elliptic integrals with applications, Math. Inequal. Appl., 16 (2013), 671–677. http://dx.doi.org/10.7153/mia-16-50 doi: 10.7153/mia-16-50
    [20] M. K. Wang, Y. M. Chu, S. L. Qiu, Sharp bounds for generalized elliptic integrals of the first kind, J. Math. Anal. Appl., 429 (2015), 744–757. http://dx.doi.org/10.1016/j.jmaa.2015.04.035 doi: 10.1016/j.jmaa.2015.04.035
    [21] M. K. Wang, Y. M. Chu, S. L. Qiu, Asymptotical formulas for Gaussian and generalized hypergeometric functions, Appl. Math. Comput., 276 (2016), 44–60. http://dx.doi.org/10.1016/j.amc.2015.11.088 doi: 10.1016/j.amc.2015.11.088
    [22] M. K. Wang, Y. M. Chu, W. Zhang, Monotonicity and inequalities involving zero-balanced hypergeometric function, Math. Inequal. Appl., 22 (2019), 601–617. http://dx.doi.org/10.7153/mia-2019-22-42 doi: 10.7153/mia-2019-22-42
    [23] Z. H. Yang, Y. M. Chu, A monotonicity property involving the generalized elliptic integral of the first kind, Math. Inequal. Appl., 20 (2017), 729–735. http://dx.doi.org/10.7153/mia-20-46 doi: 10.7153/mia-20-46
    [24] Z. H. Yang, Y. M. Chu, W. Zhang, Monotonicity of the ratio for the complete elliptic integral and Stolarsky mean, J. Inequal. Appl., 2016 (2016), 176. http://dx.doi.org/10.1186/s13660-016-1113-1 doi: 10.1186/s13660-016-1113-1
    [25] Z. H. Yang, W. M. Qian, Y. M. Chu, Monotonicity properties and bounds involving the complete elliptic integrals of the first kind, Math. Inequal. Appl., 21 (2018), 1185–1199. http://dx.doi.org/10.7153/mia-2018-21-82 doi: 10.7153/mia-2018-21-82
    [26] Z. H. Yang, J. F. Tian, Sharp inequalities for the generalized elliptic integrals of the first kind, Ramanujan J., 48 (2019), 91–116. http://dx.doi.org/10.1007/s11139-018-0061-4 doi: 10.1007/s11139-018-0061-4
    [27] X. H. Zhang, G. D. Wang, Y. M. Chu, Remarks on generalized elliptic integrals, P. Roy. Soc. Edinb. A, 139 (2009), 417–426. http://dx.doi.org/10.1017/S0308210507000327 doi: 10.1017/S0308210507000327
    [28] T. H. Zhao, Z. Y. He, Y. M. Chu, On some refinements for inequalities involving zero-balanced hypergeometric function, AIMS Mathematics, 5 (2020), 6479–6495. http://dx.doi.org/10.3934/math.2020418 doi: 10.3934/math.2020418
    [29] T. H. Zhao, M. K. Wang, Y. M. Chu, A sharp double inequality involving generalized complete elliptic integral of the first kind, AIMS Mathematics, 5 (2020), 4512–4528. http://dx.doi.org/10.3934/math.2020290 doi: 10.3934/math.2020290
    [30] T. H. Zhao, M. K. Wang, W. Zhang, Y. M. Chu, Quadratic transformation inequalities for Gaussian hypergeometric function, J. Inequal. Appl., 2018 (2018), 251. http://dx.doi.org/10.1186/s13660-018-1848-y doi: 10.1186/s13660-018-1848-y
  • This article has been cited by:

    1. Li Xu, Lu Chen, Ti-Ren Huang, Monotonicity, convexity and inequalities involving zero-balanced Gaussian hypergeometric function, 2022, 7, 2473-6988, 12471, 10.3934/math.2022692
    2. Chuan-Yu Cai, Qiu-Ying Zhang, Ti-Ren Huang, Properties of generalized (p,q)-elliptic integrals and generalized (p,q)-Hersch-Pfluger distortion function, 2023, 8, 2473-6988, 31198, 10.3934/math.20231597
    3. Jiahui Wu, Tiehong Zhao, On the Absolute Monotonicity of the Logarithmic of Gaussian Hypergeometric Function, 2024, 50, 1017-060X, 10.1007/s41980-024-00889-6
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2278) PDF downloads(78) Cited by(3)

Figures and Tables

Figures(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog