Research article Special Issues

Monotonicity, convexity properties and inequalities involving Gaussian hypergeometric functions with applications

  • Received: 12 September 2021 Revised: 19 December 2021 Accepted: 21 December 2021 Published: 29 December 2021
  • MSC : 33C05, 33E05

  • In this paper, we mainly prove monotonicity and convexity properties of certain functions involving zero-balanced Gaussian hypergeometric function $ F(a, b; a+b; x) $. We generalize conclusions of elliptic integral to Gaussian hypergeometric function, and get some accurate inequalities about Gaussian hypergeometric function.

    Citation: Ye-Cong Han, Chuan-Yu Cai, Ti-Ren Huang. Monotonicity, convexity properties and inequalities involving Gaussian hypergeometric functions with applications[J]. AIMS Mathematics, 2022, 7(4): 4974-4991. doi: 10.3934/math.2022277

    Related Papers:

  • In this paper, we mainly prove monotonicity and convexity properties of certain functions involving zero-balanced Gaussian hypergeometric function $ F(a, b; a+b; x) $. We generalize conclusions of elliptic integral to Gaussian hypergeometric function, and get some accurate inequalities about Gaussian hypergeometric function.



    加载中


    [1] M. Abramowitz, I. A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, US Government printing office, 1964.
    [2] G. D. Anderson, M. K. Vamanamurthy, M. K. Vuorinen, Conformal invariants, inequalities, and quasiconformal maps, New York: John Wiley & Sons, 1997.
    [3] G. E. Andrews, R. Askey, R. Roy, Special functions, Cambridge university press, 1999.
    [4] Á. Baricz, Turán type inequalities for generalized complete elliptic integrals, Math. Z., 256 (2007), 895. http://dx.doi.org/10.1007/s00209-007-0111-x doi: 10.1007/s00209-007-0111-x
    [5] R. W. Barnard, K. Pearce, K. C. Richards, An inequality involving the generalized hypergeometric function and the arc length of an ellipse, SIAM J. Math. Anal., 31 (2000), 693–699. http://dx.doi.org/10.1137/S0036141098341575 doi: 10.1137/S0036141098341575
    [6] R. Bhatia, R. C. Li, An interpolating family of means, Communications on Stochastic Analysis, 6 (2012), 3. http://dx.doi.org/10.31390/cosa.6.1.03 doi: 10.31390/cosa.6.1.03
    [7] T. R. Huang, S. L. Qiu, X. Y. Ma, Monotonicity properties and inequalities for the generalized elliptic integral of the first kind, J. Math. Anal. Appl., 469 (2019), 95–116. http://dx.doi.org/10.1016/j.jmaa.2018.08.061 doi: 10.1016/j.jmaa.2018.08.061
    [8] T. R. Huang, S. Y. Tan, X. H. Zhang, Monotonicity, convexity, and inequalities for the generalized elliptic integrals, J. Inequal. Appl., 2017 (2017), 278. http://dx.doi.org/10.1186/s13660-017-1556-z doi: 10.1186/s13660-017-1556-z
    [9] E. Neuman, Inequalities and bounds for generalized complete elliptic integrals, J. Math. Anal. Appl., 373 (2011), 203–213. http://dx.doi.org/10.1016/j.jmaa.2010.06.060 doi: 10.1016/j.jmaa.2010.06.060
    [10] F. W. J. Olver, D. W. Lozier, R. F. Boisvert, C. W. Clark, NIST handbook of mathematical functions hardback and CD-ROM, Cambridge university press, 2010.
    [11] S. Ponnusamy, M. Vuorinen, Asymptotic expansions and inequalities for hypergeometric function, Mathematika, 44 (1997), 278–301. http://dx.doi.org/10.1112/S0025579300012602 doi: 10.1112/S0025579300012602
    [12] S. L. Qiu, M. Vuorinen, Infinite products and normalized quotients of hypergeometric functions, SIAM J. Math. Anal., 30 (1999), 1057–1075. http://dx.doi.org/10.1137/S0036141097326805 doi: 10.1137/S0036141097326805
    [13] E. D. Rainville, Special functions, New York: The Macmillan Company, 1960.
    [14] S. Simić, M. Vuorinen, Landen inequalities for zero-balanced hypergeometric functions, Abstr. Appl. Anal., 2012 (2012), 932061. http://dx.doi.org/10.1155/2012/932061 doi: 10.1155/2012/932061
    [15] S. Takeuchi, Legendre-type relations for generalized complete elliptic integrals, Journal of Classical Analysis, 9 (2016), 35–42. http://dx.doi.org/10.7153/jca-09-04 doi: 10.7153/jca-09-04
    [16] S. Takeuchi, A new form of the generalized complete elliptic integrals, Kodai Math. J., 39 (2016), 202–226. http://dx.doi.org/10.2996/kmj/1458651700 doi: 10.2996/kmj/1458651700
    [17] M. K. Wang, Y. M. Chu, Refinements of transformation inequalities for zero-balanced hypergeometric functions, Acta Math. Sci., 37 (2017), 607–622. http://dx.doi.org/10.1016/S0252-9602(17)30026-7 doi: 10.1016/S0252-9602(17)30026-7
    [18] M. K. Wang, Y. M. Chu, Landen inequalities for a class of hypergeometric functions with applications, Math. Inequal. Appl., 21 (2018), 521–537. http://dx.doi.org/10.7153/mia-2018-21-38 doi: 10.7153/mia-2018-21-38
    [19] M. K. Wang, Y. M. Chu, S. L. Qiu, Some monotonicity properties of generalized elliptic integrals with applications, Math. Inequal. Appl., 16 (2013), 671–677. http://dx.doi.org/10.7153/mia-16-50 doi: 10.7153/mia-16-50
    [20] M. K. Wang, Y. M. Chu, S. L. Qiu, Sharp bounds for generalized elliptic integrals of the first kind, J. Math. Anal. Appl., 429 (2015), 744–757. http://dx.doi.org/10.1016/j.jmaa.2015.04.035 doi: 10.1016/j.jmaa.2015.04.035
    [21] M. K. Wang, Y. M. Chu, S. L. Qiu, Asymptotical formulas for Gaussian and generalized hypergeometric functions, Appl. Math. Comput., 276 (2016), 44–60. http://dx.doi.org/10.1016/j.amc.2015.11.088 doi: 10.1016/j.amc.2015.11.088
    [22] M. K. Wang, Y. M. Chu, W. Zhang, Monotonicity and inequalities involving zero-balanced hypergeometric function, Math. Inequal. Appl., 22 (2019), 601–617. http://dx.doi.org/10.7153/mia-2019-22-42 doi: 10.7153/mia-2019-22-42
    [23] Z. H. Yang, Y. M. Chu, A monotonicity property involving the generalized elliptic integral of the first kind, Math. Inequal. Appl., 20 (2017), 729–735. http://dx.doi.org/10.7153/mia-20-46 doi: 10.7153/mia-20-46
    [24] Z. H. Yang, Y. M. Chu, W. Zhang, Monotonicity of the ratio for the complete elliptic integral and Stolarsky mean, J. Inequal. Appl., 2016 (2016), 176. http://dx.doi.org/10.1186/s13660-016-1113-1 doi: 10.1186/s13660-016-1113-1
    [25] Z. H. Yang, W. M. Qian, Y. M. Chu, Monotonicity properties and bounds involving the complete elliptic integrals of the first kind, Math. Inequal. Appl., 21 (2018), 1185–1199. http://dx.doi.org/10.7153/mia-2018-21-82 doi: 10.7153/mia-2018-21-82
    [26] Z. H. Yang, J. F. Tian, Sharp inequalities for the generalized elliptic integrals of the first kind, Ramanujan J., 48 (2019), 91–116. http://dx.doi.org/10.1007/s11139-018-0061-4 doi: 10.1007/s11139-018-0061-4
    [27] X. H. Zhang, G. D. Wang, Y. M. Chu, Remarks on generalized elliptic integrals, P. Roy. Soc. Edinb. A, 139 (2009), 417–426. http://dx.doi.org/10.1017/S0308210507000327 doi: 10.1017/S0308210507000327
    [28] T. H. Zhao, Z. Y. He, Y. M. Chu, On some refinements for inequalities involving zero-balanced hypergeometric function, AIMS Mathematics, 5 (2020), 6479–6495. http://dx.doi.org/10.3934/math.2020418 doi: 10.3934/math.2020418
    [29] T. H. Zhao, M. K. Wang, Y. M. Chu, A sharp double inequality involving generalized complete elliptic integral of the first kind, AIMS Mathematics, 5 (2020), 4512–4528. http://dx.doi.org/10.3934/math.2020290 doi: 10.3934/math.2020290
    [30] T. H. Zhao, M. K. Wang, W. Zhang, Y. M. Chu, Quadratic transformation inequalities for Gaussian hypergeometric function, J. Inequal. Appl., 2018 (2018), 251. http://dx.doi.org/10.1186/s13660-018-1848-y doi: 10.1186/s13660-018-1848-y
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1894) PDF downloads(77) Cited by(3)

Article outline

Figures and Tables

Figures(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog