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1. Introduction

For a, b, c ∈ R with c , 0,−1,−2, · · · , the Gaussian hypergeometric function is defined by [1, 3]

F(a, b; c; x) =2 F1(a, b; c; x) =

∞∑
n=0

(a, n)(b, n)
(c, n)n!

xn, x ∈ (−1, 1), (1.1)

where (a, n) is the shifted fractional function, namely (a, n) = a(a + 1)(a + 2) . . . (a + n − 1) for n =

1, 2, 3, . . . , and (a, 0) = 1 for a , 0. The function F(a, b; c; x) is called zero-balanced when c = a + b.
Firstly, we introduce the following properties of the function F(a, b; c; x) at x = 1:
(1) For a + b < c (See [13]),

F(a, b; c; 1) =
Γ(c)Γ(c − a − b)
Γ(c − a)Γ(c − b)

. (1.2)

(2) For a + b = c (See [1, 6]),

B(a, b)F(a, b; c; x) + log(1 − x) = R(a, b) + O((1 − x) log(1 − x)), x→ 1. (1.3)
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The above asymptotical formula was raised by Ramanujan, where

B(a, b) =
Γ(a)Γ(b)
Γ(a + b)

,

is the classical beta function and

R(a, b) = −ψ(a) − ψ(b) − 2γ,

ψ(z) = Γ
′

(z)/Γ(z), Re(z) > 0 is the digamma function and γ is called Euler-Mascheroni constant
defined by

γ = lim
n→∞

 n∑
k=1

1
k
− log n

 = 0.577156649 . . . .

For a + b < c, we have (See [2, Theorem 1.19(10)] ),

F(a, b; c; x) = (1 − x)c−a−bF(c − a, c − b; c; x). (1.4)

From the uniform convergence of the termwise first derivative of (1, 1) in [1], it follows that

d
dx

F(a, b; c; x) =
ab
c

F(a + 1, b + 1; c + 1; x), x ∈ (−1, 1). (1.5)

It is well known that F(a, b; c; x) has been widely applied in many fields of mathematics and physics.
Many special functions in mathematical physics and even some common elementary functions are
particular or limiting cases of F(a, b; c; x) in [1,10]. For example, Legendre’s complete elliptic integrals
of the first kind, are defined by

K (r) =

∫ π/2

0

1
(1 − r2sin2θ)1/2 dθ =

π

2
F

(
1
2
,

1
2

; 1; r2
)
,

K
′

(r) = K (r
′

).

Here and hereafter we always let r
′

=
√

1 − r2 for r ∈ (0, 1).
For a ∈ (0, 1), we can use zero-balanced Gaussian hypergeometric function to define generalized

elliptic integrals Ka(r) and K
′

a (r) of the first kind on (0, 1) as follow [7]:

Ka(r) =
π

2
F(a, 1 − a; 1; r2), (1.6)

K
′

a (r) = Ka(r
′

). (1.7)

If a = 1/2, then we get complete elliptic integrals K (r) and K
′

(r).
During the past decades, many properties are revealed for F(a, b; c; x) (See [5,17,18,21,22,28,30]),

K (r) and Ka(r) (See [4, 8, 9, 15, 16, 19, 20, 23–27, 29]) by showing the monotonicity and cancavity
properties of certain combinations defined in terms of these special functions and other elementary
functions. From these analytic properties, we can get some inequalities of F(a, b; c; x) and Ka(r).

For r ∈ (0, 1), one kind of known elegant functional inequalities for Ka(r) are of the following form

sin(πa)
c1 + (1 − c1)r2 <

Ka(r)
log[eR(a)/2/r′]

<
sin(πa)

c2 + (1 − c2)r2 , (1.8)
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where R(a) = R(a, 1 − a) = −2γ − ψ(a) − ψ(1 − a), with constants c1, c2 ∈ (0, 1). For example, Wang
and Chu [19] proved that

sin(πa)
A1 + (1 − A1)r2 <

Ka(r)
log[eR(a)/2/r′]

<
sin(πa)

A2 + (1 − A2)r2 (1.9)

for r ∈ (0, 1), where A1 = R(a)/B(a) and A2 = 1 − a(1 − a).
In present paper, we try to generalize the above inequality (1.9) to zero-balanced hypergeometric

function.
In 1999, Qiu and Vuorinen [12] considered the ratio function x 7→ F(a, b; a + b; x)/ log[eR/(1− x)],

and obtained the following theorem:

Theorem 1.1. ( [12, Theorem 2.1]) Let a, b ∈ (0,∞) with R(a, b) ≥ 0. Then the function

F(x) =
F(a, b; a + b; x)

R(a, b) − log(1 − x)
(1.10)

is strictly decreasing from (0, 1) onto (1/B(a, b), 1/R(a, b)). In particular, K (
√

(1 − r2))/ log(4/r) is
strictly decreasing from (0, 1) onto (1, π/ log 16).

It is natural to think about the monotonicity of the reciprocal of F(x), that is

f (x) = 1/F(x) =
R(a, b) − log(1 − x)

F(a, b; a + b; x)
, (1.11)

and the relationship between the monotonicity of the function f (x) and the value of R(a, b). Thus we
consider the following questions:

Question 1.2. For a, b > 0, is the function f (x) stictly increasing or decreasing on (0, 1)? What’s the
relationship between the monotonicity of the function f (x) and the value of R(a, b)?

Let f (x) be in (1.11) and

f1(x) =
f (x) − R(a, b)

x
, (1.12)

f2(x) =
B(a, b) − f (x)

1 − x
, (1.13)

f3(x) =
c + x
f (x)

. (1.14)

In [7], Huang, Qiu and Ma considered the above functions for the particular case of a + b = 1 and
obtained the following theorems:

Theorem 1.3. ( [7, Theorem 1.1]) Let f (x) be as in (1.11), f1(x) be as in (1.12), and f2(x) be as in
(1.13). If a + b = 1, then we have the following conclusions:

(1) f (x) is convex on (0, 1).
(2) f1(x) is strictly increasing from (0,1) onto (1 − abR(a, b), B(a, b) − R(a, b)).
(3) f2(x) is strictly increasing from (0,1) onto (B(a, b) − R(a, b), abB(a, b)).
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Theorem 1.4. ( [7, Theorem 1.2]) Let f (x) be as in (1.11) and f3(x) be as in (1.14). If a + b = 1, then
we have the following conclusions:

(1) f3(x) is strictly decreasing from (0, 1) onto ((c + 1)/B(a, b), c/R(a, b)) if and only if c ≥
R(a, b)/(1 − abR(a, b)).

(2) f3(x) is strictly increasing form (0, 1) onto (c/R(a, b), (c + 1)/B(a, b)) if and only if 0 < c ≤
1/(ab) − 1. Moreover f3(x) is concave on (0, 1) provided that 0 < c ≤ 1/(ab) − 1.

(3) If 1/(ab)−1 < c < R(a, b)/(1−abR(a, b), then there exists a unique number x0 = x0(a, c) ∈ (0, 1),
depending on a and c, such that f3(x) is strictly increasing on (0, x0), and decreasing on (x0, 1).

For the particular case of a + b = 1 , Theorem 1.3 and 1.4 actually obtain the conclusions of
generalized elliptical integral Ka(r). In light of the above results, we are trying to extend the above
theorem to the zero-balanced hypergeometric function and it is natural to consider the following
questions:

Question 1.5. Whether Theorem 1.3 and 1.4 can be extended to zero-balanced hypergeometric
function?

The purpose of this paper is to give complete answers to Question 1.2 and 1.5. This paper is
organized as follows. The preliminaries we needed are listed in Section 2, and the main results and their
complete proofs of this paper are listed in Section 3. As applications, inequalities of hypergeometric
function are displayed in Section 4.

2. Preliminaries

Before proving our main results, we firstly introduce the following important lemmas, which will
be used in the proofs of main results.

Lemma 2.1. (See [11, Lemma 2.1]) Let −∞ < a < b < ∞, f , g : [a, b] → R be continuous on [a, b]
and differentiable on (a, b), and g′(x) , 0 on (a, b). If f ′(x)/g′(x) is increasing (decreasing) on (a, b),
then so are the functions

f (x) − f (a)
g(x) − g(a)

,
f (x) − f (b)
g(x) − g(b)

.

If f ′(x)/g′(x) is strictly monotone, then the monotonicity in the conclusion is also strict.

Lemma 2.2. (See [14, Lemma 1.1]) Suppose that the power series f (x) =
∞∑

n=0
anxn and g(x) =

∞∑
n=0

bnxn

have the radius of convergence r > 0 and that bn > 0 for all n ∈ {0, 1, 2, · · · }. Let h(x) = f (x)/g(x).
If the sequence {an/bn} is (strictly) increasing (decreasing), then h(x) is also (strictly) increasing
(decreasing) on (0, r).

Lemma 2.3. For a ∈ (0,∞), the following function

R(a, 1/a) = −2γ − ψ(a) − ψ(1/a)

is decreasing from (0, 1] onto [0,∞), and increasing from (1,∞) onto (0,∞).
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Proof. Firstly, we consider the monotonicity of φ(x) = xψ
′

(x), x ∈ (0,+∞). From the formula

ψn(x) = (−1)n+1
∫ +∞

0

tne−xt

1 − e−t dt,

we have

φ(x) = xψ
′

(x) =

∫ +∞

0

xte−xt

1 − e−t dt =
v=xt
=

∫ +∞

0
e−v v/x

1 − e−v/x dv.

Differentiating φ(x) gives

φ
′

(x) =

∫ +∞

0
e−v v/x2

(1 − e−v/x)2 (
v/x + 1

ev/x − 1)dv.

Let y = v/x, it is not difficult to find ey − y − 1 > 0 for y > 0. It implies (v/x + 1)/ev/x − 1 < 0 and
φ
′

(x) < 0. Hence φ(x) is a decreasing function on (0,+∞).
Next by the monotonicity of φ(x) = xψ

′

(x) and

dR(a, 1/a)
da

=
−aψ

′

(a) + ψ
′

(1/a)/a
a

,

we have
dR(a, 1/a)

da
=
−φ(a) + φ(1/a)

a

≤ 0, 0 < a ≤ 1,
> 0, a > 1.

The proof of this lemma is completed.
�

Lemma 2.4. For a, b > 0 and ab ≤ 1, we have R(a, b) ≥ 0.

Proof. Firstly, we let b = 1/a, then R(a, 1/a) = −2γ − ψ(a) − ψ(1/a). By Lemma 2.3, we obtain
R(a, 1/a) is decreasing from (0, 1] onto [0,∞), and increasing from (1,∞) onto (0,∞). Hence the
equation R(a, 1/a) = 0 has only one zero point a = 1, that is ab = 1 and R(a, b) = 0 have only one
intersection point (a, b) = (1, 1).

Next, we can easily find some special points (a, b) such that ab > 1 and R(a, b) ≤ 0, such as (3, 0.4)
and (4, 0.4). Since the symmetry of the two regions, ab ≤ 1 and R(a, b) ≥ 0, we obtain that if ab ≤ 1,
then R(a, b) ≥ 0. �

Lemma 2.5. For a, b > 0 and ab ≤ 1. If 0 ≤ c ≤ 1/(ab) − 1, then the function

f4(x) = −F(a, b; a + b; x) +
2ab

a + b
F(a, b; a + b + 1; x)

+
a2b2(c + x)

(a + b)(a + b + 1)
F(a + 1, b + 1; a + b + 2; x) (2.1)

is a decreasing function and f4(x) < 0 on (0, 1).

AIMS Mathematics Volume 7, Issue 4, 4974–4991.



4979

Proof. According to (1.1)

f4(x) = −

∞∑
n=0

(a, n)(b, n)
(a + b, n)n!

xn +
2ab

a + b

∞∑
n=0

(a, n)(b, n)
(a + b + 1, n)n!

xn

+
a2b2

(a + b)(a + b + 1)

c ∞∑
n=0

(a + 1, n)(b + 1, n)
(a + b + 2, n)n!

xn + x
∞∑

n=0

(a + 1, n)(b + 1, n)
(a + b + 2, n)n!

xn


= −

∞∑
n=0

(a, n)(b, n)
(a + b, n)n!

xn +

∞∑
n=0

2(a, n + 1)(b, n + 1)
(a + b, n + 1)n!

xn

+

∞∑
n=0

abc(a, n + 1)(b, n + 1)
(a + b, n + 2)n!

xn +

∞∑
n=0

ab(a, n + 1)(b, n + 1)
(a + b, n + 2)n!

n2 + (a + b + 1)n
(a + n)(b + n)

xn

=

∞∑
n=0

(a, n)(b, n)
(a + b, n + 2)n!

{
[ab(c + 1) − 1]n2 + [ab(c + 1)(a + b) + 3ab − 2a − 2b − 1]n

+ a2b2c + 2ab(a + b) − (a2 + b2) − (a + b)
}
xn. (2.2)

Since 0 ≤ c ≤ 1/(ab) − 1, we have ab(c + 1) − 1 ≤ 0. Hence

ab(c + 1)(a + b) + 3ab − 2a − 2b − 1 ≤ ab[ab/(a + b) + 3] − 2a − 2b − 1
= 3ab − a − b − 1 := u(a, b)

and

a2b2c + 2ab(a + b) − (a2 + b2) − (a + b) ≤ a2b2[1/(ab) − 1] + 2ab(a + b) − (a2 + b2) − (a + b)
= ab − a2b2 + 2ab(a + b) − (a2 + b2) − (a + b) := v(a, b).

Since

∂u(a, b)
∂a

= 3b − 1 = 0,
∂u(a, b)
∂b

= 3a − 1 = 0,

there is a extremal point (1/3, 1/3) of u(a, b), and u(1/3, 1/3) = −4/3 < 0. Since

u(a, 0) = −a − 1 < 0, u(a, 1/a) = 2 − a − 1/a ≤ 0,

we have u(a, b) ≤ 0. Hence ab(c + 1)(a + b) + 3ab − 2a − 2b − 1 ≤ 0.
Similarly, since

∂v(a, b)
∂a

= b − 2ab2 + 2b(a + b) + 2ab − 2a − 1 = 0

∂v(a, b)
∂b

= a − 2a2b + 2a(a + b) + 2ab − 2b − 1 = 0,

we have that (a − b)[2(a + b) − 2ab + 3] = 0. Since 2(a + b) − 2ab + 3 > 0, a = b, there is an extremal
point (a, b) = (a0, a0), where a0 is the solution of equation −2a3 + 6a2 − a − 1 = 0 and v(a0, a0) < 0.
Since

v(a, 0) = −a2 − a < 0, v(a, 1/a) = −(a + 1/a)2 + (a + 1/a) + 2 ≤ 0,
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we have v(a, b) ≤ 0. Hence a2b2c + 2ab(a + b)− (a2 + b2)− (a + b) ≤ 0. Therefore, f4(x) is a decreasing
function on (0, 1), and

f4(0+) = −1 +
2ab

a + b
+

a2b2c
(a + b)(a + b + 1)

=
−(a + b)(a + b + 1) + 2ab(a + b + 1) + a2b2c

(a + b)(a + b + 1)

≤
v(a, b)

(a + b)(a + b + 1)
≤ 0.

Hence f4(x) < 0 on (0, 1). �

3. Main results and proofs

In the following statement, we always let R = R(a, b), B = B(a, b) for (a, b) ∈ (0,∞).

Theorem 3.1. Let a, b ∈ (0,∞). The function

f (x) =
R − log(1 − x)
F(a, b; a + b; x)

(3.1)

is strictly increasing from (0, 1) onto (R, B).

Proof. Differentiating f (x) gives

f
′

(x) =
F(a, b; a + b; x)/(1 − x) − ab

a+b F(a + 1, b + 1; a + b + 1; x) log eR

1−x

F(a, b; a + b; x)2

=
F(a, b; a + b; x) − ab

a+b F(a, b; a + b + 1; x) log eR

1−x

(1 − x)F(a, b; a + b; x)2 .

=
g1(x)
g2(x)

, (3.2)

where g1(x) = F(a, b; a+b; x)−[ab/(a+b)]F(a, b; a+b+1; x) log[eR/(1− x)], g2(x) = (1− x)F(a, b; a+

b; x)2.
For x ∈ (0, 1), g2(x) > 0. If g1(x) > 0, then f

′

(x) is a ratio of two positive functions, and f (x) is
strictly increasing on (0, 1).

By (1.1) and (1.3), g1(0) = 1 − abR/(a + b) and

g1(1−) = lim
x→1−

F(a, b; a + b; x) −
ab

a + b
F(a, b; a + b + 1; x) log

eR

1 − x

= lim
x→1−

R − log(1 − x)
B

−
ab

a + b
Γ(a + b + 1)

Γ(a + 1)Γ(b + 1)
log

eR

1 − x
= 0.

By (1.5), we obtain

g
′

1(x) = −
a2b2

(a + b)(a + b + 1)
F(a + 1, b + 1; a + b + 2; x) log

eR

1 − x
.
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Case 1. If R ≥ 0, then log[eR/(1 − x)] ≥ 0 , g
′

1(x) ≤ 0 on (0, 1). Therefore, g1(x) is decreasing and
positive and f

′

(x) = g1(x)/g2(x) > 0.
Case 2. If R < 0, then log[eR/(1 − x)] is increasing on (0, 1), log[eR/(1 − x)] < 0 on (0, 1 − eR) and

log[eR/(1 − x)] > 0 on [1 − eR, 1). Therefore, g
′

1(x) > 0 on (0, 1 − eR) and g
′

1(x) < 0 on [1 − eR, 1).
Moreover, g1(x) is increasing on (0, 1 − eR) and decreasing on [1 − eR, 1). Meanwhile, g1(0) = 1 −
abR/(a + b) > 0 and g1(1−) = 0. Hence g1(x) > 0 and f

′

(x) = g1(x)/g2(x) > 0 on (0, 1).
In summary, no matter what value R takes, f

′

(x) > 0 on (0, 1). By (1.1) and (1.3), we obtain
f (0) = R/F(a, b; a + b; 0) = R and

f (1−) = lim
x→1−

R − log(1 − x)
F(a, b; a + b; x)

= lim
x→1−

R − log(1 − x)
R−log(1−x)

B

= B.

Hence f (x) is strictly increasing from (0, 1) onto (R, B). �

Remark 3.2. From the above proof, it can be known that no matter what value R takes, f (x) is an
increasing function. Hence Theorem 3.1 answers Question 1.2.

Remark 3.3. (1) For R ≥ 0, R − log(1 − x) > 0 and f (x) > 0 for x ∈ (0, 1). Acorrding to Theorem 3.1,
it is easy to know that F(x) = 1/ f (x) in Theorem 1.1 is strictly decresing on (0, 1).

(2) For R < 0, there exists unique point x0 ∈ (0, 1) such that R − log(1 − x) = 0, that is x0 = 1 − eR.
Acorrding to Theorem 3.1, we can know that F(x) = 1/ f (x) is strictly decreasing from (0, x0) onto
(−∞, 1/R) and strictly decreasing from (x0, 1) onto (1/B,+∞).

Figure 1. The regions D1,D2.
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Theorem 3.4. For (a, b) ∈ D1 = {(a, b)|a, b > 0, (a + b)(a + b + 1) − ab(2a + 2b + 3) > 0} as shown in
the Figure 1, the function f (x) is convex on (0, 1).

Proof. By (1.1) − (1.5), we obtain g1(1−) = 0 and

g2(1−) = lim
x→1−

F(a, b; a + b; x)2

1
1−x

= lim
x→1−

2ab
a + b

1
1−x F(a, b; a + b; x)F(a, b; a + b + 1; x)

1
(1−x)2

= lim
x→1−

2
B

F(a, b; a + b; x)
1

1−x

= lim
x→1−

2ab
(a + b)B

1
1−x F(a, b; a + b + 1; x)

1
(1−x)2

= lim
x→1−

2
B2 (1 − x) = 0.

and

g
′

1(x)
g′2(x)

=
− a2b2

(a+b)(a+b+1) F(a + 1, b + 1; a + b + 2; x) log eR

1−x

−F(a, b; a + b; x)2 + 2ab
a+b F(a, b; a + b; x)F(a, b; a + b + 1; x)

= ab
log eR

1−x

F(a, b; a + b; x)

ab
(a+b)(a+b+1) F(a + 1, b + 1; a + b + 2; x)

F(a, b; a + b; x) − 2ab
a+b F(a, b; a + b + 1; x)

= ab f (x)h(x),

where

h(x) =

ab
(a+b)(a+b+1) F(a + 1, b + 1; a + b + 2; x)

F(a, b; a + b; x) − 2ab
a+b F(a, b; a + b + 1; x)

.

By (1.1), h(x) can be written as

h(x) =

∞∑
n=0

(a, n + 1)(b, n + 1)
(a + b, n + 2)n!

xn/

∞∑
n=0

(
1 −

2ab
a + b + n

)
(a, n)(b, n)
(a + b, n)n!

xn

=

∞∑
n=0

Anxn/

∞∑
n=0

Bnxn,

where

An =
(a, n + 1)(b, n + 1)

(a + b, n + 2)n!
, Bn =

(
1 −

2ab
a + b + n

)
(a, n)(b, n)
(a + b, n)n!

.

Let

Cn =
An

Bn
=

(a + n)(b + n)
(a + b + n + 1)(a + b − 2ab + n)

= 1 −
(1 + a + b − 2ab)n + (a + b)(a + b + 1) − ab(2a + 2b + 3)

n2 + (1 + 2a + 2b − 2ab)n + (a + b + 1)(a + b − 2ab)
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= 1 −
p(n)
q(n)

,

where p(n) = (1 + a + b − 2ab)n + (a + b)(a + b + 1) − ab(2a + 2b + 3), q(n) = n2 + (1 + 2a + 2b −
2ab)n + (a + b + 1)(a + b − 2ab).

We can easily obtain a + b − 2ab > 0 by (a + b)(a + b + 1) − ab(2a + 2b + 3) > 0. Hence
Cn > 0, q(n) is positive and increasing and p(n) is positive and increasing for n ∈ N. Meanwhile,
q(n) − p(n) = n2 + (a + b)n + ab is positive and increasing for n ∈ N. It implies 0 < p(n)/q(n) < 1 and
p(n)/q(n) is decreasing for n ∈ N. Hence h(x) is positive and increasing on (0, 1) by Lemma 2.2

Case 1. For R ≥ 0, we have g
′

1(x)/g
′

2(x) = ab f (x)h(x) is positive and increasing on (0, 1). According
to Lemma 2.1, f

′

(x) = g1(x)/g2(x) is increasing and f (x) is convex on (0, 1).
Case 2. For R < 0, we have

f (x)

< 0, 0 < x < 1 − eR,

≥ 0, x ≥ 1 − eR.
, g
′

1(x)

> 0, 0 < x < 1 − eR,

≤ 0, x ≥ 1 − eR.

Hence g1(x) is positive and increasing on (0, 1 − eR).
Differentiating g2(x) gives

g
′

2(x) = −F(a, b; a + b; x)2 + 2ab/(a + b)F(a, b; a + b; x)F(a, b; a + b + 1; x)
= −F(a, b; a + b; x)[F(a, b; a + b; x)2 − 2ab/(a + b)F(a, b; a + b + 1; x)]

= −F(a, b; a + b; x)
∞∑

n=0

(
1 −

2ab
a + b + n

)
(a, n)(b, n)
(a + b, n)n!

xn < 0

Hence g2(x) is positive and decreasing on (0, 1). Moreover, f
′

(x) = g1(x)/g2(x) is positive and
increasing on (0, 1−eR). For x ∈ [1−eR, 1), f (x) ≥ 0 and g

′

1(x)/g
′

2(x) = ab f (x)h(x) is non-negative and
increasing. Hence f

′

(x) is increasing on [1 − eR, 1). Therefore, f
′

(x) is increasing and f (x) is convex
on (0, 1).

�

Remark 3.5. Theorem 3.4 is a generalization of Theorem 1.3(1) for a ∈ (0, 1) and a + b = 1.

Theorem 3.6. Let f1(x) be as in (1.12) and f2(x) be in (1.13). If (a, b) ∈ D1, then we have the following
conclusions:

(1) f1(x) is strictly increasing from (0, 1) onto (1 − abR/(a + b), B − R).
(2) f2(x) is strictly increasing from (0, 1) onto (B − R, abB).

Proof. (1) By (1.3) and (1.5), we obtain

f1(0+) = lim
x→0+

f (x) − R
x

= lim
x→0+

f
′

(x) = 1 −
abR
a + b

.

and

f1(1−) = lim
x→1−

f (x) − R
x

= f (1−) − R = B − R.
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By Lemma 2.1, we obtain

f
′

1(x) =
x f

′

(x) − f (x) + R
x2

and
(x f

′

(x) − f (x) + R)
′

= x f
′′

(x) + f
′

(x) − f
′

(x) = x f
′′

(x).

If (a, b) ∈ D1, then f
′′

(x) > 0 and x f
′

(x) − f (x) + R is strictly increasing on (0, 1). Since x f
′

(x) −
f (x) + R → 0 as x → 0. Hence x f

′

(x) − f (x) + R > 0 on (0, 1), and f1(x) is strictly increasing from
(0, 1) onto (1 − ab/(a + b)R, B − R).

(2) By (1.3) and l’Hopital’s Rule, we obtain

f2(0+) = lim
x→0+

B − f (x)
1 − x

= B − f (0+) = B − R,

and

f2(1−) = lim
x→1−

B − f (x)
1 − x

= f
′

(1−) = abB.

Since B − f (x)→ 0 and 1 − x→ 0 as x→ 1− and

d
dx (B − f (x))

d
dx (1 − x)

=
− f

′

(x)
−1

= f
′

(x),

the monotonicity of f2(x) follows from Lemma 3.1 and the convexity of f (x) when (a, b) ∈ D1. Hence
f2(x) is strictly increasing from (0, 1) onto (B − R, abB). �

Remark 3.7. If (a, b) ∈ D1, then we have a general conclusion of Theorem 1.3.

Theorem 3.8. If c ≥ 0 and (a, b) ∈ D1 ∩ D2, where D2 = {(a, b)|a, b > 0,R(a, b) > 0} as shown in the
Figure 1, the function

f3(x) =
c + x
f (x)

=
(c + x)F(a, b; a + b; x)

R − log(1 − x)
is strictly decreasing from (0, 1) onto ((c + 1)/B, c/R) if and only if c ≥ R/(1 − abR/(a + b)) > 0.

Proof. If (a, b) ∈ D2, then R > 0 and f3(x) = (c + x)/ f (x) > 0 on (0, 1), Next by Theorem 3.1, we
obtain

f3(0+) = lim
x→0+

c + x
f (x)

=
c

f (0+)
=

c
R
.

and

f3(1−) = lim
x→1−

c + x
f (x)

=
c + 1
f (1−)

=
c + 1

B
.

Let g3(x) = f (x) − (c + x) f
′

(x). Then f
′

3(x) = g3(x)/[ f (x)]2 and g
′

3(x) = −(c + x) f
′′

(x). By
Theorem 2.2, if (a, b) ∈ D1, then f

′′

(x) > 0 and g3(x) < 0 for x ∈ (0, 1). f
′

(0) = 1 − abR/(a + b)
and f

′

(1−) = abB. It follows from the above that g3(x) is strictly decreasing from (0, 1) onto (B − (c +

1)abB,R − c(1 − abR/(a + b))). Hence g3(x) < 0 if and only if R − c(1 − abR/(a + b)) ≤ 0. Therefore,
f3(x) is strictly decreasing on (0, 1) if and only if R − c(1 − abR/(a + b)) ≤ 0. �
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Figure 2. The regions D1,D2,D3.

Theorem 3.9. If c ≥ 0 and (a, b) ∈ D3, where D3 = {(a, b)|a, b > 0, ab < 1} as shown in the Figure 2,
the function

f3(x) =
(c + x)F(a, b; a + b; x)

R − log(1 − x)

is strictly increasing from (0, 1) onto (c/R, (c + 1)/B) if and only if c ≤ 1/(ab) − 1.

Proof. By Lemma 2.4, if (a, b) ∈ D3, then (a, b) ∈ D2.
⇐ Differentiating f3(x) gives

f
′

3(x) =
f5(x)

(1 − x)(log eR

1−x )2
,

where

f5(x) = log
eR

1 − x
[(1 − x)F(a, b; a + b; x) +

ab
a + b

(c + x)F(a, b; a + b + 1; x)] − (c + x)F(a, b; a + b; x).

Next, differentiating f5(x) gives

f
′

5(x) = log
eR

1 − x
f4(x),

where

f4(x) = −F(a, b; a + b; x) +
2ab

a + b
F(a, b; a + b + 1; x) +

a2b2(c + x)
(a + b)(a + b + 1)

F(a + 1, b + 1; a + b + 2; x).
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By Lemma 2.4 and 2.5,

f
′

5(x) = log
eR

1 − x
f4(x) ≤ 0,

hence f5(x) is a decreasing function on (0, 1)
By (1.2),

f5(1−) = lim
x→1−

log
eR

1 − x
ab(c + 1)

a + b
Γ(a + b + 1)

Γ(a + 1)Γ(b + 1)
−

c + 1
B

log
eR

1 − x
= 0

Hence we have f5(x) > 0 and f
′

3(x) > 0 on (0, 1). It implies f3(x) is strictly increasing from (0, 1) onto
(c/R, (c + 1)/B).
⇒ Suppose c > 1/(ab) − 1,

lim
x→1−

a2b2

(a + b)(a + b + 1)
(c + x)F(a + 1, b + 1; a + b + 2; x)

F(a, b; a + b; x)
− 1

= lim
x→1−

a2b2(c + 1)
(a + b)(a + b + 1)

B(a, b)
B(a + 1, b + 1)

R(a + 1, b + 1) − log(1 − x)
R(a, b) − log(1 − x)

=ab(c + 1) − 1 > 0.

For the function

f4(x) = − F(a, b; a + b; x) +
2ab

a + b
F(a, b; a + b + 1; x)

+
a2b2(c + x)

(a + b)(a + b + 1)
F(a + 1, b + 1; a + b + 2; x)

we have lim
x→1−

f4(x) = +∞. It implies there is a δ > 0 such that f
′

5(x) = log[eR/(1 − x)] f4(x) > 0 on

(1 − δ, 1). So f5(x) is increasing on (1 − δ, 1). Since f5(1−) = 0, f5(x) < 0 and f
′

3(x) = f5(x)/[(1 −
x) log[eR/(1 − x)]]2 < 0 on (1 − δ, 1). Hence f3(x) is decreasing on (1 − δ, 1). This is a contradiction,
since f (x) is an increasing function on (0, 1). Hence c ≤ 1/(ab) − 1.

�

Remark 3.10. Theorem 3.8 is a general conclusion of Theorem 1.4 (1) in region D1∩D2 and Theorem
3.9 is a general conclusion of Theorem 1.4 (2) in region D3.

4. Applications for inequalities

From our main Theorems, we can easily obtain several asymptotically sharp inequalities for
F(a, b; a + b; x). Let x = r2, we can get the inequalities of generalized elliptic integral Ka(r).

Corollary 4.1. Let (a, b) ∈ D1 ∩ D2 and c > 0. Then for the inequalities

log[eR/(1 − x)]
RF(a, b; a + b; x)

≤
c + x

c
, (4.1)

log[eR/(1 − x)]
RF(a, b; a + b; x)

≥
c + x

c
, (4.2)
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we have the following conclusions:
(1) (4.1) holds if and only if c ≤ R/(B − R).
(2) (4.2) holds if and only if c ≥ R/(1 − abR/(a + b)).

Proof. Since

(4.1)⇔
f (x)
R
≤

c + x
c

, (4.2)⇔
f (x)
R
≥

c + x
c

,

By Theorem 3.1, f (x) is strictly increasing from (0, 1) onto (R, B). Hence f1(x) = ( f (x) − R)/x > 0 on
(0, 1).

For (a, b) ∈ D1 ∩ D2, R > 0,

(4.1)⇔ c f1(x) ≤ R⇔ c ≤
R

f1(x)

⇔ c ≤
R

f1(1−)
⇔ c ≤

R
B − R

;

(4.2)⇔ c f1(x) ≥ R⇔ c ≥
R

f1(x)

⇔ c ≥
R

f1(0+)
⇔ c ≥

R
1 − abR

a+b

.

�

Corollary 4.2. Let (a, b) ∈ D1 and c > 0. Then for the inequalities

log[eR/(1 − x)]
BF(a, b; a + b; x)

≤
c + x
c + 1

, (4.3)

log[eR/(1 − x)]
BF(a, b; a + b; x)

≥
c + x
c + 1

, (4.4)

we have the following conclusions:
(1) (4.3) holds if and only if c ≥ R/(B − R).
(2) (4.4) holds if and only if c ≤ 1/(ab) − 1.

Proof. Since

(4.3)⇔
f (x)
B
≤

c + x
c + 1

, (4.4)⇔
f (x)
B
≥

c + x
c + 1

,

By Theorem 3.1, f (x) is strictly increasing from (0, 1) onto (R, B). Hence f2(x) = (B− f (x))/(1− x) > 0
on (0, 1).

(4.3)⇔ B(1 − x) ≤ (c + 1)(B − f (x))⇔ B ≤ (c + 1)
B − f (x)

1 − x
= (c + 1) f2(x)

⇔ c ≥
B

f2(x)
− 1⇔ c ≥

B
f2(0+)

− 1 =
R

B − R
;
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Similary,

(4.4)⇔ B ≥ (c + 1) f2(x)⇔ c ≤
B

f2(x)
− 1

⇔ c ≤
B

f2(1−)
− 1 =

1
ab
− 1.

�

Corollary 4.3. Let (a, b) ∈ D1 and c > 0. Then

max
{
abBx + (1 − ab)B, (1 − abR/(a + b))x + R

}
<

log [eR/(1 − x2)]
F(a, b; a + b; x)

< (B − R)x + R (4.5)

for x ∈ (0, 1), with equality in each instance if and only if x→ 0.

Proof. It follows from the monotonicity properties of f1(x) and f2(x) given in Theorem 3.5 that

(1 − abR/(a + b))x + R <
log[eR/(1 − x)]
F(a, b; a + b; x)

< (B − R)x + R,

abBx + (1 − ab)B <
log[eR/(1 − x)]
F(a, b; a + b; x)

< (B − R)x + R.

Hence we have (4.5) for x ∈ (0, 1), with equality in each instance if and only if x→ 0. �

Corollary 4.4. Let (a, b) ∈ D1 ∩ D2 and C1 = R/(1 − abR/(a + b)). Then

C1 + 1
B(C1 + x)

<
F(a, b; a + b; x)
log[eR/(1 − x)]

<
C1

R(C1 + x)
(4.6)

for x ∈ (0, 1).

Proof. It follows from the monotonicity properties of f3(x) of Theorem 3.7 that

c + 1
B(c + x)

<
F(a, b; a + b; x)
log[eR/(1 − x)]

<
c

R(c + x)

for c ≥ R/(1 − abR/(a + b)) and x ∈ (0, 1). Let c = C1, we have (4.6). �

Corollary 4.5. Let (a, b) ∈ D3 and C2 = 1/(ab) − 1. Then

C2

R(C2 + x)
<

F(a, b; a + b; x)
log[eR/(1 − x)]

<
C2 + 1

B(C2 + x)
(4.7)

for r ∈ (0, 1). In particular, if (a, b) ∈ D1 ∩ D3, then

max
{ C1 + 1
B(C1 + x)

,
C2

R(C2 + x)

}
<

F(a, b; a + b; x)
log[eR/(1 − x)]

< min
{ C1

R(C1 + x)
,

(C2 + 1)
B(C2 + x)

}
(4.8)

for x ∈ (0, 1), with equality in each instance if and only if x→ 0.
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Proof. The proof is similar to the proof of Corollary 4.4. Using the monotonicity properties of f3(x) of
Theorem 3.8 that

c
R(c + x)

<
F(a, b; a + b; x)
log[eR/(1 − x)]

<
c + 1

B(c + x)

for c ≤ 1/(ab) − 1 and x ∈ (0, 1). And let c = C2, we have (4.7).
If (a, b) ∈ D1∩D3, then (4.6) and (4.7) both holds. Hence we have (4.8) for x ∈ (0, 1), with equality

in each instance if and only if x→ 0. �

Remark 4.6. Acorrding to the above Corollaries, let a + b = 1 and x = r2, we can obtain the
conculsions of genelized ellptic integral Ka(r) in [7].
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