Research article Special Issues

Mahgoub transform and Hyers-Ulam stability of $ n^{th} $ order linear differential equations

  • Received: 29 October 2021 Revised: 16 December 2021 Accepted: 21 December 2021 Published: 29 December 2021
  • MSC : 26D10, 34A40, 34K20, 39A30, 39B82, 44A10

  • The main aim of this paper is to investigate various types of Hyers-Ulam stability of linear differential equations of $ n^{th} $ order with constant coefficients using the Mahgoub transform method. We also show the Hyers-Ulam constants of these differential equations and give some main results.

    Citation: S. Deepa, S. Bowmiya, A. Ganesh, Vediyappan Govindan, Choonkil Park, Jung Rye Lee. Mahgoub transform and Hyers-Ulam stability of $ n^{th} $ order linear differential equations[J]. AIMS Mathematics, 2022, 7(4): 4992-5014. doi: 10.3934/math.2022278

    Related Papers:

  • The main aim of this paper is to investigate various types of Hyers-Ulam stability of linear differential equations of $ n^{th} $ order with constant coefficients using the Mahgoub transform method. We also show the Hyers-Ulam constants of these differential equations and give some main results.



    加载中


    [1] S. Aggarwal, Comparative study of Mohand and Mahgoub transforms, J. Adv. Res. Appl. Math. Stat., 4 (2019), 1–7.
    [2] S. Aggarwal, R. Chauhan, N. Sharma, A new application of Mahgoub transform for solving linear Volterra integral equations, Asian Resonance, 7 (2018), 46–48.
    [3] Q. H. Alqifiary, S. Jung, Laplace transform and generalized Hyers-Ulam stability of linear differential equations, Electron. J. Diff. Equ., 2014 (2014), 80.
    [4] C. Alsina, R. Ger, On some inequalities and stability results related to the exponential function, J. Inequal. Appl., 2 (1998), 373–380.
    [5] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2 (1950), 64–66. https://doi.org/10.2969/jmsj/00210064 doi: 10.2969/jmsj/00210064
    [6] L. Backes, D. Dragičević, Shadowing for infinite dimensional dynamics and exponential trichotomies, P. Roy. Soc. Edinb. A, 151 (2021), 863–884. https://doi.org/10.1017/prm.2020.42 doi: 10.1017/prm.2020.42
    [7] L. Backes, D. Dragičević, L. Singh, Shadowing for nonautonomous and nonlinear dynamics with impulses, Monatsh. Math., in press. https://doi.org/10.1007/s00605-021-01629-2
    [8] D. Dragičević, Hyers-Ulam stability for nonautonomous semilinear dynamics on bounded intervals, Mediterr. J. Math., 18 (2021), 71. https://doi.org/10.1007/s00009-021-01729-1 doi: 10.1007/s00009-021-01729-1
    [9] D. Dragičević, Hyers-Ulam stability for a class of perturbed Hill's equations, Results Math., 76 (2021), 129. https://doi.org/10.1007/s00025-021-01442-1 doi: 10.1007/s00025-021-01442-1
    [10] D. H. Hyers, On the stability of the linear functional equation, PNAS, 27 (1941), 222–224. https://doi.org/10.1073/pnas.27.4.222 doi: 10.1073/pnas.27.4.222
    [11] S. Jung, Hyers-Ulam stability of linear differential equations of first order, Appl. Math. Lett., 17 (2004), 1135–1140. https://doi.org/10.1016/j.aml.2003.11.004 doi: 10.1016/j.aml.2003.11.004
    [12] S. Jung, Hyers-Ulam stability of linear differential equations of first order. III, J. Math. Anal. Appl., 311 (2005), 139–146. https://doi.org/10.1016/j.jmaa.2005.02.025 doi: 10.1016/j.jmaa.2005.02.025
    [13] S. Jung, Hyers-Ulam stability of a system of first order linear differential equations with constant coefficients, J. Math. Anal. Appl., 320 (2006), 549–561. https://doi.org/10.1016/j.jmaa.2005.07.032 doi: 10.1016/j.jmaa.2005.07.032
    [14] M. M. A. Mahgoub, The new integral transform "Mahgoub transform", Adv. Theoret. Appl. Math., 11 (2016), 391–398.
    [15] T. Miura, On the Hyers-Ulam stability of a differentiable map, Sci. Math. Japon., 55 (2002), 17–24.
    [16] M. Obloza, Hyers stability of the linear differential equation, Rocznik Nauk.-Dydakt. Prace Mat., 13 (1993), 259–270.
    [17] M. Obloza, Connections between Hyers and Lyapunov stability of the ordinary differential equations, Rocznik Nauk.-Dydakt. Prace Mat., 14 (1997), 141–146.
    [18] J. M. Rassias, On approximation of approximately linear mappings by linear mappings, J. Funct. Anal., 46 (1982), 126–130. https://doi.org/10.1016/0022-1236(82)90048-9 doi: 10.1016/0022-1236(82)90048-9
    [19] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297–300. https://doi.org/10.1090/S0002-9939-1978-0507327-1 doi: 10.1090/S0002-9939-1978-0507327-1
    [20] H. Rezaei, S. Jung, Th. M. Rassias, Laplace transform and Hyers-Ulam stability of linear differential equations, J. Math. Anal. Appl., 403 (2013), 244–251. https://doi.org/10.1016/j.jmaa.2013.02.034 doi: 10.1016/j.jmaa.2013.02.034
    [21] I. A. Rus, Ulam stabilities of ordinary differential equations in a Banach space, Carpathian J. Math., 26 (2010), 103–107.
    [22] S. E. Takahasi, T. Miura, S. Miyajima, On the Hyers-Ulam stability of the Banach space-valued differential equation $ y' = \lambda y $, Bull. Korean Math. Soc., 39 (2002), 309–315. https://doi.org/10.4134/BKMS.2002.39.2.309 doi: 10.4134/BKMS.2002.39.2.309
    [23] M. Sarfraz, Y. Li, Minimum functional equation and some Pexider-type functional equation, AIMS Mathematics, 6 (2021), 11305–11317. https://doi.org/10.3934/math.2021656 doi: 10.3934/math.2021656
    [24] P. S. Kumar, A. Viswanathan, Application of Mahgoub transform to mechanics, electrical circuit problems, Int. J. Sci. Res., 7 (2018), 195–197.
    [25] S. M. Ulam, Problems in modern mathematics, New York: John Wiley & Sons Inc., 1964.
    [26] H. Vaezi, Hyers-Ulam stability of weighted composition operators on disc algebra, Int. J. Math. Comput., 10 (2011), 150–154.
    [27] G. Wang, M. Zhou, L. Sun, Hyers-Ulam stability of linear differential equations of first order, Appl. Math. Lett., 21 (2008), 1024–1028. https://doi.org/10.1016/j.aml.2007.10.020 doi: 10.1016/j.aml.2007.10.020
    [28] Z. Wang, Approximate mixed type quadratic-cubic functional equation, AIMS Mathematics, 6 (2021), 3546–3561. https://doi.org/10.3934/math.2021211 doi: 10.3934/math.2021211
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1754) PDF downloads(117) Cited by(4)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog