Citation: Muhammad Aslam Noor, Khalida Inayat Noor. Higher order strongly general convex functions and variational inequalities[J]. AIMS Mathematics, 2020, 5(4): 3646-3663. doi: 10.3934/math.2020236
[1] | B. B. Mohsen, M. A. Noor, K. I. Noor, et al. Strongly convex functions of higher order involving bifunction, Mathematics, 7 (2019), 1028. doi: 10.3390/math7111028 |
[2] | G. H. Lin, M. Fukushima, Some exact penalty results for nonlinear programs and mathematical programs with equilibrium constraints, J. Optimiz. Theory App., 118 (2003), 67-80. doi: 10.1023/A:1024787424532 |
[3] | B. T. Polyak, Existence theorems and convergence of minimizing sequences in extremum problems with restrictions, Soviet Math. Dokl., 7 (1966), 287-290. |
[4] | S. Karamardian, The nonlinear complementarity problems with applications, Part 2, J. Optimiz. Theory App., 4 (1969), 167-181. doi: 10.1007/BF00930577 |
[5] | M. U. Awan, M. A. Noor, M. V. Mihai, et al. On approximately harmonic h-convex functions depending on a given function, Filomat, 33 (2019), 3783-3793. doi: 10.2298/FIL1912783A |
[6] | M. U. Awan, M. A. Noor, T. S. Du, et al. New refinemnts of fractional Hermite-Hadamard inequality, RACSAM, 113 (2019), 21-29. doi: 10.1007/s13398-017-0448-x |
[7] | A. Azcar, J. Gimnez, K. Nikodem, et al. On strongly midconvex functions, Opuscula Math., 31 (2010), 15-26. doi: 10.7494/OpMath.2011.31.1.15 |
[8] | M. Adamek, On a problem connected with strongly convex functions, Math. Inequal. Appl., 19 (2015), 1287-1293. |
[9] | H. Angulo, J. Gimenez, A. M. Moeos, et al. On strongly h-convex functions, Ann. Funct. Anal., 2 (2010), 85-91. doi: 10.15352/afa/1399900197 |
[10] | C. P. Niculescu, L. E. Persson, Convex Functions and Their Applications, Springer-Verlag, New York, 2018. |
[11] | K. Nikodem, Z. S. Pales, Characterizations of inner product spaces by strongly convex functions, Banach J. Math. Anal., 1 (2011), 83-87. |
[12] | D. L. Zu, P. Marcotte, Co-coercivity and its role in the convergence of iterative schemes for solving variational inequalities, Siam J. Optimiz., 6 (1996), 714-726. doi: 10.1137/S1052623494250415 |
[13] | M. A. Noor, Some developments in general variational inequalities, Appl. Math. Comput., 251 (2004), 199-277. |
[14] | M. A. Noor, Fundamentals of equilibrium problems, Math. Inequal. Appl., 9 (2006), 529-566. |
[15] | M. A. Noor, Differentiable non-convex functions and general variational inequalities, Appl. Math. Comput., 199 (2008), 623-630. |
[16] | G. Cristescu, M. Găianu, Shape properties of Noor's convex sets, Proc. Twelfth Symp. Math. Appl. |
[17] | Timisoara, (2009), 1-13, G. Cristescu, L. Lupsa, Non Connected convexities and applications, Kluwer Academic Publisher, Dordrechet, 2002. |
[18] | E. A. Youness, E-convex sets, E-convex functions and E-convex programming, J. Optimiz. Theory App., 102 (1999), 439-450. doi: 10.1023/A:1021792726715 |
[19] | G. Stampacchia, Formes bilieaires coercives sur les ensembles convexes, Comput. Rend. l'Acad. Sci. Paris, 258 (1964), 4413-4416. |
[20] | J. L. Lions, G. Stampacchia, Variational inequalities, Commun. Pure Appl. Math., 20 (1967), 493-519. doi: 10.1002/cpa.3160200302 |
[21] | R. Glowinski, J. L. Lions, R. Tremlier, Numerical analysis of variational inequalities, NortHolland, Amsterdam, Holland, 1980. |
[22] | M. A. Noor, Extended general variational inequalities, Appl. Math. Lett., 22 (2009), 182-186. doi: 10.1016/j.aml.2008.03.007 |
[23] | W. L. Bynum, Weak parallelogram laws for Banach spaces, Can. Math. Bull., 19 (1976), 269-275. doi: 10.4153/CMB-1976-042-4 |
[24] | R. Cheng, C. B. Harris, Duality of the weak parallelogram laws on Banach spaces, J. Math. Anal. Appl., 404 (2013), 64-70. doi: 10.1016/j.jmaa.2013.02.064 |
[25] | R. Cheng, W. T. Ross, Weak parallelogram laws on Banach spaces and applications to prediction, Period. Math. Hung., 71 (2015), 45-58. |
[26] | G. H. Toader, Some generalizations of the convexity, Proc. Colloq. Approx. Optim. Cluj-Naploca (Romania), (1984), 329-338. |
[27] | M. A. Noor, K. I. Noor, On strongly exponentially preinvex functions, U. P. B. Sci. Bull. Series A, 81 (2019), 75-84. |
[28] | M. A. Noor, K. I. Noor, Strongly exopnetially convex functions and their properties, J. Advan. Math. Stud., 12 (2019), 177-185. |
[29] | M. A. Noor, K. I. Noor, On generalized strongly convex functions involving bifunction, Appl. Math. Inform. Sci., 13 (2019), 411-416. doi: 10.18576/amis/130313 |
[30] | W. Oettli, M. Thera, On maximal monotonicity of perturbed mapping, B. Unione Mat. Ital., 7 (1995), 47-55. |
[31] | G. Qu, N. Li, On the exponentially stability of primal-dual gradeint dynamics, IEEE Control Syst. Lett., 3 (2019), 43-48. doi: 10.1109/LCSYS.2018.2851375 |
[32] | J. Pecric, F. Proschan, Y. I. Tong, Convex functions, partial ordering and statistical applications, Academic Press, New York, USA, 1992. |
[33] | H. Xu, Inequalities in Banach spaces with applications, Nonlinear Anal-Theor., 16 (1991), 1127-1138. doi: 10.1016/0362-546X(91)90200-K |