Citation: Peiyu Yan, Qi Li, Yu Ming Chu, Sana Mukhtar, Shumaila Waheed. On some fractional integral inequalities for generalized strongly modified h-convex functions[J]. AIMS Mathematics, 2020, 5(6): 6620-6638. doi: 10.3934/math.2020426
[1] | Manar A. Alqudah, Artion Kashuri, Pshtiwan Othman Mohammed, Muhammad Raees, Thabet Abdeljawad, Matloob Anwar, Y. S. Hamed . On modified convex interval valued functions and related inclusions via the interval valued generalized fractional integrals in extended interval space. AIMS Mathematics, 2021, 6(5): 4638-4663. doi: 10.3934/math.2021273 |
[2] | Ghulam Farid, Hafsa Yasmeen, Hijaz Ahmad, Chahn Yong Jung . Riemann-Liouville Fractional integral operators with respect to increasing functions and strongly $ (\alpha, m) $-convex functions. AIMS Mathematics, 2021, 6(10): 11403-11424. doi: 10.3934/math.2021661 |
[3] | Maryam Saddiqa, Saleem Ullah, Ferdous M. O. Tawfiq, Jong-Suk Ro, Ghulam Farid, Saira Zainab . $ k $-Fractional inequalities associated with a generalized convexity. AIMS Mathematics, 2023, 8(12): 28540-28557. doi: 10.3934/math.20231460 |
[4] | Halim Benali, Mohammed Said Souid, Hatıra Günerhan, Unai Fernandez-Gamiz . Estimates related to Caputo derivatives using generalized modified $ h $-convex functions. AIMS Mathematics, 2024, 9(10): 28813-28827. doi: 10.3934/math.20241398 |
[5] | Baoli Feng, Mamoona Ghafoor, Yu Ming Chu, Muhammad Imran Qureshi, Xue Feng, Chuang Yao, Xing Qiao . Hermite-Hadamard and Jensen’s type inequalities for modified (p, h)-convex functions. AIMS Mathematics, 2020, 5(6): 6959-6971. doi: 10.3934/math.2020446 |
[6] | Yue Wang, Ghulam Farid, Babar Khan Bangash, Weiwei Wang . Generalized inequalities for integral operators via several kinds of convex functions. AIMS Mathematics, 2020, 5(5): 4624-4643. doi: 10.3934/math.2020297 |
[7] | Yu-Pei Lv, Ghulam Farid, Hafsa Yasmeen, Waqas Nazeer, Chahn Yong Jung . Generalization of some fractional versions of Hadamard inequalities via exponentially $ (\alpha, h-m) $-convex functions. AIMS Mathematics, 2021, 6(8): 8978-8999. doi: 10.3934/math.2021521 |
[8] | Hengxiao Qi, Muhammad Yussouf, Sajid Mehmood, Yu-Ming Chu, Ghulam Farid . Fractional integral versions of Hermite-Hadamard type inequality for generalized exponentially convexity. AIMS Mathematics, 2020, 5(6): 6030-6042. doi: 10.3934/math.2020386 |
[9] | Muhammad Aslam Noor, Khalida Inayat Noor . Higher order strongly general convex functions and variational inequalities. AIMS Mathematics, 2020, 5(4): 3646-3663. doi: 10.3934/math.2020236 |
[10] | Alper Ekinci, Erhan Set, Thabet Abdeljawad, Nabil Mlaiki . Generalizations of Ostrowski type inequalities via $ F $-convexity. AIMS Mathematics, 2022, 7(4): 7106-7116. doi: 10.3934/math.2022396 |
Linear functions are considered as simplest functions in linear spaces. The class of functions and sets that are just a step more complicated then linear ones namely convex functions and convex sets.
The subset C of Rn is said to be convex if
px+qy∈C |
∀x,y∈C, p∈(0,1) and q=1−p. The function f:Rn→R is said to be convex if its epigraph is convex subset of R.The convexity of sets and functions are the the objects of many studies during the past few decades. The convexity of a function and set make it so special because of its interesting properties like convex function has global minima, it has non-empty relative interior and convex set is connected having feasible directions at any point.
Some of early contributions to convex analysis were made by Holder, Jensen and Minkowski. The importance of convex analysis is well known in optimization theory [2,3], inspite of many applications, many recent problems in economics and engineering the notion of convexity does not longer suffices. Hence it is always necessary to extend the notion of convexity to some general form to meet recent problems see [4,5,6,7,8,9,10], for further reading on fractional integral inequalities we refer [11,12,13,14,15,16,17]. Moreover, the new inequalities in analysis is always appreciable. The present paper is organized as follow: in the second section, we give some preliminary material. In the third section, we derive some fractional integral inequalities for generalized strongly modified h-convex function, whereas in the fourth section. we present applications of results to the mean. Finally, we conclude our results.
We start from some preliminaries material and basic definitions.
Definition 2.1. [18] Let f:φ→R be an extended-real-valued function define on a convex set φ⊂Rn. Then the function f is convex on φ if
f(tb1+(1−t)b2)≤tf(b1)+(1−t)f(b2), | (2.1) |
for all b1,b2∈φ and t∈(0,1).
Definition 2.2. [19] Choose the functions f,h:J⊂R→R are non-negative. Then f is called h-convex function if
f(tb1+(1−t)b2)≤h(t)f(b1)+h(1−t)f(b2), | (2.2) |
for all b1,b2∈J and t∈[0,1].
Definition 2.3. [20] Choose the functions f,h:J⊂R→R are non-negative. Then f is called modified h-convex function if
f(tb1+(1−t)b2)≤h(t)f(b1)+(1−h(t))f(b2), | (2.3) |
for all b1,b2∈J and t∈[0,1].
Definition 2.4. [21] Let φ be an interval in real line R. A function f:φ=[b1,b2]→R is said to be generalized convex with respect to an arbitrary bifunction η(b1,b2):E×E→F where E,F∈R if
f(tb1+(1−t)b2)≤f(b2)+tη(f(b1),f(b2)), | (2.4) |
for all b1,b2∈φ,t∈[0,1].
Definition 2.5. A function f:φ=[b1,b2]→R is called ηh convex function if
f(tb1+(1−t)b2)≤f(b2)+h(t)η(f(b1),f(b2)), | (2.5) |
for all b1,b2∈φ,t∈[0,1] and h:J→R is a non-negative function.
Definition 2.6. [22] A function f:φ=[b1,b2]→R is called strongly convex function with modulus μ on φ, where μ≥0 if
f(tb1+(1−t)b2)≤tf(b1)+(1−t)f(b2)−μt(1−t)(b1−b2)2, | (2.6) |
for all b1,b2∈φ and t∈[0,1].
Definition 2.7. [23] A function f:J⊂R→R is said to be strongly η-convex function with respect to η:E×E→F where E,F∈R and modulus μ≥0, if
f(tb1+(1−t)b2)≤f(b2)+tη(f(b1),f(b2))−μt(1−t)(b1−b2)2, | (2.7) |
for all b1,b2∈J,t∈[0,1].
Definition 2.8. [24] Choose the functions f,h:J⊂R→R are non-negative. Then f is called generalized strongly modified h-convex function if
f(tb1+(1−t)b2)≤f(b2)+h(t)η(f(b1),f(b2))−μt(1−t)(b1−b2)2, | (2.8) |
for all b1,b2∈J and t∈[0,1].
Definition 2.9. [12] Let 0<s≤1. A function f:J⊂R→R is called s-ϕ -convex with respect to bifunction ϕ:E×E→F where E,F∈R (briefly ϕ-convex) if
f(tb1+(1−t)b2)≤f(b2)+tsϕ(f(b1),f(b2)), | (2.9) |
The next remark provides the relations among the convexities.
Remark 1. 1. If η(b1,b2)=b1−b2 then, (2.4) reduces to (2.1);
2. If h(t)=t then, (2.5) reduces to (2.4);
3. If h(t)=t and η(b1,b2)=b1−b2 then, (2.5) reduces to(2.1);
4. If η(b1,b2)=b1−b2 then, (2.5) reduces to (2.3);
5. If μ=0 and η(b1,b2)=b1−b2 then, (2.8) reduces to (2.3);
6. If μ=0, η(b1,b2)=b1−b2 and h(t)=t then, (2.8) reduces to(2.1);
7. If μ=0 then, (2.8) reduces to (2.5);
8. If h(t)=t then, (2.8) reduces to (2.7);
9. If μ=0 and h(t)=ts then, (2.8) reduces to (2.9).
Utilization of more complicated convex functions
Most of the modern problems in engineering and other applied sciences are non-convex in nature. So it is difficult to reach at favorite results by only the classical convexity. That's why the convexity is generalized in many directions. To understand the generalization of convexity it may categorize as:
Some generalization are made to change the form of defining e.g. quasi convex [26], pseudo convex [27] and strongly convex [28].
Some generalizations are made by expanding the domain e.g. [29] and some generalization are made by changing the range set of convex functions e.g. [30]. So generalizations the convex is always appreciable.
The next lemmas are useful in proving the main results.
Lemma 2.10. [31] Let f:J⊆R→R, be a differentiable mapping on ˚J such that f′∈L1[b1,b2], where b1,b2∈J with b1<b2. If α,β∈R, then
αf(b1)+βf(b2)2+2−α−β2f(b1+b22)−1b2−b1∫b2b1f(x)dx=b2−b14∫10[(1−α−t)f′(tb1+(1−t)b1+b22)+(β−t)f′(tb1+b22+(1−t)b2)]. | (2.10) |
Lemma 2.11. [31] For s>0 and 0≤ε≤1, we have
∫10|ε−t|sdt=εs+1+(1−ε)s+1s+1, | (2.11) |
∫10t|ε−t|sdt=εs+2+(s+1+ε)(1−ε)s+1s+1 | (2.12) |
∫10t2|ε−t|s=−2(ε−t)s+3+(1−ε)s+1(s+2)(s+3)−2(1−ε)s+2(s+3)+2(t−ε)s+3(s+1)(s+2)(s+3). |
Lemma 2.12. [32] Let f:J→R, J⊆R be a differentiable mapping on ˚J with f″∈L1[b1,b2], where b1,b2∈J,b1<b2, then
1b2−b1∫b2b1f(x)dx−f(b1+b22)=(b2−b1)216[∫10t2f″(tb1+b22+(1−t)b1)dt+∫10(t−1)2f″(tb2+(1−t)b1+b22)dt]. | (2.13) |
Lemma 2.13. [23] If fn for nϵN exists and is integrable on [b1,b2], then
f(b1)+f(b2)2−1b2−b1∫b2b1f(x)dx−Σn−1k=2(k−1)(b2−b1)k2(k+1)!f(k)(b1)=(b2−b1)n2n!∫10tn−1(n−2t)f(n)(tb1+(1−t)b2)dt. | (2.14) |
Lemma 2.14. [12] Suppose that f:[b1,b2]→R is a differentiable function, g:[b1,b2]→R+ is a continuous function and symmetric about b1+b22 and f′ is an integrable function on [b1,b2]. Then
f(b1)+f(b2)2∫b2b1g(x)dx−∫b2b1f(x)g(x)dx=b2−b14{∫10(∫1−t2b1+1+t2b21+t2b1+1−t2b2g(u)du)f′(1+t2b1+1−t2b2)dt+∫10(∫1−t2b1+1+t2b21+t2b1+1−t2b2g(u)du)f′(1−t2b1+1+t2b2)dt}. |
Theorem 3.1. Let f:J→R, J⊆R be a differentiable mapping on ˚J with f′∈L1[b1,b2], where b1,b2∈J,b1<b2. If |f′(x)|q for q≥1 and 0≤α,β≤1, is generalized strongly modified h-convex function on [b1,b2], then
|αf(b1)+βf(b2)2+2−α−β2f(b1+b22)−1b2−b1∫b2b1f(x)dx|≤(b2−b18)(2)1q{(1−2α+2α2)1−1q[12(1−2α+2α2)|f′(b2)|q+∫10|1−α−t|(h(1+t2)η(|f′(b1)|q+|f′(b2)|q))dt−μ4(b1−b2)2(−2α4+8α3−8α+512)]1q+(1−2β+2β2)1−1q×[12(1−2β+2β2)|f′(b2)|q+∫10|β−t|h(t2)η(|f′(b1)|q,|f′(b2)|q)dt−μ4(b1−b2)2(−2β4+8β3−8β+512)]1q} | (3.1) |
Proof. The proof begins with f′(x)∈[b1,b2], then using Lemma (2.10), and power mean inequality we have for q>1
|αf(b1)+βf(b2)2+2−α−β2f(b1+b22)−1b2−b1∫b2b1f(x)dx|≤b2−b14[∫10|1−α−t||f′(tb1+(1−t)b1+b22)|dt+∫10|β−t||f′(tb1+b22+(1−t)b2)|dt]≤b2−b14{(∫10|1−α−t|dt)1−1q[∫10|1−α−t|(|f′(b2)|q+h(1+t2)×η(|f′(b1)|q,|f′(b2)|q)−μ1+t2(1−1+t2)(b1−b2)2dt)]1q+(∫10|β−t|dt)1−1q×[∫10|β−t|(|f′(b2)|q+h(t2)η(|f′(b1)|q,|f′(b2)|q)−μt2(1−t2)(b1−b2)2dt)]1q}. | (3.2) |
Using Lemma (2.11), we have
μ(b1−b2)2∫10|1−α−t|(1+t2)(1−t2)dt=μ4(b1−b2)2(−2α4+8α3−8α+512). | (3.3) |
And
μ(b1−b2)2∫10|β−t|t2(1−t2)dt=μ4(b1−b2)2(−2β4+8β3−8β+512). | (3.4) |
Substituting values from Eqs (3.3), (3.4) in inequality (3.2), we obtain
|αf(b1)+βf(b2)2+2−α−β2f(b1+b22)−1b2−b1∫b2b1f(x)dx|≤(b2−b18)(2)1q{(1−2α+2α2)1−1q[12(1−2α+2α2)|f′(b2)|q+∫10|1−α−t|(h(1+t2)η(|f′(b1)|q+|f′(b2)|q))dt−μ4(b1−b2)2(−2α4+8α3−8α+512)]1q+(1−2β+2β2)1−1q×[12(1−2β+2β2)|f′(b2)|q+∫10|β−t|h(t2)η(|f′(b1)|q,|f′(b2)|q)dt−μ4(b1−b2)2(−2β4+8β3−8β+512)]1q}. |
For q=1, using Lemma (2.10) and Lemma (2.11), we have
|αf(b1)+βf(b2)2+2−α−β2f(b1+b22)−1b2−b1∫b2b1f(x)dx|≤(b2−b14){12(1−2α+2α2)|f′(b2)|+∫10|1−α−t|(h(1+t2)η(|f′(b1)|,|f′(b2)|))dt−μ4(b1−b2)2(−2α4+8α3−8α+512)+12(1−2β+2β2)|f′(b2)|+∫10|β−t|h(t2)η(|f′(b1)|,|f′(b2)|)dt−μ4(b1−b2)2(−2β4+8β3−8β+512)}, | (3.5) |
This completes the proof.
Remark 2. If we take h(t)=t and μ=0 then inequality (3.1) reduces to inequality (13) in [33].
Taking α=β in Theorem (3.1), we have following corollary.
Corollary 1. Let f:J→R, J⊆R be a differentiable mapping on ˚J with f′∈L1[b1,b2], where b1,b2∈J,b1<b2. If |f′(x)|q for q≥1 is generalized strongly modified h-convex function on [b1,b2] and 0≤α,β≤1, then
|α2[f(b1)+f(b2)]+(1−α)f(b1+b22)−1b2−b1∫b2b1f(x)dx|≤(b2−b14)(1−2α+2α22)1−1q{[(1−2α+2α22)|f′(b2)|q+∫10|1−α−t|×h(1+t2)η(|f′(b1)|q,|f′(b2)|q)dt−μ4(b1−b2)2(−2α4+8α3−8α+512)]1q+[(1−2α+2α22)×(|f′(b2)|q)+∫10|α−t|h(t2)η(|f′(b1)|q,|f′(b2)|q)dt−μ4(b1−b2)2(−2α4+8α3−8α+512)]1q}=(b2−b18)(2)1q(1−2α+2α2)1−1q{[(1−2α+2α22)|f′(b2)|q+∫10|1−α−t|h(1+t2)η(|f′(b1)|q,×|f′(b2)|q)dt−μ4(b1−b2)2(−2α4+8α3−8α+512)]1q+[(1−2α+2α22)×(|f′(b2)|q)+∫10|α−t|h(t2)η(|f′(b1)|q,|f′(b2)|q)dt−μ4(b1−b2)2(−2α4+8α3−8α+512)]1q}. | (3.6) |
Remark 3. If we take h(t)=t and μ=0 then inequality (3.6) reduces to inequality (16) in [33].
By choosing α=β=12,13 in Theorem (3.1) respectively, we obtain following corollary.
Corollary 2. Let f:J→R, J⊆R be a differentiable mapping on ˚J with f′∈L1[b1,b2], where b1,b2∈J,b1<b2. If |f′(x)|q for q≥1 is generalized strongly modified h-convex function on [b1,b2] and 0≤α,β≤1, then
|12[f(b1)+f(b2)2+f(b1+b22)]−1b2−b1∫b2b1f(x)dx|≤(b2−b116)(2)2q{[∫10|12−t|h(1+t2)η(|f′(b1)|q,|f′(b2)|q)dt+14|f′(b2)|q−μ4(b1−b2)2(5128)]1q+[14(|f′(b2)|q)+∫10|12−t|×h(t2)η(|f′(b1)|q,|f′(b2)|q)dt−μ4(b1−b2)2(5128)]1q}, | (3.7) |
and
|16[f(b1)+f(b2)+4f(b1+b22)]−1b2−b1∫b2b1f(x)dx|≤572(b2−b1)(185)1q{[518|f′(b2)|q+∫10|23−t|(h(1+t2)η(|f′(b1)|q,|f′(b2)|q))dt−211324μ(b1−b2)2]1q+[518|f′(b2)|q+∫10|13−t|(h(t2)η(|f′(b1)|q,|f′(b2)|q))dt−211324μ(b1−b2)2]1q}. | (3.8) |
Remark 4. Setting q=1 in Corollary (2), we have the following result.
Corollary 3. Let f:J→R, J⊆R be a differentiable mapping on ˚J with f′∈L1[b1,b2], where b1,b2∈I,b1<b2. If |f′(x)|q for q≥1 is generalized strongly modified h-convex function on [b1,b2] and 0≤α,β≤1, then
|12[f(b1)+f(b2)2+f(b1+b22)]−1b2−b1∫b2b1f(x)dx|≤(b2−b14){12|f′(b2)|+η(|f′(b1)|,|f′(b2)|)∫10[h(1+t2)+h(t2)]|12−t|dt−μ2(b1−b2)2(5128)}, | (3.9) |
and
|16[f(b1)+f(b2)+4f(b1+b22)]−1b2−b1∫b2b1f(x)dx|≤(b2−b14){59|f′(b2)|+η(|f′(b1)|,|f′(b2)|)[∫10h(1+t2)|23−t|dt+∫10h(t2)|13−t|dt−211162μ(b1−b2)2]}. | (3.10) |
Remark 5. If we take h(t)=t and μ=0 then inequalities (3.7)–(3.10) reduce to inequalities (17) and (18) in [33].
Theorem 3.2. Let f:J⊂[0,1)→R be a differentiable mapping on ˚J with f″∈L1[b1,b2], where b1,b2∈J and b1<b2. If |f″| is genarilized strongly modified h-convex on [b1,b2], then
|f(b1+b22)−1b2−b1∫b2b1f(x)dx|≤(b2−b1)216{[13|f″(b1)|+∫10t2h(t)η(|f″(b1+b22)|,|f″(b1)|)dt−120μ(b1+b22−b1)2]+[13|f″(b1+b22)|+∫10(t−1)2h(t)η(|f″(b2)|,|f″(b1+b22)|)dt−120μ(a2−b1+b22)]}. | (3.11) |
Proof. From Lemma (2.12), we have
|f(b1+b22)−1b2−b1∫b2b1f(x)dx|≤(b2−b1)216[∫10t2|f″(tb1+b22+(1−t)b1)|dt+∫10(t−1)2|f″(tb2+(1−t)b1+b22)|dt]. |
Since |f″| is generalized strongly modified h convex function, so
|f(b1+b22)−1b2−b1∫b2b1f(x)dx|≤(b2−b1)216[∫10t2(|f″(b1)|+h(t)η(|f″(b1+b22)|,|f″(b1)|)−μ(t)(1−t)(b1+b22−b1)2)dt+∫10(t−1)2(|f″(b1+b22)|+h(t)η(|f″(b2)|,|f″(b1+b22)|)−μ(t)(1−t)(b2−b1+b22)2)dt]=(b2−b1)216[13|f″(b1)|+∫10t2h(t)η(|f″(b1+b22)|,|f″(b1)|)dt−μ(b1+b2−2b12)2∫10t3(1−t)dt+13|f″(b1+b22)|+∫10(t−1)2×h(t)η(|f″(b2)|,|f″(b1+b22)|)dt+μ(2b2−b1−b22)2∫10(t−1)3tdt]. | (3.12) |
And
|f(b1+b22)−1b2−b1∫b2b1f(x)dx|≤(b2−b1)216{[13|f″(b1)|+∫10t2h(t)η(|f″(b1+b22)|,|f″(b1)|)dt−120μ(b1+b22−b1)2]+[13|f″(b1+b22)|+∫1o(t−1)2h(t)η(|f″(b2)|,|f″(b1+b22)|)dt−120μ(b2−b1+b22)]}. |
This completes the proof.
Remark 6. If we take h(t)=t and μ=0 then inequality (3.11) reduces to inequality (24) in [33].
Theorem 3.3. Let f:J⊂[0,1)→R be a differentiable mapping on ˚J with f″∈L1[b1,b2], where b1,b2∈J and b1<b2.If |f″|q for q≥1 with 1p+1q=1 is generelized strongly modified h-convx on [b1,b2], then
|f(b1+b22)−1b2−b1∫b2b1f(x)dx|≤(b2−b1)216(13)1p{(13|f″(b1)|q+∫10t2h(t)η(|f″(b1+b22)|q,|f″(b1)|q)dt−120μ(b2−b12)2)1q+(13|f″(b1+b22)|q+∫10(t−1)2h(t)η(|f″(b2)|q,|f″(b1+b22)|q)dt−120μ(b2−b12)2)1q}. | (3.13) |
Proof. Suppose that p≥1, using Lemma (2.12) and power mean inequality, we have
|f(b1+b22)−1b2−b1∫b2b1f(x)dx|≤(b2−b1)216[∫10t2|f″(tb1+b22+(1−t)b1)|dt+∫10(t−1)2|f″(tb2+(1−t)b1+b22)|dt]≤(b2−b1)216(∫10t2dt)1p(∫10t2|f″(tb1+b22+(1−t)b1)|qdt)1q+(b2−b1)216(∫10(t−1)2dt)1p(∫10(t−1)2|f″(tb2+(1−t)b1+b22)|qdt)1q. |
Since |f″|q is generalized strongly modified h-convex, then we have
∫10t2|f″(tb1+b22+(1−t)b1)|qdt≤∫10t2f″|b1|qdt+∫10t2h(t)η(|f″(b1+b22)|q,|f″(b1)|q)dt−∫10μ(1−t)t2t(b1+b22−b1)2dt≤13f″|b1|q+∫10t2h(t)η(|f″(b1+b22)|q,|f″(b1)|q)dt−120μ(b2−b12)2. |
And
∫10(t−1)2|f″(tb2+(1−t)b1+b22)|qdt≤∫10(t−1)2|f″(b1+b22)|qdt+∫10(t−1)2h(t)η(|f″(b2)|q,|f″(b1+b22)|q)dt−∫10μ(t−1)2t(1−t)(b2−b1+b22)2dt≤13|f″(b1+b22)|q+∫10(t−1)2h(t)η(|f″(b2)|q,|f″(b1+b22)|q)dt−120μ(b2−b12)2. |
After simplification, we have
|f(b1+b22)−1b2−b1∫b2b1f(x)dx|≤(b2−b1)216(13)1p{(13|f″(b1)|q+∫10t2h(t)η(|f″(b1+b22)|q,|f″(b1)|q)dt−120μ(b2−b12)2)1q+(13|f″(b1+b22)|q+∫10(t−1)2h(t)η(|f″(b2)|q,|f″(b1+b22)|q)dt−120μ(b2−b12)2)1q}. |
Which completes the proof.
Remark 7. If we take h(t)=t and μ=0, then inequality (3.13) reduces to inequality (25) in [33].
Theorem 3.4. Let f:˚J⊂R→R be a n-times differentiable generalized strongly modified h-convex, function on ˚J where b1,b2∈˚J with b1<b2 and f′∈L1[b1,b2]. If |f′|p is generalized strongly modified h-convex, function with μ≥1, then for n≥2 and p≥1, we have
|f(b1)+f(b2)2−1b2−b1∫b2b1f(x)dx−Σn−1k=2(k−1)(b2−b1)k2(k+1)!f(k)(b1)|≤(b2−b1)n2n!(n−1n+1)1−1p[n−1n+1|f(n)(b2)|p+∫10h(t)tn−1(n−2t)dtη(|f(n)(b1)|p,|fn(b2)|p)−μ(n−1)(n+1)(n+3)(x−y)2]. | (3.14) |
Proof. Case-i: Since it is known that |f′| is generalized strongly modified h-convex function, then using the property of modules, and Lemma (2.13), we have following inequality for p=1
|f(b1)+f(b2)2−1b2−b1∫b2b1f(x)dx−Σn−1k=2(k−1)(b2−b1)k2(k+1)!f(k)(b1)|≤(b2−b1)n2n!∫10tn−1(n−2t)|f(n)(tb1+(1−t)b2)|dt. | (3.15) |
Using the definition of generalized strongly modified h-convex function, we have
|f(b1)+f(b2)2−1b2−b1∫b2b1f(x)dx−Σn−1k=2(k−1)(b2−b1)k2(k+1)!f(k)(b1)|≤(b2−b1)n2!∫10(n−2t)[|fn(b2)|+h(t)η(|fn(b1)|,|fn(b2)|)−μ(x−y)2t(1−t)]dt≤(b2−b1)n2n![|fn(b2)|∫10tn−1(n−2t)dt+η(|fn(b1)|,|fn(b2)|)∫10h(t)tn−1(n−2t)dt−μ(x−y)2∫10tn(1−t)(n−2t)dt]. | (3.16) |
As
∫10tn−1(n−2t)dt=n−1n+1 | (3.17) |
∫10(1−t)(n−2t)dt=n−1(n+1)(n+3). | (3.18) |
Substituting (3.17) and (3.18) in (3.16), we have
|f(b1)+f(b2)2−1b2−b1∫b2b1f(x)dx−Σn−1k=2(k−1)(b2−b1)k2(k+1)!f(k)(b1)|≤(b2−b1)n2n![n−1n+1|f(n)(b2)|+η(|fn(b1)|,|fn(b2)|)∫10h(t)tn−1(n−2t)dt−μn−1(n+1)(n+3)(x+y)2]. |
Case-ii For p>1 applying Holder inequality, we have
|f(b1)+f(b2)2−1b2−b1∫b2b1f(x)dx−Σn−1k=2(k−1)(b2−b1)k2(k+1)!f(k)(b1)|≤(b2−b1)n2n![∫10tn−1(n−2t)dt]1−1p[∫10tn−1(n−2t)|f(n)(tb1+(1−t)b2)|pdt]1p. |
Using definition of generalized strongly modified h-convex function, we have
|f(b1)+f(b2)2−1b2−b1∫b2b1f(x)dx−Σn−1k=2(k−1)(b2−b1)k2(k+1)!f(k)(b1)|≤(b2−b1)n2n!(n−1n+1)1−1p[|f(n)(b2)|p∫10tn−1(n−2t)dt+η(|fn(b1)|,|fn(b2)|)∫10h(t)tn−1(n−2t)dt−μ(x−y)2∫10tn(n−2t)(1−t)dt]×|f(b1)+f(b2)2−1b2−b1∫b2b1f(x)dx−Σn−1k=2(k−1)(b2−b1)k2(k+1)!f(k)(b1)|≤(b2−b1)n2n!(n−1n+1)1−1p[n−1n+1|f(n)(b2)|P+∫10h(t)tn−1(n−2t)dtη(|f(n)(b1)|p,|fn(b2)|p)−μ(n−1)(n+1)(n+3)(x−y)2]. |
Which completes the proof.
Remark 8. If we take h(t)=t then Theorem (3.13) reduces to Theorem (2.5) in [23].
Theorem 3.5. Suppose that f:[b1,b2]→R is a differentiable function, g:[b1,b2]→R+ is a continuous function and symmetric about b1+b22 and |f′| is a generalized strongly modified h-convex function. Then
|f(b1)+f(b2)2∫b2b1g(x)dx−∫b2b1f(x)g(x)dx|≤b2−b14[2|f′(b2)|+Kη(|f′(b1)|,|f′(b2)|)−μ2(1−t2)(b1−b2)2]∫10∫1−t2b1+1+t2b21+t2b1+1−t2b2g(u)dudt | (3.19) |
where k=maxt∈[0,1]|g(t)| and g(t)=h(1−t2)+h(1+t2).
Proof. From Lemma (2.14) and the fact that |f′| is generalized strongly modified h-convex, we have
|f(b1)+f(b2)2∫b2b1g(x)dx−∫b2b1f(x)g(x)dx|≤b2−b14∫10∫1−t2b1+1+t2b21+t2b1+1−t2b2g(u)[|f′(1+t2b1+1−t2b2)|+|f′(1−t2b1+1+t2b2)|]dudt≤b2−b14∫10∫1−t2b1+1+t2b21+t2b1+1−t2b2g(u)[2|f′(b2)|+h(1+t2)η(|f′(b1)|,|f′(b2)|)−2μ(1+t2)(1−t2)(b1−b2)2+h(1−t2)η(|f′(b1)|,|f′(b2)|)]dudt=b2−b14∫10∫1−t2b1+1+t2b21+t2b1+1−t2b2g(u)(2|f′(b2)|+[h(1+t2)+h(1−t2)]η(|f′(b1)|,|f′(b2)|)−μ2(1−t2)(b1−b2)2)dudt=b2−b14(2|f′(b2)|+[h(1+t2)+h(1−t2)]η(|f′(b1)|,|f′(b2)|)−μ2(1−t2)(b1−b2)2)∫10∫1−t2b1+1+t2b21+t2b1+1−t2b2g(u)dudt≤b2−b14[2|f′(b2)|+Kη(|f′(b1)|,|f′(b2)|)−μ2(1−t2)(b1−b2)2]∫10∫1−t2b1+1+t2b21+t2b1+1−t2b2g(u)dudt |
where k=maxt∈[0,1]|g(t)| and g(t)=h(1−t2)+h(1+t2).
Remark 9. If we take μ=0,h(t)=ts then Theorem (3.15) reduces to Theorem (3) in [12].
Corollary 4. In theorem (3.15) if we choose h(t)=t then k=1 and μ=0, we have the inequality of the theorem (2) (Gordji, Dragomir and Delaver).
|f(b1)+f(b2)2∫b2b1g(x)dx−∫b2b1f(x)g(x)dx|≤b2−b14[2|f′(b2)|+η(|f′(b1)|,|f′(b2)|)]∫10∫1−t2b1+1+t2b21+t2b1+1−t2b2g(u)dudt. | (3.20) |
Corollary 5. In corollary (3.17) if we choose g=1,η(x,y)=x−y, we have the following inequality
|f(b1)+f(b2)2−1b2−b1∫b2b1f(x)dx|≤b2−b18[f′(b1)+f′(b2)]. | (3.21) |
for convex functions that is equivalent to Theorem (1.2) in [1].
For two positive numbers b1>0 and b2>0, define
{A(b1,b2)=b1+b22,G(b1,b2)=√b1b2,H(b1,b2)=2b1b2b1+b2,L(b1,b2)={[bs+12−bs+11(s+1)(b2−b1)]1s,b1≠b2b1,b1=b2,I(b1,b2)={1e(bb22bb11)1b2−b1,b1≠b2b1,b1=b2Hw,s(b1,b2)={[bs1+w(b1b2)s2+bs2w+2]1s,s≠0√b1b2,s=0 | (4.1) |
for 0≤w≤∞. These means are respectively called the arithematic, geometric, harmonic, generalized logarithmic, identric and Heronian means of two positive numbers b1 and b2.
Applying Theorem (3.1) to f(x)=xs for s≠0 and x>0 result in the following inequalities for means.
Theorem 4.1. Let b1>0, b2>0, q≥1, either s>1 and (s−1)q≥1 or s<0. Then
|A(αbs1,βbs2)+2−α−β2As(b1,b2)−Ls(b1,b2)|≤(b2−b18)(2)1q{(1−2α+2α2)1−1q[12(1−2α+2α2)|sbs−12|q+∫10|1−α−t|(h(1+t2)η(|sbs−11|q,|sbs−12|q))dt−μ4(b1−b2)2(−2α4+8α3−8α+512)]1q+(1−2β+2β2)1−1q×[12(1−2β+2β2)|sbs−12|q+∫10|β−t|h(t2)η(|sbs−11|q,|sbs−12|q)dt−μ4(b1−b2)2(−2β4+8β3−8β+512)]1q}. | (4.2) |
Taking f(x)=lnx for x>0 in Theorem (3.1) results in the following inequality for means.
Theorem 4.2. For b1>0, b2>0, b1≠b2 and q≥1, we have
|lnG2(bα1,bβ2)2+2−α−β2lnA(b1,b2)−lnI(b1,b2)|≤(b2−b18)(2)1q{(1−2α+2α2)1−1q[12(1−2α+2α2)|1b2|q+∫10|1−α−t|(h(1+t2)η(|1b1|q,|1b2|q))dt−μ4(b1−b2)2(−2α4+8α3−8α+512)]1q+(1−2β+2β2)1−1q×[12(1−2β+2β2)|1b2|q+∫10|β−t|h(t2)η(|1b1|q,|1b2|q)dt−μ4(b1−b2)2(−2β4+8β3−8β+512)]1q}. | (4.3) |
Finally, we can establish an inequality for the Heronian mean as follows.
Theorem 4.3. For b2>b1>0, b1≠b2 w≥0 and s≥4 or 0≠s<1, we have
|Hsw,s(b1,b2)H(bs1,bs2)+Hs2+1w,(s2+1)(b2b1+b1b2,1)−Hsw,s(L(b21,b22)G2(b1,b2),1)|≤(b2−b1)A(b1,b2)2G2(b1,b2){12|s|w+2(G2(s−1)(b2,1b1)+w2Gs−12(b2,1b1))+η(|s|w+2(G2(s−1)(b1,1b2)+w2Gs−12(b1,1b2)),|s|w+2(G2(s−1)(b2,1b1)+w2Gs−12(b2,1b1)))×∫10[h(1+t2)+h(t2)]|12−t|dt−(564)μ((b1−b2)A(b1,b2)G2(b1,b2))2}. | (4.4) |
Proof. Let f(x)=xs+wxs2+1w+2 for x>0 and s∉(1,4). Then
f′(x)=sw+2(xs−1+w2xs2−1). |
By corollary (3.6) it follows that
|12[f(b2b1)+f(b1b2)2+f(b2b1+b1b22)]−1b2b1−b1b2∫b2b1b1b2f(x)dx|=|12{12[bs2+w(b1b2)s2+bs1bs1(w+2)+bs1+w(b1b2)s2+bs2bs2(w+2)]+(b2b1+b1b2)s+w(b2b1+b1b2)s2+1w+2}−1w+2[(b2b1)s+1−(b1b2)s+1(s+1)(b2b1−b1b2)+w(b2b1)s2+1−(b1b2)s2+1(s2+1)(b2b1−b1b2)+1]|=|Hsw,s(b1,b2)H(bs1,bs2)+Hs2+1w,(s2+1)(b2b1+b1b2,1)−Hsw,s(L(b21,b22)G2(b1,b2),1)|. | (4.5) |
On the other hand, we have
b2b1−b1b24{12|f′(b2b1)|+η(|f′(b1b2)|,|f′(b2b1)|)∫10[h(1+t2)+h(t2)]|12−t|dt−μ2(b1b2−b2b1)2(5128)}=b22−b214b1b2{12|sw+2((b2b1)s−1+w2(b2b1)s2−1)|+η(|sw+2((b1b2)s−1+w2(b1b2)s2−1)|,|sw+2((b2b1)s−1+w2(b2b1)s2−1)|)×∫10[h(1+t2)+h(t2)]|12−t|dt−μ2(b21−b22b1b2)2(5128)}=(b2−b1)A(b1,b2)2G2(b1,b2){12|s|w+2(G2(s−1)(b2,1b1)+w2Gs−12(b2,1b1))+η(|s|w+2(G2(s−1)(b1,1b2)+w2Gs−12(b1,1b2)),|s|w+2(G2(s−1)(b2,1b1)+w2Gs−12(b2,1b1)))×∫10[h(1+t2)+h(t2)]|12−t|dt−(564)μ((b1−b2)A(b1,b2)G2(b1,b2))2}. | (4.6) |
Obviously (4.5) and (4.6) yield (4.4).
Fractional differential and integral equations play increasingly important roles in the modeling of engineering and science problems. It has been established fact that, in many situations, these models provide more suitable results than analogous models with integer derivatives. Fractional integral inequality results when 0<q<1 can be developed when the nonlinear term is increasing and satisfies a one sided Lipschitz condition. Using the integral inequality result and the computation of the solution of the linear fractional equation of variable coefficients, Gronwall inequality results can be established. In the present report, we developed the fractional integral inequalities for more broader class of convex functions named as generalized strongly modified h-convex functions, we also established some applications of derived inequalities to means. Our results extend and generalize many existing results, for example [1,23,33,34,35].
1. This work is supported by shandong Provincial Education science "12th Five-Year Plan" project (code: CBS15007), Shandong Provincial Humanities and Social Science Research Project (code: J16WB01) and Shandong Huayu university of Technology achievement Cultivation project (Practical Research on the teaching Reform of advanced Mathematics course in application-oriented undergraduate course of "curriculum thought and politics + Mixed learning").
2. The research was supported by the National Natural Science Foundation of China (Grant Nos. 11971142, 11871202, 61673169, 11701176, 11626101, 11601485).
3. Authors are thankful to both reviewers and editor for their valuable time and constructive comments.
The authors declare that no competing interests exist.
[1] | M. E. Gordji, S. S. Dragomir, M. R. Delavar, An inequality Related to φ-convex functions, Int. J. Nonlinear Anal. Appl., 6 (2015), 26-32. |
[2] |
Z. Meng, G. Li, D. Yang, et al. A new directional stability transformation method of chaos control for first order reliability analysis, Struct. Multidiscip. Optim., 55 (2017), 601-612. doi: 10.1007/s00158-016-1525-z
![]() |
[3] |
Z. Meng, Z. Zhang, H. Zhou, A novel experimental data-driven exponential convex model for reliability assessment with uncertain-but-bounded parameters, Appl. Math. Modell., 77 (2020), 773-787. doi: 10.1016/j.apm.2019.08.010
![]() |
[4] | G. Farid, W. Nazeer, M. S. Saleem, et al. Bounds of Riemann-Liouville fractional integrals in general form via convex functions and their applications, Mathematics, 6 (2018), 248. |
[5] | M. K. Wang, Y. M. Chu, W. Zhang, Monotonicity and inequalities involving zero-balanced hypergeometric function, Math. Inequal. Appl., 22 (2019), 601-617. |
[6] |
Y. M. Chu, M. A. Khan, T. Ali, et al. Inequalities for a-fractional differentiable functions, J. Inequal. Appl., 2017 (2017), 1-12. doi: 10.1186/s13660-016-1272-0
![]() |
[7] |
Y. C. Kwun, M. S. Saleem, M. Ghafoor, et al. Hermite-Hadamard-type inequalities for functions whose derivatives are convex via fractional integrals, J. Inequal. Appl., 2019 (2019), 1-16. doi: 10.1186/s13660-019-1955-4
![]() |
[8] | D. Ucar, V. F. Hatipoglu, A. Akincali, Fractional integral inequalities on time scales, Open J. Math. Sci., 2 (2018), 361-370. |
[9] |
Y. C. Kwun, G. Farid, W. Nazeer, et al. Generalized riemann-liouville k-fractional integrals associated with Ostrowski type inequalities and error bounds of hadamard inequalities, IEEE access, 6 (2018), 64946-64953. doi: 10.1109/ACCESS.2018.2878266
![]() |
[10] | S. Kermausuor, Simpson's type inequalities for strongly (s, m)-convex functions in the second sense and applications, Open J. Math. Sci., 3 (2019), 74-83. |
[11] |
I. A. Baloch, S. S. Dragomir, New inequalities based on harmonic log-convex functions, Open J. Math. Anal., 3 (2019), 103-105. doi: 10.30538/psrp-oma2019.0043
![]() |
[12] | H. Bai, M. S. Saleem, W. Nazeer, et al. Hermite-Hadamard-and Jensen-type inequalities for interval nonconvex function, J. Math., 2020 (2020), 1-6. |
[13] |
W. Iqbal, K. M. Awan, A. U. Rehman, et al. An extension of Petrovic's inequality for (h-) convex ((h-) concave) functions in plane, Open J. Math. Sci., 3 (2019), 398-403. doi: 10.30538/oms2019.0082
![]() |
[14] |
S. Zhao, S. I. Butt, W. Nazeer, et al. Some Hermite-Jensen-Mercer type inequalities for k-Caputo-fractional derivatives and related results, Adv. Differ. Equ., 2020 (2020), 1-17. doi: 10.1186/s13662-019-2438-0
![]() |
[15] |
M. A. Khan, S. Begum, Y. Khurshid, et al. Ostrowski type inequalities involving conformable fractional integrals, J. Inequal. Appl., 2018 (2018), 1-14. doi: 10.1186/s13660-017-1594-6
![]() |
[16] | M. A. Khan, Y. Khurshid, T. S. Du, et al. Generalization of Hermite-Hadamard type inequalities via conformable fractional integrals, J. Funct. Space., 2018 (2018), 1-12. |
[17] | X. M. Zhang, Y. M. Chu, X. H. Zhang, The Hermite-Hadamard type inequality of GA-convex functions and its application, J. Inequal. Appl., 2010 (2010), 1-11. |
[18] | B. S. Mordukhovich, N. M. Nam, An easy path to convex analysis and applications, Morgan Claypool, 6 (2014), 1-218. |
[19] |
S. Varosanec, On h-convexity, J. Math. Anal. Appl., 326 (2007), 303-311. doi: 10.1016/j.jmaa.2006.02.086
![]() |
[20] | M. Noor, K. Noor, U. Awan, Hermite-Hadamard type inequalities for modified h-convex functions, Trans. J. Math. Mechanics, 6 (2014), 2014. |
[21] | M. E. Gordji, M. R. Delavar, M. D. Sen, On ψ-convex functions, J. Math. Inequal., 10 (2016), 173-183. |
[22] |
N. Merentes, K. Nikodem, Remarks on strongly convex functions, Aequationes Math., 80 (2010), 193-199. doi: 10.1007/s00010-010-0043-0
![]() |
[23] |
M. U. Awan, M. A. Noor, On Strongly Generalized Convex Functions, Filomat, 31 (2017), 5783-5790. doi: 10.2298/FIL1718783A
![]() |
[24] |
T. Zhao, M. S. Saleem, W. Nazeer, et al. On generalized strongly modified h-convex functions, J. Inequal. Appl., 2020 (2020), 1-12. doi: 10.1186/s13660-019-2265-6
![]() |
[25] | M. V. Cortez, Y. C. R. Oliveros, An inequalities s-φ-convex. Dol: 10.18576/Aninequalitiess-fi-convex(verde). |
[26] |
B. de Finetti, Sulla stratificazioni convesse, Ann. Math. Pura. Appl., 30 (1949), 173-183. doi: 10.1007/BF02415006
![]() |
[27] |
O. L. Mangasarian, Pseudo-convex functions, J. Soc. Ind. Appl. Math., 3 (1965), 281-290. doi: 10.1137/0303020
![]() |
[28] | B. T. Polyak, Existence theorems and convergence of minimizing sequences in extremum problems with restrictions, Soviet Math. Dokl., 7 (1966), 287-290. |
[29] |
X. M. Yang, E-convex sets, E-convex functions and E-convex programming, J. Optim. Theory Appl., 109 (2001), 699-704. doi: 10.1023/A:1017532225395
![]() |
[30] |
I. Hsu, R. G. Kuller, Convexity of vector-valued functions, Proc. Amer. Math. Soc., 46 (1974), 363-366. doi: 10.1090/S0002-9939-1974-0423076-9
![]() |
[31] | B. Y. Xi, F. Qi, Some integral inequalities of Hermite-Hadamard type for convex functions with applications to means, J. Funct. Space. Appl., 2012 (2012), 1-14. |
[32] | M. E. Ozdernir, C. Yildiz, A. C. Akdemir, et al. On some inequalities for s-convex functions and applications, J. Inequal. Appl., 2013 (2013), 333. |
[33] |
Y. C. Kwun, M. S. Saleem, M. Ghafoor, Hermite-Hadamardd-type inequalities for functions whose derivatives are η-convex via fractional integrals, J. Inequal. Appl., 2019 (2019), 1-16. doi: 10.1186/s13660-019-1955-4
![]() |
[34] | H. Kadakal, M. Kadakal, I. Iscan, New type integral inequalities for three times differentiable preinvex and prequasiinvex functions, Open J. Math. Anal., 2 (2018), 33-46. |
[35] |
S. Mehmood, G. Farid, K. A. Khan, et al. New fractional Hadamard and Fejer-Hadamard inequalities associated with exponentially (h, m)-convex functions, Eng. Appl. Sci. Lett., 3 (2020), 45-55. doi: 10.30538/psrp-easl2020.0034
![]() |
1. | Shuang-Shuang Zhou, Saima Rashid, Muhammad Aslam Noor, Khalida Inayat Noor, Farhat Safdar, Yu-Ming Chu, New Hermite-Hadamard type inequalities for exponentially convex functions and applications, 2020, 5, 2473-6988, 6874, 10.3934/math.2020441 | |
2. | Xi-Fan Huang, Miao-Kun Wang, Hao Shao, Yi-Fan Zhao, Yu-Ming Chu, Monotonicity properties and bounds for the complete p-elliptic integrals, 2020, 5, 2473-6988, 7071, 10.3934/math.2020453 | |
3. | Shu-Bo Chen, Saima Rashid, Muhammad Aslam Noor, Zakia Hammouch, Yu-Ming Chu, New fractional approaches for n-polynomial P-convexity with applications in special function theory, 2020, 2020, 1687-1847, 10.1186/s13662-020-03000-5 | |
4. | Muhammad Uzair Awan, Sadia Talib, Artion Kashuri, Muhammad Aslam Noor, Khalida Inayat Noor, Yu-Ming Chu, A new q-integral identity and estimation of its bounds involving generalized exponentially μ-preinvex functions, 2020, 2020, 1687-1847, 10.1186/s13662-020-03036-7 | |
5. | Humaira Kalsoom, Muhammad Idrees, Artion Kashuri, Muhammad Uzair Awan, Yu-Ming Chu, Some New $(p_1p_2,q_1q_2)$-Estimates of Ostrowski-type integral inequalities via n-polynomials s-type convexity, 2020, 5, 2473-6988, 7122, 10.3934/math.2020456 | |
6. | Saad Ihsan Butt, Muhammad Umar, Saima Rashid, Ahmet Ocak Akdemir, Yu-Ming Chu, New Hermite–Jensen–Mercer-type inequalities via k-fractional integrals, 2020, 2020, 1687-1847, 10.1186/s13662-020-03093-y | |
7. | Shu-Bo Chen, Saima Rashid, Muhammad Aslam Noor, Rehana Ashraf, Yu-Ming Chu, A new approach on fractional calculus and probability density function, 2020, 5, 2473-6988, 7041, 10.3934/math.2020451 | |
8. | Thabet Abdeljawad, Saima Rashid, A. A. El-Deeb, Zakia Hammouch, Yu-Ming Chu, Certain new weighted estimates proposing generalized proportional fractional operator in another sense, 2020, 2020, 1687-1847, 10.1186/s13662-020-02935-z | |
9. | Thabet Abdeljawad, Saima Rashid, Zakia Hammouch, İmdat İşcan, Yu-Ming Chu, Some new Simpson-type inequalities for generalized p-convex function on fractal sets with applications, 2020, 2020, 1687-1847, 10.1186/s13662-020-02955-9 | |
10. | Tariq A. Aljaaidi, Deepak B. Pachpatte, Thabet Abdeljawad, Mohammed S. Abdo, Mohammed A. Almalahi, Saleh S. Redhwan, Generalized proportional fractional integral Hermite–Hadamard’s inequalities, 2021, 2021, 1687-1847, 10.1186/s13662-021-03651-y | |
11. | Xue Wang, Absar ul Haq, Muhammad Shoaib Saleem, Sami Ullah Zakir, Mohsan Raza, The Strong Convex Functions and Related Inequalities, 2022, 2022, 2314-8888, 1, 10.1155/2022/4056201 | |
12. | Daniel Breaz, Çetin Yildiz, Luminiţa-Ioana Cotîrlă, Gauhar Rahman, Büşra Yergöz, New Hadamard Type Inequalities for Modified h-Convex Functions, 2023, 7, 2504-3110, 216, 10.3390/fractalfract7030216 | |
13. | Samaira Naz, Muhammad Nawaz Naeem, Yu-Ming Chu, Ostrowski-type inequalities for n-polynomial $\mathscr{P}$-convex function for k-fractional Hilfer–Katugampola derivative, 2021, 2021, 1029-242X, 10.1186/s13660-021-02657-0 | |
14. | Chahn Yong Jung, Ghulam Farid, Hafsa Yasmeen, Yu-Pei Lv, Josip Pečarić, Refinements of some fractional integral inequalities for refined $(\alpha ,h-m)$-convex function, 2021, 2021, 1687-1847, 10.1186/s13662-021-03544-0 | |
15. | Waewta Luangboon, Kamsing Nonlaopon, Jessada Tariboon, Sotiris K. Ntouyas, Simpson- and Newton-Type Inequalities for Convex Functions via (p,q)-Calculus, 2021, 9, 2227-7390, 1338, 10.3390/math9121338 | |
16. | Mujahid Abbas, Waqar Afzal, Thongchai Botmart, Ahmed M. Galal, Jensen, Ostrowski and Hermite-Hadamard type inequalities for $ h $-convex stochastic processes by means of center-radius order relation, 2023, 8, 2473-6988, 16013, 10.3934/math.2023817 | |
17. | Musa Çakmak, Mevlüt Tunç, Generalizations of Hermite-Hadamard, Bullen and Simpson inequalities via h−convexity, 2022, 30, 1584-3289, 77, 10.2478/gm-2022-0006 |