In this paper, the authors focus on extending the well-known weak sharp solutions for variational inequalities to a controlled variational-type inequality governed by convex multiple integral functionals. Simultaneously, some equivalent conditions on weak sharpness associated with solutions of the considered inequality are obtained by using the minimum principle sufficiency property.
Citation: Savin Treanţă, Muhammad Bilal Khan, Soubhagya Kumar Sahoo, Thongchai Botmart. Evolutionary problems driven by variational inequalities with multiple integral functionals[J]. AIMS Mathematics, 2023, 8(1): 1488-1508. doi: 10.3934/math.2023075
In this paper, the authors focus on extending the well-known weak sharp solutions for variational inequalities to a controlled variational-type inequality governed by convex multiple integral functionals. Simultaneously, some equivalent conditions on weak sharpness associated with solutions of the considered inequality are obtained by using the minimum principle sufficiency property.
[1] | M. Alshahrani, S. Al-Homidan, Q. H. Ansari, Minimum and maximum principle sufficiency properties for nonsmooth variational inequalities, Optim. Lett., 10 (2016), 805–819. https://doi.org/10.1007/s11590-015-0906-3 doi: 10.1007/s11590-015-0906-3 |
[2] | T. Antczak, Vector exponential penalty function method for nondifferentiable multiobjective programming problems, Bull. Malays. Math. Sci. Soc., 41 (2018), 657–686. https://doi.org/10.1007/s40840-016-0340-4 doi: 10.1007/s40840-016-0340-4 |
[3] | J. V. Burke, M. C. Ferris, Weak sharp minima in mathematical programming, SIAM J. Control Optim., 31 (1993), 1340–1359. https://doi.org/10.1137/0331063 doi: 10.1137/0331063 |
[4] | G. Y. Chen, C. J. Goh, X. Q. Yang, On gap functions for vector variational inequalities, Vector variational inequality and vector equilibria, Mathematical Theories, Kluwer Academic Publishers, Boston, 2000, 55–72. |
[5] | F. H. Clarke, Functional analysis, calculus of variations and optimal control, Graduate Texts in Mathematics, Springer, London, 264 (2013). |
[6] | M. C. Ferris, O. L. Mangasarian, Minimum principle sufficiency, Math. Program., 57 (1992), 1–14. https://doi.org/10.1007/BF01581071 doi: 10.1007/BF01581071 |
[7] | J. B. Hiriart-Urruty, C. Lemaréchal, Fundamentals of convex analysis, Springer, Berlin, 2001. |
[8] | Y. H. Hu, W. Song, Weak sharp solutions for variational inequalities in Banach spaces, J. Math. Anal. Appl., 374 (2011), 118–132. https://doi.org/10.1016/j.jmaa.2010.08.062 doi: 10.1016/j.jmaa.2010.08.062 |
[9] | B. Khazayel, A. Farajzadeh, New vectorial versions of Takahashi's nonconvex minimization problem, Optim. Lett., 15 (2021), 847–858. https://doi.org/10.1007/s11590-019-01521-x doi: 10.1007/s11590-019-01521-x |
[10] | Z. Liu, S. Zeng, D. Motreanu, Evolutionary problems driven by variational inequalities, J. Differ. Equ., 260 (2016), 6787–6799. https://doi.org/10.1016/j.jde.2016.01.012 doi: 10.1016/j.jde.2016.01.012 |
[11] | Y. Liu, Z. Wu, Characterization of weakly sharp solutions of a variational inequality by its primal gap function, Optim. Lett., 10 (2016), 563–576. https://doi.org/10.1007/s11590-015-0882-7 doi: 10.1007/s11590-015-0882-7 |
[12] | O. L. Mangasarian, R. R. Meyer, Nonlinear perturbation of linear programs, SIAM J. Control Optim., 17 (1979), 745–752. https://doi.org/10.1137/0317052 doi: 10.1137/0317052 |
[13] | P. Marcotte, D. Zhu, Weak sharp solutions of variational inequalities, SIAM J. Optim., 9 (1998), 179–189. https://doi.org/10.1137/S1052623496309867 doi: 10.1137/S1052623496309867 |
[14] | Ş. Mititelu, S. Treanţă, Efficiency conditions in vector control problems governed by multiple integrals, J. Appl. Math. Comput., 57 (2018), 647–665. https://doi.org/10.1007/s12190-017-1126-z doi: 10.1007/s12190-017-1126-z |
[15] | M. Oveisiha, J. Zafarani, Generalized Minty vector variational-like inequalities and vector optimization problems in Asplund spaces, Optim. Lett., 7 (2013), 709–721. https://doi.org/10.1007/s11590-012-0454-z doi: 10.1007/s11590-012-0454-z |
[16] | C. T. Pham, T. T. T. Tran, G. Gamard, An efficient total variation minimization method for image restoration, Informatica, 31 (2020), 539–560. https://doi.org/10.15388/20-INFOR407 doi: 10.15388/20-INFOR407 |
[17] | M. Patriksson, A unified framework of descent algorithms for nonlinear programs and variational inequalities, PhD. Thesis, Department of Mathematics, Linköping Institute of Technology, 1993. |
[18] | B. T. Polyak, Introduction to optimization, Optimization Software, Publications Division, New York, 1987. |
[19] | M. Tavakoli, A. P. Farajzadeh, D. Inoan, On a generalized variational inequality problem, Filomat, 32 (2018), 2433–2441. https://doi.org/10.2298/FIL1807433T doi: 10.2298/FIL1807433T |
[20] | S. Treanţă, On controlled variational inequalities involving convex functionals, WCGO 2019: Optimization of Complex Systems: Theory, Models, Algorithms and Applications, Advances in Intelligent Systems and Computing, Springer, Cham, 991 (2020), 164–174. https://doi.org/10.1007/978-3-030-21803-4_17 |
[21] | S. Treanţă, S. Singh, Weak sharp solutions associated with a multidimensional variational-type inequality, Positivity, 25 (2021), 329–351. https://doi.org/10.1007/s11117-020-00765-7 doi: 10.1007/s11117-020-00765-7 |
[22] | S. Treanţă, On well-posed isoperimetric-type constrained variational control problems, J. Differ. Equ., 298 (2021), 480–499. https://doi.org/10.1016/j.jde.2021.07.013 doi: 10.1016/j.jde.2021.07.013 |
[23] | S. Treanţă, Some results on $(\rho, b, d)$-variational inequalities, J. Math. Inequal., 14 (2020), 805–818. |
[24] | Z. Wu, S. Y. Wu, Weak sharp solutions of variational inequalities in Hilbert spaces, SIAM J. Optim., 14 (2004), 1011–1027. https://doi.org/10.1137/S1052623403421486 doi: 10.1137/S1052623403421486 |