Research article

Modular edge irregularity strength of graphs

  • Received: 12 August 2022 Revised: 10 October 2022 Accepted: 17 October 2022 Published: 21 October 2022
  • MSC : 05C78

  • For a simple graph $ G = (V, E) $ with the vertex set $ V(G) $ and the edge set $ E(G) $, a vertex labeling $ \varphi: V(G) \to \{1, 2, \dots, k\} $ is called a $ k $-labeling. The weight of an edge under the vertex labeling $ \varphi $ is the sum of the labels of its end vertices and the modular edge-weight is the remainder of the division of this sum by $ |E(G)| $. A vertex $ k $-labeling is called a modular edge irregular if for every two different edges their modular edge-weights are different. The maximal integer $ k $ minimized over all modular edge irregular $ k $-labelings is called the modular edge irregularity strength of $ G $. In the paper we estimate the bounds on the modular edge irregularity strength and for caterpillar, cycle, friendship graph and $ n $-sun we determine the precise values of this parameter that prove the sharpness of the lower bound.

    Citation: Ali N. A. Koam, Ali Ahmad, Martin Bača, Andrea Semaničová-Feňovčíková. Modular edge irregularity strength of graphs[J]. AIMS Mathematics, 2023, 8(1): 1475-1487. doi: 10.3934/math.2023074

    Related Papers:

  • For a simple graph $ G = (V, E) $ with the vertex set $ V(G) $ and the edge set $ E(G) $, a vertex labeling $ \varphi: V(G) \to \{1, 2, \dots, k\} $ is called a $ k $-labeling. The weight of an edge under the vertex labeling $ \varphi $ is the sum of the labels of its end vertices and the modular edge-weight is the remainder of the division of this sum by $ |E(G)| $. A vertex $ k $-labeling is called a modular edge irregular if for every two different edges their modular edge-weights are different. The maximal integer $ k $ minimized over all modular edge irregular $ k $-labelings is called the modular edge irregularity strength of $ G $. In the paper we estimate the bounds on the modular edge irregularity strength and for caterpillar, cycle, friendship graph and $ n $-sun we determine the precise values of this parameter that prove the sharpness of the lower bound.



    加载中


    [1] G. Chartrand, M. Jacobson, J. Lehel, O. Oellermann, S. Ruiz, F. Saba, Irregular networks, Congressus Numerantium, 64 (1988), 197–210.
    [2] M. Anholcer, C. Palmer, Irregular labellings of circulant graphs, Discrete Math., 312 (2012), 3461–3466. https://doi.org/10.1016/j.disc.2012.06.017 doi: 10.1016/j.disc.2012.06.017
    [3] T. Bohman, D. Kravitz, On the irregularity strength of trees, J. Graph Theor., 45 (2004), 241–254. https://doi.org/10.1002/jgt.10158 doi: 10.1002/jgt.10158
    [4] B. Cuckler, F. Lazebnik, Irregularity strength of dense graphs, J. Graph Theor., 58 (2008), 299–313. https://doi.org/10.1002/jgt.20313 doi: 10.1002/jgt.20313
    [5] R. Faudree, J. Lehel, Bound on the irregularity strength of regular graphs, Colloq. Math. Soc. János Bolyai, 52 (1987), 247–256.
    [6] M. Kalkowski, M. Karonski, F. Pfender, A new upper bound for the irregularity strength of graphs, SIAM J. Discrete Math., 25 (2011), 1319–1321. https://doi.org/10.1137/090774112 doi: 10.1137/090774112
    [7] P. Majerski, J. Przybyło, On the irregularity strength of dense graphs, SIAM J. Discrete Math., 28 (2014), 197–205. https://doi.org/10.1137/120886650 doi: 10.1137/120886650
    [8] J. Przybyło, Linear bound on the irregularity strength and the total vertex irregularity strength of graphs, SIAM J. Discrete Math., 23 (2009), 511–516. https://doi.org/10.1137/070707385 doi: 10.1137/070707385
    [9] A. Ahmad, O. Al-Mushayt, M. Bača, On edge irregularity strength of graphs, Appl. Math. Comput., 243 (2014), 607–610. https://doi.org/10.1016/j.amc.2014.06.028 doi: 10.1016/j.amc.2014.06.028
    [10] A. Ahmad, M. Bača, M. Nadeem, On edge irregularity strength of Toeplitz graphs, UPB Sci. Bull. A, 78 (2016), 155–162.
    [11] A. Ahmad, M. Asim, M. Bača, R. Hasni, Computing edge irregularity strength of complete $m$-ary trees using algorithmic approach, UPB Sci. Bull. A, 80 (2018), 145–152.
    [12] I. Tarawneh, R. Hasni, A. Ahmad, M. Asim, On the edge irregularity strength for some classes of plane graphs, AIMS Mathematics, 6 (2021), 2724–2731. https://doi.org/10.3934/math.2021166 doi: 10.3934/math.2021166
    [13] M. Basher, On the reflexive edge strength of the circulant graphs, AIMS Mathematics, 6 (2021), 9342–9365. https://doi.org/10.3934/math.2021543 doi: 10.3934/math.2021543
    [14] M. Basher, Edge irregular reflexive labeling for the $r$-th power of the path, AIMS Mathematics, 6 (2021), 10405–10430. https://doi.org/10.3934/math.2021604 doi: 10.3934/math.2021604
    [15] K. Yoong, R. Hasni, G. Lau, M. Asim, A. Ahmad, Reflexive edge strength of convex polytopes and corona product of cycle with path, AIMS Mathematics, 7 (2022), 11784–11800. https://doi.org/10.3934/math.2022657 doi: 10.3934/math.2022657
    [16] M. Bača, K. Muthugurupackiam, K. Kathiresan, S. Ramya, Modular irregularity strength of graphs, Electron. J. Graph The., 8 (2020), 435–443. http://dx.doi.org/10.5614/ejgta.2020.8.2.19 doi: 10.5614/ejgta.2020.8.2.19
    [17] M. Bača, Z. Kimáková, M. Lascsáková, A. Semaničová-Feňovčíková, The irregularity and modular irregularity strength of fan graphs, Symmetry, 13 (2021), 605. https://doi.org/https://doi.org/10.3390/sym13040605 doi: 10.3390/sym13040605
    [18] M. Bača, M. Imran, A. Semaničová-Feňovčíková, Irregularity and modular irregularity strength of wheels, Mathematics, 9 (2021), 2710. https://doi.org/10.3390/math9212710 doi: 10.3390/math9212710
    [19] K. Sugeng, Z. Barack, N. Hinding, R. Simanjuntak, Modular irregular labeling on double-star and friendship graphs, J. Math., 2021 (2021), 4746609. https://doi.org/10.1155/2021/4746609 doi: 10.1155/2021/4746609
    [20] K. Muthugurupackiam, S. Ramya, Even modular edge irregularity strength of graphs, International J. Math. Combin., 1 (2018), 75–82.
    [21] K. Muthugurupackiam, S. Ramya, On modular edge irregularity strength of graphs, J. Appl. Sci. Comput., 6 (2019), 1902–1905.
    [22] R. Faudree, R. Schelp, M. Jacobson, J. Lehel, Irregular networks, regular graphs and integer matrices with distinct row and column sums, Discrete Math., 76 (1989), 223–240. https://doi.org/10.1016/0012-365X(89)90321-X doi: 10.1016/0012-365X(89)90321-X
    [23] K. Sugeng, M. Miller, Slamin, M. Bača, $(a, d)$-edge-antimagic total labelings of caterpillars, Lecture notes in computer science, Berlin: Springer, 2005,169–180. https://doi.org/10.1007/978-3-540-30540-8_19
    [24] A. Kotzig, A. Rosa, Magic valuations of finite graphs, Canad. Math. Bull. 13 (1970), 451–461. https://doi.org/10.4153/CMB-1970-084-1 doi: 10.4153/CMB-1970-084-1
    [25] A. Marr, W. Wallis, Magic graphs, 2 Eds., Boston: Birkhäuser, 2013.
    [26] M. Bača, Y. Lin, M. Miller, M. Youssef, Edge-antimagic graphs, Discrete Math., 307 (2007), 1232–1244. https://doi.org/10.1016/j.disc.2005.10.038 doi: 10.1016/j.disc.2005.10.038
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1521) PDF downloads(124) Cited by(8)

Article outline

Figures and Tables

Figures(5)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog