A (modular) vertex irregular total labeling of a graph $ G $ of order $ n $ is an assignment of positive integers from $ 1 $ to $ k $ to the vertices and edges of $ G $ with the property that all vertex weights are distinct. The vertex weight of a vertex $ v $ is defined as the sum of numbers assigned to the vertex $ v $ itself and to the edge's incident, while the modular vertex weight is defined as the remainder of the division of the vertex weight by $ n $. The (modular) total vertex irregularity strength of $ G $ is the minimum $ k $ for which such labeling exists. In this paper, we obtain estimations on the modular total vertex irregularity strength, and we evaluate the precise values of this invariant for certain graphs.
Citation: Gohar Ali, Martin Bača, Marcela Lascsáková, Andrea Semaničová-Feňovčíková, Ahmad ALoqaily, Nabil Mlaiki. Modular total vertex irregularity strength of graphs[J]. AIMS Mathematics, 2023, 8(4): 7662-7671. doi: 10.3934/math.2023384
A (modular) vertex irregular total labeling of a graph $ G $ of order $ n $ is an assignment of positive integers from $ 1 $ to $ k $ to the vertices and edges of $ G $ with the property that all vertex weights are distinct. The vertex weight of a vertex $ v $ is defined as the sum of numbers assigned to the vertex $ v $ itself and to the edge's incident, while the modular vertex weight is defined as the remainder of the division of the vertex weight by $ n $. The (modular) total vertex irregularity strength of $ G $ is the minimum $ k $ for which such labeling exists. In this paper, we obtain estimations on the modular total vertex irregularity strength, and we evaluate the precise values of this invariant for certain graphs.
[1] | G. Chartrand, M. S. Jacobson, J. Lehel, O. R. Oellermann, S. Ruiz, F. Saba, Irregular networks, Congr. Numer., 64 (1988), 187–192. |
[2] | R. J. Faudree, J. Lehel, Bound on the irregularity strength of regular graphs, Colloquia Mathematica Societatis János Bolyai 52, Combinatorics, Eger, Hungary, 52 (1987), 247–256. |
[3] | B. Cuckler, F. Lazebnik, Irregularity strength of dense graphs, J. Graph Theory, 58 (2008), 299–313. https://doi.org/10.1002/jgt.20313 doi: 10.1002/jgt.20313 |
[4] | J. Przybyło, Linear bound on the irregularity strength and the total vertex irregularity strength of graphs, SIAM J. Discret. Math., 23 (2009), 511–516. https://doi.org/10.1137/070707385 doi: 10.1137/070707385 |
[5] | M. Kalkowski, M. Karonski, F. Pfender, A new upper bound for the irregularity strength of graphs, SIAM J. Discret. Math., 25 (2011), 1319–1321. https://doi.org/10.1137/090774112 doi: 10.1137/090774112 |
[6] | P. Majerski, J. Przybyło, On the irregularity strength of dense graphs, SIAM J. Discret. Math., 28 (2014), 197–205. https://doi.org/10.1137/120886650 doi: 10.1137/120886650 |
[7] | R. J. Faudree, M. S. Jacobson, J. Lehel, R. H. Schelp, Irregular networks, regular graphs and integer matrices with distinct row and column sums, Discret. Math., 76 (1989), 223–240. https://doi.org/10.1016/0012-365X(89)90321-X doi: 10.1016/0012-365X(89)90321-X |
[8] | S. Jendrol', V. Žoldák, The irregularity strength of generalized Petersen graphs, Math. Slovaca, 45 (1995), 107–113. |
[9] | T. Bohman, D. Kravitz, On the irregularity strength of trees, J. Graph Theory, 45 (2004), 241–254. https://doi.org/10.1002/jgt.10158 doi: 10.1002/jgt.10158 |
[10] | M. Anholcer, C. Palmer, Irregular labellings of circulant graphs, Discret. Math., 312 (2012), 3461–3466. https://doi.org/10.1016/j.disc.2012.06.017 doi: 10.1016/j.disc.2012.06.017 |
[11] | M. Basher, On the reflexive edge strength of the circulant graphs, AIMS Math., 6 (2021), 9342–9365. https://doi.org/10.3934/math.2021543 doi: 10.3934/math.2021543 |
[12] | M. Basher, Edge irregular reflexive labeling for the $r$-th power of the path, AIMS Math., 6 (2021), 10405–10430. https://doi.org/10.3934/math.2021604 doi: 10.3934/math.2021604 |
[13] | K. K. Yoong, R. Hasni, G. C. Lau, M. A. Asim, A. Ahmad, Reflexive edge strength of convex polytopes and corona product of cycle with path, AIMS Math., 7 (2022), 11784–11800. https://doi.org/10.3934/math.2022657 doi: 10.3934/math.2022657 |
[14] | M. Bača, K. Muthugurupackiam, K. M. Kathiresan, S. Ramya, Modular irregularity strength of graphs, Electron. J. Graph Theory Appl., 8 (2020), 435–443. http://dx.doi.org/10.5614/ejgta.2020.8.2.19 doi: 10.5614/ejgta.2020.8.2.19 |
[15] | M. Bača, Z. Kimáková, M. Lascsáková, A. Semaničová-Feňovčíková, The irregularity and modular irregularity strength of fan graphs, Symmetry, 13 (2021), 605. https://doi.org/https://doi.org/10.3390/sym13040605 doi: 10.3390/sym13040605 |
[16] | M. Bača, M. Imran, A. Semaničová-Feňovčíková, Irregularity and modular irregularity strength of wheels, Mathematics, 9 (2021), 2710. https://doi.org/10.3390/math9212710 doi: 10.3390/math9212710 |
[17] | K. A. Sugeng, Z. Z. Barack, N. Hinding, R. Simanjuntak, Modular irregular labeling on double-star and friendship graphs, J. Math., 2021 (2021), 4746609. https://doi.org/10.1155/2021/4746609 doi: 10.1155/2021/4746609 |
[18] | A. N. A. Koam, A. Ahmad, M. Bača, A. Semaničová-Feňovčíková, Modular edge irregularity strength of graphs, AIMS Math., 8 (2023), 1475–1487. https://doi.org/10.3934/math.2023074 doi: 10.3934/math.2023074 |
[19] | M. Bača, S. Jendrol', M. Miller, J. Ryan, On irregular total labeling, Discrete Math., 307 (2007), 1378–1388. https://doi.org/10.1016/j.disc.2005.11.075 doi: 10.1016/j.disc.2005.11.075 |
[20] | M. Anholcer, M. Kalkowski, J. Przybyło, A new upper bound for the total vertex irregularity strength of graphs, Discrete Math., 309 (2009), 6316–6317. https://doi.org/10.1016/j.disc.2009.05.023 doi: 10.1016/j.disc.2009.05.023 |
[21] | P. Majerski, J. Przybyło, Total vertex irregularity strength of dense graphs, J. Graph Theory, 76 (2014), 34–41. https://doi.org/10.1002/jgt.21748 doi: 10.1002/jgt.21748 |
[22] | A. Ahmad, M. Bača, On vertex irregular total labelings, Ars Combin., 112 (2013), 129–139. |
[23] | A. Ahmad, M. Bača, Y. Bashir, Total vertex irregularity strength of certain classes of unicyclic graphs, Bull. Math. Soc. Sci. Math. Roumanie, 57 (2014), 147–152. |