Research article Special Issues

High-order numerical algorithm for fractional-order nonlinear diffusion equations with a time delay effect

  • Received: 19 November 2022 Revised: 28 December 2022 Accepted: 04 January 2023 Published: 18 January 2023
  • MSC : 35R11, 34Kxx, 76M22, 65Mxx

  • In this paper, we examine and provide numerical solutions to the nonlinear fractional order time-space diffusion equations with the influence of temporal delay. An effective high-order numerical scheme that mixes the so-called Alikhanov $ L2-1_\sigma $ formula side by side to the power of the Galerkin method is presented. Specifically, the time-fractional component is estimated using the uniform $ L2-1_{\sigma} $ difference formula, while the spatial fractional operator is approximated using the Legendre-Galerkin spectral approximation. In addition, Taylor's approximations are used to discretize the term of the nonlinear source function. It has been shown theoretically that the suggested scheme's numerical solution is unconditionally stable, with a second-order time-convergence and a space-convergent order of exponential rate. Furthermore, a suitable discrete fractional Grönwall inequality is then utilized to quantify error estimates for the derived solution. Finally, we provide a numerical test that closely matches the theoretical investigation to assess the efficacy of the suggested method.

    Citation: A. K. Omran, V. G. Pimenov. High-order numerical algorithm for fractional-order nonlinear diffusion equations with a time delay effect[J]. AIMS Mathematics, 2023, 8(4): 7672-7694. doi: 10.3934/math.2023385

    Related Papers:

  • In this paper, we examine and provide numerical solutions to the nonlinear fractional order time-space diffusion equations with the influence of temporal delay. An effective high-order numerical scheme that mixes the so-called Alikhanov $ L2-1_\sigma $ formula side by side to the power of the Galerkin method is presented. Specifically, the time-fractional component is estimated using the uniform $ L2-1_{\sigma} $ difference formula, while the spatial fractional operator is approximated using the Legendre-Galerkin spectral approximation. In addition, Taylor's approximations are used to discretize the term of the nonlinear source function. It has been shown theoretically that the suggested scheme's numerical solution is unconditionally stable, with a second-order time-convergence and a space-convergent order of exponential rate. Furthermore, a suitable discrete fractional Grönwall inequality is then utilized to quantify error estimates for the derived solution. Finally, we provide a numerical test that closely matches the theoretical investigation to assess the efficacy of the suggested method.



    加载中


    [1] S. Bhalekar, V. Daftardar-Gejji, D. Baleanu, R. Magin, Generalized fractional order Bloch equation with extended delay, Int. J. Bifurcat. Chaos, 22 (2012), 1250071. https://doi.org/10.1142/S021812741250071X doi: 10.1142/S021812741250071X
    [2] M. Benchohra, S. Litimein, G. N'Guérékata, On fractional integro-differential inclusions with state-dependent delay in Banach spaces, Appl. Anal., 92 (2013), 335–350. https://doi.org/10.1080/00036811.2011.616496 doi: 10.1080/00036811.2011.616496
    [3] E. Fridman, L. Fridman, E. Shustin, Steady modes in relay control systems with time delay and periodic disturbances, J. Dyn. Sys. Meas. Control, 122 (2000), 732–737. https://doi.org/10.1115/1.1320443 doi: 10.1115/1.1320443
    [4] J. J. Batzel, F. Kappel, Time delay in physiological systems: Analyzing and modeling its impact, Math. Biosci., 234 (2011), 61–74. https://doi.org/10.1016/j.mbs.2011.08.006 doi: 10.1016/j.mbs.2011.08.006
    [5] P. P. Liu, Periodic solutions in an epidemic model with diffusion and delay, Appl. Math. Comput., 265 (2015), 275–291. https://doi.org/10.1016/j.amc.2015.05.028 doi: 10.1016/j.amc.2015.05.028
    [6] R. V. Culshaw, S. Ruan, G. Webb, A mathematical model of cell-to-cell spread of HIV-1 that includes a time delay, J. Math. Bio., 46 (2003), 425–444. https://doi.org/10.1007/s00285-002-0191-5 doi: 10.1007/s00285-002-0191-5
    [7] C. Beta, M. Bertram, A. S. Mikhailov, H. H. Rotermund, G. Ertl, Controlling turbulence in a surface chemical reaction by time-delay autosynchronization, Phys. Rev. E, 67 (2003), 046224. https://doi.org/10.1103/PhysRevE.67.046224 doi: 10.1103/PhysRevE.67.046224
    [8] B. Liu, C. Zhang, A spectral Galerkin method for nonlinear delay convection–diffusion–reaction equations, Comput. Math. Appl., 69 (2015), 709–724. https://doi.org/10.1016/j.camwa.2015.02.027 doi: 10.1016/j.camwa.2015.02.027
    [9] V. G. Pimenov, A. S. Hendy, A numerical solution for a class of time fractional diffusion equations with delay, Int. J. Appl. Math. Comput. Sci., 27 (2017), 477–488. https://doi.org/10.1515/amcs-2017-0033 doi: 10.1515/amcs-2017-0033
    [10] V. G. Pimenov, A. S. Hendy, R. H. De Staelen, On a class of non-linear delay distributed order fractional diffusion equations, J. Comput. Appl. Math., 318 (2017), 433–443. https://doi.org/10.1016/j.cam.2016.02.039 doi: 10.1016/j.cam.2016.02.039
    [11] L. Li, B. Zhou, X. Chen, Z. Wang, Convergence and stability of compact finite difference method for nonlinear time fractional reaction–diffusion equations with delay, Appl. Math. Comput., 337 (2018), 144–152. https://doi.org/10.1016/j.amc.2018.04.057 doi: 10.1016/j.amc.2018.04.057
    [12] A. Mohebbi, Finite difference and spectral collocation methods for the solution of semilinear time fractional convection-reaction-diffusion equations with time delay, J. Appl. Math. Comput., 61 (2019), 635–656. https://doi.org/10.1007/s12190-019-01267-w doi: 10.1007/s12190-019-01267-w
    [13] A. S. Hendy, J. E. Macías-Díaz, A novel discrete Grönwall inequality in the analysis of difference schemes for time-fractional multi-delayed diffusion equations, Commun. Nonlinear Sci., 73 (2019), 110–119. https://doi.org/10.1016/j.cnsns.2019.02.005 doi: 10.1016/j.cnsns.2019.02.005
    [14] Z. Sun, X. Wu, A fully discrete difference scheme for a diffusion-wave system, Appl. Numer. Math., 56 (2006), 193–209. https://doi.org/10.1016/j.apnum.2005.03.003 doi: 10.1016/j.apnum.2005.03.003
    [15] Y. Lin, C. Xu, Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys., 225 (2007), 1533–1552. https://doi.org/10.1016/j.jcp.2007.02.001 doi: 10.1016/j.jcp.2007.02.001
    [16] A. A. Alikhanov, Numerical methods of solutions of boundary value problems for the multi-term variable-distributed order diffusion equation, Appl. Math. Comput., 268 (2015), 12–22. https://doi.org/10.1016/j.amc.2015.06.045 doi: 10.1016/j.amc.2015.06.045
    [17] C. Chen, F. Liu, V. Anh, I. Turner, Numerical schemes with high spatial accuracy for a variable-order anomalous subdiffusion equation, SIAM J. Sci. Comput., 32 (2010), 1740–1760. https://doi.org/10.1137/090771715 doi: 10.1137/090771715
    [18] A. A. Alikhanov, Boundary value problems for the diffusion equation of the variable order in differential and difference settings, Appl. Math. Comput., 219 (2012), 3938–3946. https://doi.org/10.1016/j.amc.2012.10.029 doi: 10.1016/j.amc.2012.10.029
    [19] A. Delić, B. S. Jovanović, Numerical approximation of an interface problem for fractional in time diffusion equation, Appl. Math. Comput., 229 (2014), 467–479. https://doi.org/10.1016/j.amc.2013.12.060 doi: 10.1016/j.amc.2013.12.060
    [20] A. S. Hendy, M. A. Zaky, R. H. De Staelen, A general framework for the numerical analysis of high-order finite difference solvers for nonlinear multi-term time-space fractional partial differential equations with time delay, Appl. Numer. Math., 169 (2021), 108–121. https://doi.org/10.1016/j.apnum.2021.06.010 doi: 10.1016/j.apnum.2021.06.010
    [21] Y. Zhang, Z. Sun, H. Liao, Finite difference methods for the time fractional diffusion equation on non-uniform meshes, J. Comput. Phys., 265 (2014), 195–210. https://doi.org/10.1016/j.jcp.2014.02.008 doi: 10.1016/j.jcp.2014.02.008
    [22] G. Gao, Z. Sun, H. Zhang, A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications, J. Comput. Phys., 259 (2014), 33–50. https://doi.org/10.1016/j.jcp.2013.11.017 doi: 10.1016/j.jcp.2013.11.017
    [23] C. Lv, C. Xu, Error analysis of a high order method for time-fractional diffusion equations, SIAM J. Sci. Comput., 38 (2016), 2699–2724. https://doi.org/10.1137/15M102664X doi: 10.1137/15M102664X
    [24] Y. Wang, L. Ren, A high-order L2-compact difference method for Caputo-type time-fractional sub-diffusion equations with variable coefficients, Appl. Math. Comput., 342 (2019), 71–93. https://doi.org/10.1016/j.amc.2018.09.007 doi: 10.1016/j.amc.2018.09.007
    [25] A. A. Alikhanov, A new difference scheme for the time fractional diffusion equation, J. Comput. Phys., 280 (2015), 424–438. https://doi.org/10.1016/j.jcp.2014.09.031 doi: 10.1016/j.jcp.2014.09.031
    [26] G. Gao, A. A. Alikhanov, Z. Sun, The temporal second order difference schemes based on the interpolation approximation for solving the time multi-term and distributed-order fractional sub-diffusion equations, J. Sci. Comput., 73 (2017), 93–121. https://doi.org/10.1007/s10915-017-0407-x doi: 10.1007/s10915-017-0407-x
    [27] R. Du, A. A. Alikhanov, Z. Sun, Temporal second order difference schemes for the multi-dimensional variable-order time fractional sub-diffusion equations, Comput. Math. Appl., 79 (2020), 2952–2972. https://doi.org/10.1016/j.camwa.2020.01.003 doi: 10.1016/j.camwa.2020.01.003
    [28] M. A. Zaky, A. S. Hendy, A. A. Alikhanov, V. G. Pimenov, Numerical analysis of multi-term time-fractional nonlinear subdiffusion equations with time delay: What could possibly go wrong? Commun. Nonlinear Sci. Numer. Simulat., 96 (2021), 105672. https://doi.org/10.1016/j.cnsns.2020.105672 doi: 10.1016/j.cnsns.2020.105672
    [29] Y. Zhao, P. Zhu, W. Luo, A fast second-order implicit scheme for non-linear time-space fractional diffusion equation with time delay and drift term, Appl. Math. Comput. 336 (2018), 231–248. https://doi.org/10.1016/j.amc.2018.05.004 doi: 10.1016/j.amc.2018.05.004
    [30] S. Nandal, D. N. Pandey, Numerical treatment of non-linear fourth-order distributed fractional sub-diffusion equation with time-delay, Commun. Nonlinear Sci. Numer. Simulat., 83 (2020), 105146. https://doi.org/10.1016/j.cnsns.2019.105146 doi: 10.1016/j.cnsns.2019.105146
    [31] M. A. Zaky, A. S. Hendy, J. E. Macías-Díaz, High-order finite difference/spectral-Galerkin approximations for the nonlinear time-space fractional Ginzburg-Landau equation, Numer. Meth. Part. D. E., 83 (2020). https://doi.org/10.1002/num.22630 doi: 10.1002/num.22630
    [32] A. S. Hendy, J. E. Macías-Díaz, A discrete Grönwall inequality and energy estimates in the analysis of a discrete model for a nonlinear time-fractional heat equation, Mathematics, 8 (2020), 1539. https://doi.org/10.3390/math8091539 doi: 10.3390/math8091539
    [33] M. A. Zaky, A. S. Hendy, R. H. De Staelen, Alikhanov Legendre-Galerkin spectral method for the coupled nonlinear time-space fractional Ginzburg-Landau complex system, Mathematics, 9 (2021), 183. https://doi.org/10.3390/math9020183 doi: 10.3390/math9020183
    [34] Y. Wang, F. Liu, L. Mei, V. V. Anh, A novel alternating-direction implicit spectral Galerkin method for a multi-term time-space fractional diffusion equation in three dimensions, Numer. Algor., 86 (2021), 1443–1474. https://doi.org/10.1007/s11075-020-00940-7 doi: 10.1007/s11075-020-00940-7
    [35] H. Liu, S. Lü, A high-order numerical scheme for solving nonlinear time fractional reaction-diffusion equations with initial singularity, Appl. Numer. Math., 169 (2021), 32–43. https://doi.org/10.1016/j.apnum.2021.06.013 doi: 10.1016/j.apnum.2021.06.013
    [36] Y. Wang, G. Wang, L. Bu, L. Mei, Two second-order and linear numerical schemes for the multi-dimensional nonlinear time-fractional Schrödinger equation, Numer. Algor., 88 (2021), 419–451. https://doi.org/10.1007/s11075-020-01044-y doi: 10.1007/s11075-020-01044-y
    [37] I. Podlubny, Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Math. Sci. Eng., 198 (1998), 340.
    [38] D. Wang, A. Xiao, W. Yang, Crank-Nicolson difference scheme for the coupled nonlinear Schrödinger equations with the Riesz space fractional derivative, J. Comput. Phys., 242 (2013), 670–681. https://doi.org/10.1016/j.jcp.2013.02.037 doi: 10.1016/j.jcp.2013.02.037
    [39] V. J. Ervin, J. P. Roop, Variational solution of fractional advection dispersion equations on bounded domains in ${\bf R}^d$, Numer. Meth. Part. D. E., 23 (2007), 256–281. https://doi.org/10.1002/num.20169 doi: 10.1002/num.20169
    [40] F. Marcellán, W. Van Assche, Orthogonal polynomials and special functions: computation and applications, Berlin: Springer, 2006.
    [41] J. Shen, T. Tang, L. Wang, Spectral methods: algorithms, analysis and applications, Berlin: Springer, 2011.
    [42] A. H. Bhrawy, M. A. Zaky, A method based on the Jacobi tau approximation for solving multi-term time-space fractional partial differential equations, J. Comput. Phys., 281 (2015), 876–895. https://doi.org/10.1016/j.jcp.2014.10.060 doi: 10.1016/j.jcp.2014.10.060
    [43] A. H. Bhrawy, M. A. Zaky, Numerical simulation for two-dimensional variable-order fractional nonlinear cable equation, Nonlinear Dynam., 80 (2015), 101–116. https://doi.org/10.1007/s11071-014-1854-7 doi: 10.1007/s11071-014-1854-7
    [44] M. A. Zaky, A. S. Hendy, An efficient dissipation-preserving Legendre-Galerkin spectral method for the Higgs boson equation in the de Sitter spacetime universe, Appl. Numer. Math., 160 (2021), 281–295. https://doi.org/10.1016/j.apnum.2020.10.013 doi: 10.1016/j.apnum.2020.10.013
    [45] M. A. Zaky, An accurate spectral collocation method for nonlinear systems of fractional differential equations and related integral equations with nonsmooth solutions, Appl. Numer. Math., 154 (2020), 205–222. https://doi.org/10.1016/j.apnum.2020.04.002 doi: 10.1016/j.apnum.2020.04.002
    [46] M. A. Zaky, I. G. Ameen, A priori error estimates of a Jacobi spectral method for nonlinear systems of fractional boundary value problems and related Volterra-Fredholm integral equations with smooth solutions, Numer. Algor., 84 (2020), 63–89. https://doi.org/10.1007/s11075-019-00743-5 doi: 10.1007/s11075-019-00743-5
    [47] A. K. Omran, M. A. Zaky, A. S. Hendy, V. G. Pimenov, An efficient hybrid numerical scheme for nonlinear multiterm Caputo time and riesz space fractional-order diffusion equations with delay, J. Funct. Space., 2021 (2021). https://doi.org/10.1155/2021/5922853 doi: 10.1155/2021/5922853
    [48] A. K. Omran, M. A. Zaky, A. S. Hendy, V. G. Pimenov, An easy to implement linearized numerical scheme for fractional reaction-diffusion equations with a prehistorical nonlinear source function, Math. Comput. Simulat., 200 (2022), 218–239. https://doi.org/10.1016/j.matcom.2022.04.014 doi: 10.1016/j.matcom.2022.04.014
    [49] A. K. Omran, M. A. Zaky, A. S. Hendy, V. G. Pimenov, Numerical algorithm for a generalized form of Schnakenberg reaction-diffusion model with gene expression time delay, Appl. Numer. Math., 185 (2023), 295–310. https://doi.org/10.1016/j.apnum.2022.11.024 doi: 10.1016/j.apnum.2022.11.024
    [50] F. Zeng, F. Liu, C. Li, K. Burrage, I. Turner, V. Anh, A Crank-Nicolson ADI spectral method for a two-dimensional Riesz space fractional nonlinear reaction-diffusion equation, SIAM J. Numer. Anal., 52 (2014), 2599–2622. https://doi.org/10.1137/130934192 doi: 10.1137/130934192
    [51] J. Shen, Efficient spectral-Galerkin method I. Direct solvers of second-and fourth-order equations using Legendre polynomials, SIAM J. Sci. Comput., 15 (1994), 1489–1505. https://doi.org/10.1137/0915089 doi: 10.1137/0915089
    [52] A. A. Alikhanov, A priori estimates for solutions of boundary value problems for fractional-order equations, Diff. Equat., 46 (2010), 660–666. https://doi.org/10.1134/S0012266110050058 doi: 10.1134/S0012266110050058
    [53] D. Li, H. Liao, W. Sun, J. Wang, J. Zhang, Analysis of L1-Galerkin FEMs for time-fractional nonlinear parabolic problems, Commun. Comput. Phys, , 24 (2018), 86–103. https://doi.org/10.4208/cicp.OA-2017-0080 doi: 10.4208/cicp.OA-2017-0080
    [54] H. Liao, D. Li, J. Zhang, Sharp error estimate of the nonuniform L1 formula for linear reaction-subdiffusion equations, SIAM J. Numer. Anal., 56 (2018), 1112–1133. https://doi.org/10.1137/17M1131829 doi: 10.1137/17M1131829
    [55] H. Liao, W. McLean, J. Zhang, A discrete Grönwall inequality with applications to numerical schemes for subdiffusion problems, SIAM J. Numer. Anal., 57 (2019), 218–237. https://doi.org/10.1137/16M1175742 doi: 10.1137/16M1175742
    [56] G. N. Gatica, A simple introduction to the mixed finite element method: theory and applications, Berlin: Springer, 2014.
    [57] B. Zhou, X. Chen, D. Li, Nonuniform Alikhanov linearized Galerkin finite element methods for nonlinear time-fractional parabolic equations, J. Sci. Comput., 85 (2020), 1–20. https://doi.org/10.1007/s10915-020-01350-6 doi: 10.1007/s10915-020-01350-6
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1253) PDF downloads(122) Cited by(0)

Article outline

Figures and Tables

Figures(1)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog