Citation: Ailing Zhu, Yixin Wang, Qiang Xu. A weak Galerkin finite element approximation of two-dimensional sub-diffusion equation with time-fractional derivative[J]. AIMS Mathematics, 2020, 5(5): 4297-4310. doi: 10.3934/math.2020274
[1] | T. Zhang, L. Xiong, Periodic motion for impulsive fractional functional differential equations with piecewise Caputo derivative, Appl. Math. Lett., 101 (2020), 106072. |
[2] | R. Metzler, J. H. Jeon, A. G. Cherstvy, et al. Anomalous diffusion models and their properties: Non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking, Phys. Chem. Chem. Phys., 16 (2014), 24128-24164. doi: 10.1039/C4CP03465A |
[3] | R. Metzler, J. Klafter, The random walk's guide to anomalous diffusion: A fractional dynamics approach, Phys. Rep., 339 (2000), 1-77. doi: 10.1016/S0370-1573(00)00070-3 |
[4] | Z. Z. Sun, X. Wu, A fully discrete difference scheme for a diffusion-wave system, Appl. Numer. Math., 56 (2006), 193-209. doi: 10.1016/j.apnum.2005.03.003 |
[5] | A. A. Alikhanov, Numerical methods of solutions of boundary value problems for the multi-term variable-distributed order diffusion equation, Appl. Math. Comput., 268 (2015), 12-22. |
[6] | C. M. Chen, F. Liu, V. Anh, et al. Numerical schemes with high spatial accuracy for a variableorder anomalous subdiffusion equations, SIAM J. Sci. Comput., 32 (2010), 1740-1760. doi: 10.1137/090771715 |
[7] | G. H. Gao, Z. Z. Sun, A compact finite difference scheme for the fractional sub-diffusion equations, J. Comput. Phys., 230 (2011), 586-595. doi: 10.1016/j.jcp.2010.10.007 |
[8] | B. Jin, R. Lazarov, Y. Liu, et al. The Galerkin finite element method for a multi-term time-fractional diffusion equation, J. Comput. Phys., 281 (2015), 825-843. doi: 10.1016/j.jcp.2014.10.051 |
[9] | B. Jin, Z. Zhou, An analysis of Galerkin proper orthogonal decomposition for subdiffusion, ESAIM: Math. Model. Numer. Anal., 51 (2017), 89-113. doi: 10.1051/m2an/2016017 |
[10] | H. W. Li, X. Wu, J. Zhang, Numerical solution of the time-fractional sub-diffusion equation on an unbounded domain in two-dimensional space, East Asian J. Appl. Math., 7 (2017), 439-454. doi: 10.4208/eajam.031116.080317a |
[11] | Y. Lin, C. Xu, Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys., 225 (2007), 1533-1552. doi: 10.1016/j.jcp.2007.02.001 |
[12] | J. Ren, Z. Z. Sun, X. Zhao, Compact difference scheme for the fractional sub-diffusion equation with Neumann boundary conditions, J. Comput. Phys., 232 (2013), 456-467. doi: 10.1016/j.jcp.2012.08.026 |
[13] | F. L. Wang, F. Liu, Y. M. Zhao, et al. A novel approach of high accuracy analysis of anisotropic bilinear finite element for time-fractional diffusion equations with variable coefficient, Comput. Math. Appl., 75 (2018), 3786-3800. doi: 10.1016/j.camwa.2018.02.030 |
[14] | C. Li, Z. Zhao, Y. Chen, Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion, Comput. Math. Appl., 62 (2011), 855-875. doi: 10.1016/j.camwa.2011.02.045 |
[15] | C. Zhang, H. Liu, Z. J. Zhou, A priori error analysis for time-stepping discontinuous galerkin finite element approximation of time fractional optimal control problem, J. Sci. Comput., 80 (2019), 993-1018. doi: 10.1007/s10915-019-00964-9 |
[16] | Z. J. Zhou, W. Gong, Finite element approximation of optimal control problems governed by time fractional diffusion equation, Comput. Math. Appl., 71 (2016), 301-318. doi: 10.1016/j.camwa.2015.11.014 |
[17] | Z. J. Zhou, C. Zhang, Time-stepping discontinuous Galerkin approximation of optimal control problem governed by time fractional diffusion equation, Numer. Algorithms, 79 (2018), 437-455. doi: 10.1007/s11075-017-0445-3 |
[18] | J. Wang, X. Ye, A weak Galerkin finite element method for second-order elliptic problems, J. Comput. Appl. Math., 241 (2013), 103-115. doi: 10.1016/j.cam.2012.10.003 |
[19] | Q. H. Li, J. Wang, Weak Galerkin finite element methods for parabolic equations, Numer. Methods Partial Differential Equations, 29 (2013), 2004-2024. |
[20] | L. Mu, J. Wang, G. Wei, et al. Weak Galerkin methods for second order elliptic interface problems, J. Comput. Phys., 250 (2013), 106-125. doi: 10.1016/j.jcp.2013.04.042 |
[21] | L. Mu, J. Wang, X. Ye, Weak Galerkin finite element methods for the biharmonic equation on polytopal meshes, Numer. Methods Partial Differential Equations, 30 (2014), 1003-1029. doi: 10.1002/num.21855 |
[22] | C. Wang, J. Wang, A hybridized weak Galerkin finite element method for the biharmonic equation, Int. J. Numer. Anal. Model., 12 (2015), 302-317. |
[23] | L. Mu, J. Wang, X. Ye, et al. A weak Galerkin finite element method for the Maxwell equations, J. Sci. Comput., 65 (2015), 363-386. doi: 10.1007/s10915-014-9964-4 |
[24] | J. Wang, X. Ye, A weak Galerkin finite element method for the Stokes equations, Adv. Comput. Math., 42 (2016), 155-174. doi: 10.1007/s10444-015-9415-2 |
[25] | X. Li, Q. Xu, A. Zhu, Weak Galerkin mixed finite element methods for parabolic equations with memory, Discrete Contin. Dyn. Syst. Ser. S, 12 (2019), 513-531. |
[26] | A. Zhu, T. Xu, Q. Xu, Weak Galerkin finite element methods for linear parabolic integrodifferential equations, Numer. Methods Partial Differential Equations, 32 (2016), 1357-1377. doi: 10.1002/num.22053 |
[27] | J. Wang, Q. Zhai, R. Zhang, et al. A weak Galerkin finite element scheme for the Cahn-Hilliard equation, Math. Comput., 88 (2019), 211-235. |
[28] | J. Zhou, D. Xu, H. B. Chen, A weak Galerkin finite element method for multi-term time-fractional diffusion equations, East Asian J. Appl. Math., 8 (2018), 181-193. doi: 10.4208/eajam.260617.151117a |
[29] | T. A. M. Langlands, B. I. Henry, The accuracy and stability of an implicit solution method for the fractional diffusion equation, J. Comput. Phys., 205 (2005), 719-736. doi: 10.1016/j.jcp.2004.11.025 |
[30] | D. A. Murio, Implicit finite difference approximation for time fractional diffusion equations, Comput. Math. Appl., 56 (2008), 1138-1145. doi: 10.1016/j.camwa.2008.02.015 |
[31] | P. A. Raviart, J. M. Thomas, A mixed finite element method for second order elliptic problems, In: I. Galligani, E. Magenes, Mathematical Aspects of the Finite Element Method, Berlin: Springer Press, 1977. |