Citation: Hui Yang, Yi Shi. $L$-biconvex sets on some fuzzy algebraic substructures[J]. AIMS Mathematics, 2020, 5(5): 4311-4321. doi: 10.3934/math.2020275
[1] | M. van de Vel, Theory of Convex Structures, North-Holland, Amsterdam, 1993. |
[2] | M. V. Rosa, On fuzzy topology fuzzy convexity spaces and fuzzy local convexity, Fuzzy Sets Syst., 62 (1994), 97-100. doi: 10.1016/0165-0114(94)90076-0 |
[3] | Q. Jin, L. Q. Li, On the embedding of L-convex spaces in stratified L-convex spaces, SpringerPlus, 5 (2016), 1610. |
[4] | B. Pang, F. G. Shi, Subcategories of the category of L-convex spaces, Fuzzy Sets Syst., 313 (2017), 61-74. doi: 10.1016/j.fss.2016.02.014 |
[5] | C. Shen, F. G. Shi, Characterizations of L-convex spaces via domain theory, Fuzzy Sets Syst., 380 (2020), 44-63. doi: 10.1016/j.fss.2019.02.009 |
[6] | B. Pang, F. G. Shi, Fuzzy counterparts of hull spaces and interval spaces in the framework of L-convex spaces, Fuzzy Sets Syst., 369 (2019), 20-39. doi: 10.1016/j.fss.2018.05.012 |
[7] | B. Pang, Z. Y. Xiu, An axiomatic approach to bases and subbases in L-convex spaces and their applications, Fuzzy Sets Syst., 369 (2019), 40-56. doi: 10.1016/j.fss.2018.08.002 |
[8] | F. G. Shi, Z. Y. Xiu, A new approach to the fuzzification of convex structures, J. Appl. Anal., 2014 (2014), 1-12. |
[9] | F. G. Shi, Z. Y. Xiu, (L, M)-fuzzy convex structures, J. Nonlinear Sci. Appl., 10 (2017), 3655-3669. doi: 10.22436/jnsa.010.07.25 |
[10] | B. Pang, Hull operators and interval operators in the (L, M)-fuzzy convex spaces, Fuzzy Sets Syst., 2019, DOI: 10.1016/j.fss.2019.11.010. |
[11] | B. Pang, Bases and subbases in (L, M)-fuzzy convex spaces, Comput. Appl. Math., 39 (2020), 41. |
[12] | C. Y. Liang, F. H. Li, A degree approach to separation axioms in M-fuzzifying convex spaces, J. Intell. Fuzzy Syst., 36 (2019), 2885-2893. doi: 10.3233/JIFS-171361 |
[13] | C. Y. Liang, F. H. Li, J. Zhang, Separation axioms in (L, M)-fuzzy convex spaces, J. Intell. Fuzzy Syst., 36 (2019), 3649-3660. doi: 10.3233/JIFS-181772 |
[14] | Z. Y. Xiu, Q. H. Li, B. Pang, Fuzzy convergence structures in the framework of L-convex spaces, Iran. J. Fuzzy Syst., 2020, DOI:10.22111/IJFS.2020.5232. |
[15] | D. W. Pei, The characterization of residuated lattices and regular residuated lattices, Acta Mathematica Sinica, 45 (2002), 271-278. (In Chinese) |
[16] | Y. Maruyama, Lattice-valued fuzzy convex geometry, RIMS Kokyuroku, 1641 (2009), 22-37. |
[17] | N. Ajmal, K. V. Thomas, Fuzzy lattice, Inform. Sci., 79 (1994), 271-291. doi: 10.1016/0020-0255(94)90124-4 |
[18] | Y. Zhong, F. G. Shi, Formulations of L-convex hulls on some algebraic structures, J. Intell. Fuzzy Syst., 33 (2017), 1-11. doi: 10.3233/JIFS-15982 |
[19] | J. Jiménez, S. Montes, B. Šešeljia, et al. On lattice valued upsets and down-sets, Fuzzy Sets Syst., 161 (2010), 1699-1710. doi: 10.1016/j.fss.2009.11.012 |
[20] | Y. Bo, W. W. Ming, Fuzzy ideals on a distributive lattice, Fuzzy Sets Syst., 35 (1990), 231-240. doi: 10.1016/0165-0114(90)90196-D |
[21] | G. Birkhoff, Lattice Theory, American Mathematical Society, Providence RI, 1967. |
[22] | B. A. Davey, H. A. Priestley, Introduction to Lattice and Order (2 Eds.), Cambridge: Cambridge University Press, 2002. |
[23] | M. Bhowmik, T. Senapati, M. Pal, Intuitionistic L-fuzzy ideals of BG-algebras, Afr. Mat., 25 (2014), 577-590. doi: 10.1007/s13370-013-0139-5 |
[24] | C. Janab, M. Pal, T. Senapatia, et al. Atanassov0s Intuitionistic L-fuzzy G-subalgebras of Galgebras, J. Fuzzy Math., 23 (2015), 325-340. |
[25] | J. Meng, Y. B. Jun, BCK-Algebras, Kyung Moon Sa Co., Seoul, Korea, 1994. |
[26] | T. Senapatia, C. Janab, M. Bhowmikc, et al. L-fuzzy G-subalgebras of G-algebras, J. Egypt. Math. Soc., 23 (2015), 219-223. doi: 10.1016/j.joems.2014.05.010 |