Review Topical Sections

Homeostatic proliferation as a physiological process and a risk factor for autoimmune pathology

  • Received: 10 November 2020 Accepted: 23 December 2020 Published: 24 December 2020
  • The most important functions of the immune system are the guarantee of multicellularity, the maintenance of genetic homeostasis, and the protection of the organism from various infectious agents. The maintenance of homeostasis within the immune system also plays an important role in the normal functioning of the organism and is realized through several mechanisms. For example, after the resolution of the immune response, the excessive amount of lymphocytes is eliminated via apoptosis due to the competition for the survival factors and because of the lack of specific stimulation, and the excessive amount of antibodies is corrected by idiotype–anti-idiotype interactions. The restoration and maintenance of the lymphocyte count are performed due to the migration from the bone marrow and thymus and the process of homeostatic proliferation that plays the most important role (after the involution of the thymus) for T-lymphocytes. Because of the non-uniformity of the definitions that are met in the published literature, the authors provide the definition of the process of homeostatic proliferation of T-lymphocytes that will be used further in the text. Homeostatic proliferation (HP) is a physiological process to restoration of the peripheral T-lymphocyte pool after lymphopenia of any etiology through the antigen-specific proliferation of lymphocytes under the influence of IL-7 and IL-15, which can acquire pathological features depending on the severity of lymphopenia. Homeostatic proliferation can be conventionally divided into a fast and slow type depending on its intensity. Although such division is highly conventional, there are certain physiological peculiarities of fast and slow HP that can influence the functioning of the immune system, change the T-cell receptor landscape, and lead to the development of pathologies. It is worth noting that fast HP predominantly involves memory effector T-cells, while slow HP also influences naive T-cells. In the present review, the authors discuss the most important physiological and pathological aspects of the homeostatic proliferation of T-lymphocytes.

    Citation: Daniil Shevyrev, Valeriy Tereshchenko, Olesya Manova, Vladimir kozlov. Homeostatic proliferation as a physiological process and a risk factor for autoimmune pathology[J]. AIMS Allergy and Immunology, 2021, 5(1): 18-32. doi: 10.3934/Allergy.2021002

    Related Papers:

  • The most important functions of the immune system are the guarantee of multicellularity, the maintenance of genetic homeostasis, and the protection of the organism from various infectious agents. The maintenance of homeostasis within the immune system also plays an important role in the normal functioning of the organism and is realized through several mechanisms. For example, after the resolution of the immune response, the excessive amount of lymphocytes is eliminated via apoptosis due to the competition for the survival factors and because of the lack of specific stimulation, and the excessive amount of antibodies is corrected by idiotype–anti-idiotype interactions. The restoration and maintenance of the lymphocyte count are performed due to the migration from the bone marrow and thymus and the process of homeostatic proliferation that plays the most important role (after the involution of the thymus) for T-lymphocytes. Because of the non-uniformity of the definitions that are met in the published literature, the authors provide the definition of the process of homeostatic proliferation of T-lymphocytes that will be used further in the text. Homeostatic proliferation (HP) is a physiological process to restoration of the peripheral T-lymphocyte pool after lymphopenia of any etiology through the antigen-specific proliferation of lymphocytes under the influence of IL-7 and IL-15, which can acquire pathological features depending on the severity of lymphopenia. Homeostatic proliferation can be conventionally divided into a fast and slow type depending on its intensity. Although such division is highly conventional, there are certain physiological peculiarities of fast and slow HP that can influence the functioning of the immune system, change the T-cell receptor landscape, and lead to the development of pathologies. It is worth noting that fast HP predominantly involves memory effector T-cells, while slow HP also influences naive T-cells. In the present review, the authors discuss the most important physiological and pathological aspects of the homeostatic proliferation of T-lymphocytes.


    加载中


    Conflict of interests



    All authors declare no conflicts of interest in this paper.

    [1] Sprent J, Tough DF (1994) Lymphocyte life-span and memory. Science 265: 1395-1400. doi: 10.1126/science.8073282
    [2] Jamieson BD, Douek DC, Killian S, et al. (1999) Generation of functional thymocytes in the human adult. Immunity 10: 569-575. doi: 10.1016/S1074-7613(00)80056-4
    [3] Moxham VF, Karegli J, Phillips RE, et al. (2008) Homeostatic proliferation of lymphocytes results in augmented memory-like function and accelerated allograft rejection. J Immunol 180: 3910-3918. doi: 10.4049/jimmunol.180.6.3910
    [4] den Braber I, Mugwagwa T, Vrisekoop N, et al. (2012) Maintenance of peripheral naive T cells is sustained by thymus output in mice but not humans. Immunity 36: 288-297. doi: 10.1016/j.immuni.2012.02.006
    [5] Kozlov VA (2014) Homeostatic proliferation as a basis for the inevitable formation of total immunodeficiency. Med Immunol (Russia) 16: 403-408. doi: 10.15789/1563-0625-2014-5-403-408
    [6] Dummer W, Ernst B, LeRoy E, et al. (2001) Autologous regulation of naive T cell homeostasis within the T cell compartment. J Immunol 166: 2460-2468. doi: 10.4049/jimmunol.166.4.2460
    [7] Chalasani G, Dai Z, Konieczny BT, et al. (2002) Recall and propagation of allospecific memory T cells independent of secondary lymphoid organs. P Natl Acad Sci USA 99: 6175-6180. doi: 10.1073/pnas.092596999
    [8] Miller CN, Hartigan-O'Connor DJ, Lee MS, et al. (2013) IL-7 production in murine lymphatic endothelial cells and induction in the setting of peripheral lymphopenia. Int Immunol 25: 471-483. doi: 10.1093/intimm/dxt012
    [9] Anthony SM, Rivas SC, Colpitts SL, et al. (2016) Inflammatory signals regulate IL-15 in response to lymphodepletion. J Immunol 196: 4544-4552. doi: 10.4049/jimmunol.1600219
    [10] Ge Q, Rao VP, Cho BK, et al. (2001) Dependence of lymphopenia-induced T cell proliferation on the abundance of peptide/MHC epitopes and strength of their interaction with T cell receptors. Proc Natl Acad Sci USA 98: 1728-1733. doi: 10.1073/pnas.98.4.1728
    [11] Yamaki S, Ine S, Kawabe T, et al. (2014) OX40 and IL-7 play synergistic roles in the homeostatic proliferation of effector memory CD4+ T cells. Eur J Immunol 44: 3015-3025. doi: 10.1002/eji.201444701
    [12] Li O, Zheng P, Liu Y (2004) CD24 expression on T cells is required for optimal T cell proliferation in lymphopenic host. J Exp Med 200: 1083-1089. doi: 10.1084/jem.20040779
    [13] Min B, Yamane H, Hu-Li J, et al. (2005) Spontaneous and homeostatic proliferation of CD4 T cells are regulated by different mechanisms. J Immunol 174: 6039-6044. doi: 10.4049/jimmunol.174.10.6039
    [14] Ge Q, Rao VP, Cho BK, et al. (2001) Dependence of lymphopenia-induced T cell proliferation on the abundance of peptide/MHC epitopes and strength of their interaction with T cell receptors. Proc Natl Acad Sci USA 98: 1728-1733. doi: 10.1073/pnas.98.4.1728
    [15] Theofilopoulos AN, Dummer W, Kono DH (2001) T cell homeostasis and systemic autoimmunity. J Clin Invest 108: 335-340. doi: 10.1172/JCI200112173
    [16] Kassiotis G, Zamoyska R, Stockinger B (2003) Involvement of avidity for major histocompatibility complex in homeostasis of naive and memory T cells. J Exp Med 197: 1007-1016. doi: 10.1084/jem.20021812
    [17] Kieper WC, Burghardt JT, Surh CD (2004) A role for TCR affinity in regulating naive T cell homeostasis. J Immunol 172: 40-44. doi: 10.4049/jimmunol.172.1.40
    [18] Goldrath AW, Bogatzki LY, Bevan MJ (2000) Naive T cells transiently acquire a memory-like phenotype during homeostasis-driven proliferation. J Exp Med 192: 557-564. doi: 10.1084/jem.192.4.557
    [19] Klein L, Kyewski B, Allen PM, et al. (2014) Positive and negative selection of the T cell repertoire: what thymocytes see (and don't see). Nat Rev Immunol 14: 377-391. doi: 10.1038/nri3667
    [20] Dolton G, Zervoudi E, Rius C, et al. (2018) Optimized peptide-MHC multimer protocols for detection and isolation of autoimmune T-Cells. Front Immunol 9: 1378. doi: 10.3389/fimmu.2018.01378
    [21] Enouz S, Carrié L, Merkler D, et al. (2012) Autoreactive T cells bypass negative selection and respond to self-antigen stimulation during infection. J Exp Med 209: 1769-1779. doi: 10.1084/jem.20120905
    [22] Yan J, Mamula MJ (2002) Autoreactive T cells revealed in the normal repertoire: escape from negative selection and peripheral tolerance. J Immunol 168: 3188-3194. doi: 10.4049/jimmunol.168.7.3188
    [23] Boehncke WH, Brembilla NC (2019) Autoreactive T-lymphocytes in inflammatory skin diseases. Front Immunol 10: 1198. doi: 10.3389/fimmu.2019.01198
    [24] Koehli S, Naeher D, Galati-Fournier V, et al. (2014) Optimal T-cell receptor affinity for inducing autoimmunity. Proc Natl Acad Sci USA 111: 17248-17253. doi: 10.1073/pnas.1402724111
    [25] Mueller DL (2010) Mechanisms maintaining peripheral tolerance. Nat Immunol 11: 21-27. doi: 10.1038/ni.1817
    [26] Vrisekoop N, Monteiro JP, Mandl JN, et al. (2014) Revisiting thymic positive selection and the mature T cell repertoire for antigen. Immunity 41: 181-190. doi: 10.1016/j.immuni.2014.07.007
    [27] Qi Q, Liu Y, Cheng Y, et al. (2014) Diversity and clonal selection in the human T-cell repertoire. Proc Natl Acad Sci USA 111: 13139-13144. doi: 10.1073/pnas.1409155111
    [28] Zheng SG, Wang J, Wang P, et al. (2007) IL-2 is essential for TGF-beta to convert naive CD4+CD25 cells to CD25+Foxp3+ regulatory T cells and for expansion of these cells. J Immunol 178: 2018-2027. doi: 10.4049/jimmunol.178.4.2018
    [29] Pacholczyk R, Ignatowicz H, Kraj P, et al. (2006) Origin and T cell receptor diversity of Foxp3+CD4+CD25+ T cells. Immunity 25: 249-259. doi: 10.1016/j.immuni.2006.05.016
    [30] Wyss L, Stadinski BD, King CG, et al. (2016) Affinity for self-antigen selects Treg cells with distinct functional properties. Nat Immunol 17: 1093-1101. doi: 10.1038/ni.3522
    [31] Bolotin DA, Poslavsky S, Davydov AN, et al. (2017) Antigen receptor repertoire profiling from RNA-seq data. Nat Biotechnol 35: 908-911. doi: 10.1038/nbt.3979
    [32] Jörg S, Grohme DA, Erzler M, et al. (2016) Environmental factors in autoimmune diseases and their role in multiple sclerosis. Cell Mol Life Sci 73: 4611-4622. doi: 10.1007/s00018-016-2311-1
    [33] Ting YT, Petersen J, Ramarathinam SH, et al. (2018) The interplay between citrullination and HLA-DRB1 polymorphism in shaping peptide binding hierarchies in rheumatoid arthritis. J Biol Chem 293: 3236-3251. doi: 10.1074/jbc.RA117.001013
    [34] Schulze-Koops H (2004) Lymphopenia and autoimmune diseases. Arthritis Res Ther 6: 178-180. doi: 10.1186/ar1208
    [35] Symmons DP, Farr M, Salmon M, et al. (1989) Lymphopenia in rheumatoid arthritis. J R Soc Med 82: 462-463. doi: 10.1177/014107688908200806
    [36] Jones JL, Thompson SA, Loh P, et al. (2013) Human autoimmunity after lymphocyte depletion is caused by homeostatic T-cell proliferation. Proc Natl Acad Sci USA 110: 20200-20205. doi: 10.1073/pnas.1313654110
    [37] Koetz K, Bryl E, Spickschen K, et al. (2000) T cell homeostasis in patients with rheumatoid arthritis. Proc Natl Acad Sci USA 97: 9203-9208. doi: 10.1073/pnas.97.16.9203
    [38] Virot E, Duclos A, Adelaide L, et al. (2017) Autoimmune diseases and HIV infection: A cross-sectional study. Medicine (Baltimore) 96: e5769. doi: 10.1097/MD.0000000000005769
    [39] Jerne NK (1974) Towards a network theory of the immune system. Ann Immunol (Paris) 125: 373-389.
    [40] Ernst B, Lee DS, Chang JM, et al. (1999) The peptide ligands mediating positive selection in the thymus control T cell survival and homeostatic proliferation in the periphery. Immunity 11: 173-181. doi: 10.1016/S1074-7613(00)80092-8
    [41] Milam AAV, Bartleson JM, Buck MD, et al. (2020) Tonic TCR signaling inversely regulates the basal metabolism of CD4+ T cells. ImmunoHorizons 4: 485-497. doi: 10.4049/immunohorizons.2000055
    [42] Hochweller K, Wabnitz GH, Samstag Y, et al. (2010) Dendritic cells control T cell tonic signaling required for responsiveness to foreign antigen. Proc Natl Acad Sci USA 107: 5931-5936. doi: 10.1073/pnas.0911877107
    [43] Stefanová I, Dorfman JR, Germain RN (2002) Self-recognition promotes the foreign antigen sensitivity of naive T lymphocytes. Nature 420: 429-434. doi: 10.1038/nature01146
    [44] Miller CN, Hartigan-O'Connor DJ, Lee MS, et al. (2013) IL-7 production in murine lymphatic endothelial cells and induction in the setting of peripheral lymphopenia. Int Immunol 25: 471-483. doi: 10.1093/intimm/dxt012
    [45] Saeed S, Revell PA (2001) Production and distribution of interleukin 15 and its receptors (IL-15Ralpha and IL-R2beta) in the implant interface tissues obtained during revision of failed total joint replacement. Int J Exp Pathol 82: 201-209. doi: 10.1111/j.1365-2613.2001.iep185.x
    [46] Regamey N, Obregon C, Ferrari-Lacraz S, et al. (2007) Airway epithelial IL-15 transforms monocytes into dendritic cells. Am J Respir Cell Mol Biol 37: 75-84. doi: 10.1165/rcmb.2006-0235OC
    [47] Park CS, Yoon SO, Armitage RJ, et al. (2004) Follicular dendritic cells produce IL-15 that enhances germinal center B cell proliferation in membrane-bound form. J Immunol 173: 6676-6683. doi: 10.4049/jimmunol.173.11.6676
    [48] Niu N, Qin X (2013) New insights into IL-7 signaling pathways during early and late T cell development. Cell Mol Immunol 10: 187-189. doi: 10.1038/cmi.2013.11
    [49] Mishra A, Sullivan L, Caligiuri MA (2014) Molecular pathways: interleukin-15 signaling in health and in cancer. Clin Cancer Res 20: 2044-2050. doi: 10.1158/1078-0432.CCR-12-3603
    [50] Tan JT, Ernst B, Kieper WC, et al. (2002) Interleukin (IL)-15 and IL-7 jointly regulate homeostatic proliferation of memory phenotype CD8+ cells but are not required for memory phenotype CD4+ cells. J Exp Med 195: 1523-1532. doi: 10.1084/jem.20020066
    [51] Do JS, Visperas A, Oh K, et al. (2012) Memory CD4 T cells induce selective expression of IL-27 in CD8+ dendritic cells and regulate homeostatic naive T cell proliferation. J Immunol 188: 230-237. doi: 10.4049/jimmunol.1101908
    [52] Lenz DC, Kurz SK, Lemmens E, et al. (2004) IL-7 regulates basal homeostatic proliferation of antiviral CD4+ T cell memory. Proc Natl Acad Sci USA 101: 9357-9362. doi: 10.1073/pnas.0400640101
    [53] Berard M, Brandt K, Bulfone-Paus S, et al. (2003) IL-15 promotes the survival of naive and memory phenotype CD8+ T cells. J Immunol 170: 5018-5026. doi: 10.4049/jimmunol.170.10.5018
    [54] Prlic M, Blazar BR, Khoruts A, et al. (2001) Homeostatic expansion occurs independently of costimulatory signals. J Immunol 167: 5664-5668. doi: 10.4049/jimmunol.167.10.5664
    [55] Do JS, Min B (2009) Differential requirements of MHC and of DCs for endogenous proliferation of different T-cell subsets in vivo. Proc Natl Acad Sci USA 106: 20394-20398. doi: 10.1073/pnas.0909954106
    [56] Hawse WF, Cattley RT (2019) T cells transduce T-cell receptor signal strength by generating different phosphatidylinositols. J Biol Chem 294: 4793-4805. doi: 10.1074/jbc.RA118.006524
    [57] Cosway EJ, Lucas B, James KD, et al. (2017) Redefining thymus medulla specialization for central tolerance. J Exp Med 214: 3183-3195. doi: 10.1084/jem.20171000
    [58] Logunova NN, Kriukova VV, Shelyakin PV, et al. (2020) MHC-II alleles shape the CDR3 repertoires of conventional and regulatory naïve CD4+ T cells. Proc Natl Acad Sci USA 117: 13659-13669. doi: 10.1073/pnas.2003170117
    [59] Kieper WC, Troy A, Burghardt JT, et al. (2005) Recent immune status determines the source of antigens that drive homeostatic T cell expansion. J Immunol 174: 3158-3163. doi: 10.4049/jimmunol.174.6.3158
    [60] Do JS, Foucras G, Kamada N, et al. (2012) Both exogenous commensal and endogenous self antigens stimulate T cell proliferation under lymphopenic conditions. Cell Immunol 272: 117-123. doi: 10.1016/j.cellimm.2011.11.002
    [61] Min B (2018) Spontaneous T cell proliferation: A physiologic process to create and maintain homeostatic balance and diversity of the immune system. Front Immunol 9: 547. doi: 10.3389/fimmu.2018.00547
    [62] Schluns KS, Kieper WC, Jameson SC, et al. (2000) Interleukin-7 mediates the homeostasis of naïve and memory CD8 T cells in vivo. Nat Immunol 1: 426-432. doi: 10.1038/80868
    [63] Ku CC, Murakami M, Sakamoto A, et al. (2000) Control of homeostasis of CD8+ memory T cells by opposing cytokines. Science 288: 675-678. doi: 10.1126/science.288.5466.675
    [64] Tan JT, Dudl E, LeRoy E, et al. (2001) IL-7 is critical for homeostatic proliferation and survival of naive T cells. Proc Natl Acad Sci USA 98: 8732-8737. doi: 10.1073/pnas.161126098
    [65] Goldrath AW, Sivakumar PV, Glaccum M, et al. (2002) Cytokine requirements for acute and Basal homeostatic proliferation of naive and memory CD8+ T cells. J Exp Med 195: 1515-1522. doi: 10.1084/jem.20020033
    [66] Troy AE, Shen H (2003) Cutting edge: homeostatic proliferation of peripheral T lymphocytes is regulated by clonal competition. J Immunol 170: 672-676. doi: 10.4049/jimmunol.170.2.672
    [67] Min B, Foucras G, Meier-Schellersheim M, et al. (2004) Spontaneous proliferation, a response of naive CD4 T cells determined by the diversity of the memory cell repertoire. Proc Natl Acad Sci USA 101: 3874-3879. doi: 10.1073/pnas.0400606101
    [68] Kawabe T, Sun SL, Fujita T, et al. (2013) Homeostatic proliferation of naive CD4+ T cells in mesenteric lymph nodes generates gut-tropic Th17 cells. J Immunol 190: 5788-5798. doi: 10.4049/jimmunol.1203111
    [69] Dummer W, Niethammer AG, Baccala R, et al. (2002) T cell homeostatic proliferation elicits effective antitumor autoimmunity. J Clin Invest 110: 185-192. doi: 10.1172/JCI0215175
    [70] Jones JL, Thompson SA, Loh P, et al. (2013) Human autoimmunity after lymphocyte depletion is caused by homeostatic T-cell proliferation. Proc Natl Acad Sci USA 110: 20200-20205. doi: 10.1073/pnas.1313654110
    [71] Koetz K, Bryl E, Spickschen K, et al. (2000) T cell homeostasis in patients with rheumatoid arthritis. Proc Natl Acad Sci USA 97: 9203-9208. doi: 10.1073/pnas.97.16.9203
    [72] Arruda LCM, Lima-Júnior JR, Clave E, et al. (2018) Homeostatic proliferation leads to telomere attrition and increased PD-1 expression after autologous hematopoietic SCT for systemic sclerosis. Bone Marrow Transpl 53: 1319-1327. doi: 10.1038/s41409-018-0162-0
    [73] O'Bryan JM, Woda M, Co M, et al. (2013) Telomere length dynamics in human memory T cells specific for viruses causing acute or latent infections. Immun Ageing 10: 37. doi: 10.1186/1742-4933-10-37
    [74] Fortner KA, Bond JP, Austin JW, et al. (2017) The molecular signature of murine T cell homeostatic proliferation reveals both inflammatory and immune inhibition patterns. J Autoimmun 82: 47-61. doi: 10.1016/j.jaut.2017.05.003
    [75] Scharer CD, Fortner KA, Dragon JA, et al. (2020) Selective DNA demethylation accompanies T cell homeostatic proliferation and gene regulation in lupus-prone lpr mice. ImmunoHorizons 4: 679-687. doi: 10.4049/immunohorizons.2000078
    [76] Sakaguchi S, Yamaguchi T, Nomura T, et al. (2008) Regulatory T cells and immune tolerance. Cell 133: 775-787. doi: 10.1016/j.cell.2008.05.009
    [77] Shevyrev D, Tereshchenko V (2020) Treg heterogeneity, function, and homeostasis. Front Immunol 10: 3100. doi: 10.3389/fimmu.2019.03100
    [78] Tang AL, Teijaro JR, Njau MN, et al. (2008) CTLA4 expression is an indicator and regulator of steady-state CD4+ FoxP3+ T cell homeostasis. J Immunol 181: 1806-1813. doi: 10.4049/jimmunol.181.3.1806
    [79] Chen Y, Shen S, Gorentla BK, et al. (2012) Murine regulatory T cells contain hyperproliferative and death-prone subsets with differential ICOS expression. J Immunol 188: 1698-1707. doi: 10.4049/jimmunol.1102448
    [80] Sojka DK, Hughson A, Fowell DJ (2009) CTLA-4 is required by CD4+CD25+ Treg to control CD4+ T-cell lymphopenia-induced proliferation. Eur J Immunol 39: 1544-1551. doi: 10.1002/eji.200838603
    [81] Bolton HA, Zhu E, Terry AM, et al. (2015) Selective Treg reconstitution during lymphopenia normalizes DC costimulation and prevents graft-versus-host disease. J Clin Invest 125: 3627-3641. doi: 10.1172/JCI76031
    [82] Winstead CJ, Fraser JM, Khoruts A (2008) Regulatory CD4+CD25+Foxp3+ T cells selectively inhibit the spontaneous form of lymphopenia-induced proliferation of naive T cells. J Immunol 180: 7305-7317. doi: 10.4049/jimmunol.180.11.7305
    [83] Ben Ahmed M, Belhadj Hmida N, Moes N, et al. (2009) IL-15 renders conventional lymphocytes resistant to suppressive functions of regulatory T cells through activation of the phosphatidylinositol 3-kinase pathway. J Immunol 182: 6763-6770. doi: 10.4049/jimmunol.0801792
    [84] Heninger AK, Theil A, Wilhelm C, et al. (2012) IL-7 abrogates suppressive activity of human CD4+CD25+FOXP3+ regulatory T cells and allows expansion of alloreactive and autoreactive T cells. J Immunol 189: 5649-5658. doi: 10.4049/jimmunol.1201286
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4732) PDF downloads(333) Cited by(5)

Article outline

Figures and Tables

Figures(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog