Citation: Tingxi Wen, Hanxiao Wu, Yu Du, Chuanbo Huang. Faster R-CNN with improved anchor box for cell recognition[J]. Mathematical Biosciences and Engineering, 2020, 17(6): 7772-7786. doi: 10.3934/mbe.2020395
[1] | S. D. Olabarriaga, J. G. Snel, C. P. Botha, R. G. Belleman, Integrated support for medical image analysis methods: from development to clinical application, IEEE Trans. Inf. Technol. Biomed., 11 (2007), 47-57. doi: 10.1109/TITB.2006.874929 |
[2] | F. Yang, M. A. Mackey, F. Ianzini, G. M. Gallardo, M. Sonka, Segmentation and quantitative analysis of the living tumor cells using Large Scale Digital Cell Analysis System, Med. Imaging 2004: Image Proc., 5370 (2004), 1755-1763. doi: 10.1117/12.536771 |
[3] | A. M. Bilek, K. C. Dee, D. P. Gaver III, Mechanisms of surface-tension-induced epithelial cell damage in a model of pulmonary airway reopening, J. Appl. Physiol., 94 (2003), 770-783. |
[4] | K. Luby-Phelps, Cytoarchitecture and physical properties of cytoplasm: volume, viscosity, diffusion, intracellular surface area, Int. Rev. Cytol., 192 (2000), 189-221. |
[5] | A. Csiszár, B. Hoffmann, R. Merkel, Double-shell giant vesicles mimicking gram-negative cell wall behavior during dehydration, Langmuir, 25 (2009), 5753-5761. doi: 10.1021/la8041023 |
[6] | K. K. L. Wong, Three-dimensional discrete element method for the prediction of protoplasmic seepage through membrane in a biological cell, J. Biomech., 65 (2017), 115-124. doi: 10.1016/j.jbiomech.2017.10.023 |
[7] | K. K. L. Wong, G. Fortino, D. Abbott, Deep learning-based cardiovascular image diagnosis: a promising challenge, Future Gener. Comput. Syst., 110 (2020), 802-811. doi: 10.1016/j.future.2019.09.047 |
[8] | K. K. L Wong., J. Wu, G. Liu, W. Huang, D. N. Ghista, Coronary arteries hemodynamics: effect of arterial geometry on hemodynamic parameters causing atherosclerosis, Med. Biol. Eng. Comput., 2020. |
[9] | B. S., Gardiner, K. K. L. Wong, G. R. Joldes, A. J. Rich, C. W. Tan, A. W. Burgess, et al., Discrete element framework for modelling extracellular matrix, deformable cells and subcellular components, PLoS Comput. Biol., 11 (2015), e1004544. doi: 10.1371/journal.pcbi.1004544 |
[10] | R. G. Joldes, K. K. L. Wong, D. W. Smith, C. W. Tan, B. S. Gardiner, Controlling seepage in discrete particle simulations of biological systems, Comput. Methods Biomech. Biomed. Eng., 19 (2016), 1160-1170. doi: 10.1080/10255842.2015.1115022 |
[11] | K. Metze, R. C. Ferreira, R. L. Adam, Classification of thyroid follicular lesions based on nuclear texture features-Lesion size matters, Cytometry, 77 (2010), 1101-1102. |
[12] | J. Cui, J. X. Chen, Image-based clipping, U. S. Patent, 2007. |
[13] | J. Liu, B. Xu, L. Shen, J. Garibaldi, G. Qiu, HEp-2 cell classification based on a deep autoencoding-classification convolutional neural network, IEEE 14th Int. Symp. Biomed. Imaging(ISBL 2017), (2017), 1019-1023. |
[14] | S. M. Kang, J. W. L. Wan, A multiscale graph cut approach to bright-field multiple cell image segmentation using a Bhattacharyya measure, Med. Imaging 2013: Image Proc., 8669 (2013). |
[15] | Y. Chen, J. W. L. Wan, Bright-field cell image segmentation by principal component pursuit with an Ncut penalization, Med. Imaging 2015: Image Proc., 9413 (2015), 94133F. |
[16] | O. Ronneberger, P. Fischer, T. Brox, U-Net: convolutional networks for biomedical image segmentation, in International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer, Cham, (2015), 234-241. |
[17] | P. Naylor, M. Laé, F. Reyal, T. Walter, Segmentation of nuclei in histopathology images by deep regression of the distance map, IEEE Trans. Med. Imaging, 38 (2018), 448-459. |
[18] | F. Kromp, L. Fischer, E. Bozsaky, I. Ambros, W. Doerr, Taschner-Mandl S, Ambros P, Hanbury A. Deep Learning architectures for generalized immunofluorescence based nuclear image segmentation, preprint, arXiv: 1907.12975. |
[19] | Y. H. Huang, T. C. Yu, P. H. Tsai, Y. X. Wang, W. L. Yang, M. Ouhyoung, Scope+: a stereoscopic video see-through augmented reality microscope, in Adjunct Proceedings of the 28th Annual ACM Symposium on User Interface Software & Technology, (2015), 33-34. |
[20] | P. H. C. Chen, K. Gadepalli, R. MacDonald, Y. Liu, S. Kadowaki, K. Nagpal, et al., An augmented reality microscope with real-time artificial intelligence integration for cancer diagnosis, Nat. Med., 25 (2019), 1453-1457. doi: 10.1038/s41591-019-0539-7 |
[21] | S. Ren, K. He, R. Girshick, J. Sun, Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks, in Advances in Neural Information Processing Systems, (2015), 91-99. |
[22] | I. Guyon, M. Nikravesh, S. Gunn, L. Zadeh, Feature Extraction, Springer Berlin Heidelberg, 2006. |
[23] | U. Orhan, M. Hekim, M. Ozer, EEG signals classification using the K-means clustering and a multilayer perceptron neural network model, Expert Syst. Appl., 38 (2011), 13475-13481. doi: 10.1016/j.eswa.2011.04.149 |
[24] | K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (2016), 770-778. |
[25] | X. Xie, X. Han, Q. Liao, G. Shi, Visualization and pruning of SSD with the base network VGG16, in International Conference on Deep Learning Technologies, (2017), 90-94. |