Citation: Yan Liu, Bingxue Lv, Yuheng Wang, Wei Huang. An end-to-end stereo matching algorithm based on improved convolutional neural network[J]. Mathematical Biosciences and Engineering, 2020, 17(6): 7787-7803. doi: 10.3934/mbe.2020396
[1] | S. He, Z. Li, Y. Tang, Z. Liao, F. Li, S. Lim, Parameters compressing in deep learning, Comput. Mater. Continua, 62 (2020), 321-336. doi: 10.32604/cmc.2020.06130 |
[2] | D. Zeng, Y. Dai, F. Li, J. Wang, A. K. Sangaiah, Aspect based sentiment analysis by a linguistically regularized CNN with gated mechanism, J. Intell. Fuzzy Syst., 36 (2019), 1-10. doi: 10.3233/JIFS-17063 |
[3] | R. Meng, S. G. Rice, J. Wang, X. Sun, A fusion steganographic algorithm based on faster R-CNN, Comput. Mater. Continua, 55 (2018), 1-16. |
[4] | S. Zhou, M. Ke, P. Luo, Multi-camera transfer GAN for person re-identification, J. Visual Commun. Image Repres., 59 (2019), 393-400. doi: 10.1016/j.jvcir.2019.01.029 |
[5] | Y. Song, G. Yang, H. Xie, D. Zhang, X. Sun, Residual domain dictionary learning for compressed sensing video recovery, Multimedia Tools Appl., 76 (2017), 10083-10096. doi: 10.1007/s11042-016-3599-4 |
[6] | W. Huang, Y. Xu, X. Hu, Compressive hyperspectral image reconstruction based on spatial‑spectral residual dense network, IEEE Geoence Remote Sens. Lett., 17 (2020), 884-888. |
[7] | J. Zhang, X. Jin, J. Sun, J. Wang, A. K. Sangaiah, Spatial and semantic convolutional features for robust visual object tracking, Multimedia Tools Appl., 79 (2020), 15095-15115. doi: 10.1007/s11042-018-6562-8 |
[8] | Z. Lu, B. Xu, L. Sun, T. Zhan, S. Tang, 3D channel and spatial attention based multi-scale spatial spectral residual network for hyperspectral image classification, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 13 (2020), 1-1. doi: 10.1109/JSTARS.2020.2968831 |
[9] | L. Sun, C. Ma, Y. Chen, Y. Zheng, H. J. Shim, Z. Wu, Low rank component induced spatial-spectral kernel method for hyperspectral image classification, IEEE Trans. Circuits Syst. Video Technol., 30 (2019), 1-1. |
[10] | W. Huang, Y. Huang, H. Wang, Local binary patterns and superpixel-based multiple kernels for hyperspectral image classification, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 13 (2020), 4550-4563. doi: 10.1109/JSTARS.2020.3014492 |
[11] | N. Sünderhauf, O. Brock, W. Scheirer, R. Hadsell, D. Fox, J. Leitner, et al., The Limits and potentials of deep learning for robotics, Int. J. Rob. Res., 37 (2018), 405-420. doi: 10.1177/0278364918770733 |
[12] | G. Giordano, M. Segata, F. Blanchini, R. L. Cigno, O. Altintas, C. Casetti, et al., A joint network/control design for cooperative automatic driving, IEEE Access, 2017. |
[13] | S. Belciug, F. Gorunescu, Error-correction learning for artificial neural networks using the bayesian paradigm. Application to automated medical diagnosis, J. Biomed. Inf., 52 (2014), 329-337. doi: 10.1016/j.jbi.2014.07.013 |
[14] | B. Sayed, I. Traoré, A. Abdelhalim, IF-Transpiler: inlining of hybrid flow-sensitive security monitor for javascript, Comput. Secur., 75 (2018), S0167404818300397. |
[15] | D. I. D. Han, M. C. T. Dieck, T. Jung, Augmented Reality Smart Glasses (ARSG) visitor adoption in cultural tourism, Leisure Stud., 38 (2019), 1-16. doi: 10.1080/02614367.2018.1515241 |
[16] | N. Sünderhauf, O. Brock, W. Scheirer, R. Hadsell, The limits and potentials of deep learning for robotics, Int. J. Rob. Res., 37 (2018), 405-420. doi: 10.1177/0278364918770733 |
[17] | L. Matthies, R. Brockers, Y. Kuwata, S. Weiss, Stereo vsion-based obstacle avoidance for micro air vehicles using disparity space, IEEE Int. Conf. Rob. Automation, (2014), 3242-3249 |
[18] | S. O. Escolano, C. Rhemann, S. R. Fanello, W. Chang, A. Kowdle, Y. Degtyarev, et al., Holoportation: virtual 3D teleportation in real-time, User Interface Software Technol. (2016), 741-754. |
[19] | C. Guindel, D. Martín, J. M. Armingol, Traffic scene awareness for intelligent vehicles using ConvNets and stereo vision, Rob. Auton. Syst., 112 (2019), 109-122. doi: 10.1016/j.robot.2018.11.010 |
[20] | Y. J. Lee, M. W. Park, 3D tracking of multiple onsite workers based on stereo vision, Autom.Constr., 98 (2019), 146-159. doi: 10.1016/j.autcon.2018.11.017 |
[21] | V. Gabelica, S. Livet, F. Rosu, Optimizing native ion mobility Q-TOF in helium and nitrogen for very fragile noncovalent interactions, J. Am. Soc. Mass Spectrom., 29 (2018), 2189-2198. doi: 10.1007/s13361-018-2029-4 |
[22] | N. Aslani, G. Janbabaei, M. Abastabar, J. F Meis, M. Babaeian, S. Khodavaisy, et al., Identification of uncommon oral yeasts from cancer patients by MALDI-TOF mass spectrometry, Bmc Infect. Dis., 18 (2018), 24. doi: 10.1186/s12879-017-2916-5 |
[23] | Z. Song, High-speed 3D shape measurement with structured light methods: A review, Opt. Lasers Eng., 106 (2018), 119-131. |
[24] | C. Jiang, B. Lim, S. Zhang, Three-dimensional shape measurement using a structured light system with dual projectors, Appl. Opt., 57 (2018), 3983. doi: 10.1364/AO.57.003983 |
[25] | L. Gang, H. Song, L. Chan, Matching algorithm and parallax extraction based on binocular stereo vision, Smart Innovations Commun. Comput. Sci., (2019), 347-355 |
[26] | A. L. Webber, J. M. Wood, B. Thompson, E. E Birch, From suppression to stereoacuity: a composite binocular function score for clinical research, Ophthalmic Physiol. Op., 39 (2019), 53-62. doi: 10.1111/opo.12599 |
[27] | Q. Xie, Q. Long, L. Zhang, Z. Sun, A robust real-time computing-based environment sensing system for intelligent vehicle, Comput. Vision Pattern Recognit., 2020. |
[28] | G. Zhang, D. Zhu, W. Shi, X.Ye, J. Li, X.Zhang, et al., Multi-dimensional residual dense attention network for stereo matching, IEEE Access, 7 (2019), 1-1. doi: 10.1109/ACCESS.2018.2876146 |
[29] | H. Y. Lai, Y. H. Tsai, W. C. Chiu, Bridging stereo matching and optical flow via spatiotemporal correspondence, IEEE Conf. Comput. Vision Pattern Recognit., (2019), 1890-1899. |
[30] | M. Ye, J. Li, A. J. Ma, L. Zheng, P. C. Yuen, Dynamic graph co-matching for unsupervised video-based person re-identification, IEEE Trans. Image Process., 28 (2019), 1-1. doi: 10.1109/TIP.2018.2877829 |
[31] | C. Le, L. Xin, Sparse3D: A new global model for matching sparse RGB-D dataset with small inter-frame overlap, Comput.-Aided Des., 102 (2018), S0010448518302276. |
[32] | A. Klaus, M. Sormann, K. Karner, Segment-based stereo matching using belief propagation and a self-adapting dissimilarity measure, IEEE Int. Conf. Pattern Recognit., 3 (2006), 15-18. |
[33] | D. Wang, H. Liu, X. Cheng, A miniature binocular endoscope with local feature matching and stereo matching for 3D measurement and 3D reconstruction, Sensing, 18 (2018), 2243. |
[34] | C. L. Mills, R. Garg, J. S. Lee, Functional classification of protein structures by local structure matching in graph representation, Protein Sci. Publ. Protein Soc., 27 (2018), 1125-1135. doi: 10.1002/pro.3416 |
[35] | Y. Anisimov, O. Wasenmüller, D. Stricker, Rapid light field depth estimation with semi-global matching, Comput. Vision Pattern Recognit., 2019. |
[36] | T. Y. Chuang, H. W. Ting, J. J. Jaw, Dense stereo matching with edge-constrained penalty tuning, IEEE Geosci. Remote Sens. Lett., 15 (2018), 1-5. doi: 10.1109/LGRS.2017.2781679 |
[37] | A. Seki, M. Pollefeys, Sgm-nets: Ssemi-global matching with neural networks, IEEE Conf. Comput. Vision Pattern Recognit., (2017), 231-240. |
[38] | J. bontar, Y. Lecun, Computing the stereo matching cost with a convolutional neural network, IEEE Conf. Comput. Vision Pattern Recognit., 2015. |
[39] | J. Žbontar, Y. Lecun, Stereo matching by training a convolutional neural network to compare image patches, Comput. Vision Pattern Recognit., 2015. |
[40] | N. Mayer, E. Ilg, P. Hausser, P. Fischer, D. Cremers, A.Dosovitskiy, et al., A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation, IEEE Comput. Vision Pattern Recognit., 2016. |
[41] | Y. Feng, Z. Liang, H. Liu, Efficient deep learning for stereo matching with larger image patches, Int. Congr. Image Signal Process. BioMed. Eng. Inf., 2017. |
[42] | A. Shaked, L. Wolf, Improved stereo matching with constant highway networks and reflective confidence learning, Comput. Vision Pattern Recognit., (2017), 6901-6910. |
[43] | A. Kendall, H. Martirosyan, S. Dasgupta, P. Henry, R. Kennedy, A. Bachrach, et al., End-to-End learning of geometry and context for deep stereo regression, Comput. Vision Pattern Recognit., 2017. |
[44] | F. Guney, A. Geiger, Displets: Resolving stereo ambiguities using object knowledge, IEEE Conf. Comput. Vision Pattern Recognit., 2015. |
[45] | P. Fischer, A. Dosovitskiy, E. Ilg, P. Häusser, C. Hazırbaş, V. Golkov, et al., FlowNet: Learning optical flow with convolutional networks, Deep Learn. Inverse Prob., 2015. |
[46] | E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, T. Brox, FlowNet 2.0: Evolution of optical flow estimation with deep networks, IEEE Conf. Comput. Vision Pattern Recognit., 2017. |
[47] | X. Guo, K. Yang, W. Yang, X. Wang, H. Li, Group-wise correlation stereo network, Comput. Vision Pattern Recognit., 2019. |
[48] | J. Pang, W. Sun, J. S. Ren, C. Yang, Q. Yan, Cascade residual learning: A two-stage convolutional neural network for stereo matching, Comput. Vision Pattern Recognit., 2017. |
[49] | Z. Liang, Y. Guo, Y. Feng, W. Chen, L. Qiao, L. Zhou, et al., Stereo matching using multi-level cost volume and multi-scale feature constancy, IEEE Trans. Pattern Anal. Mach. Intell., 99 (2019), 1-1. |
[50] | J. Schmidt-Hieber, Nonparametric regression using deep neural networks with ReLU activation function, Stat. Theory, 48 (2017), 1875-1897. |
[51] | S. Woo, C. L. Lee, Decision boundary formation of deep convolution networks with ReLU, IEEE Comput. Vision Pattern Recognit., 2018. |
[52] | E. Özarslan, C. Yolcu, M. Herberthson, H. Knutsson, C. Westin, Influence of the size and curvedness of neural projections on the orientationally averaged diffusion MR signal, Front. Phys., 6 (2018), 17. doi: 10.3389/fphy.2018.00017 |
[53] | Z. Chen, L. Deng, B. Wang, G. Li, Y. Xie, A comprehensive and modularized statistical framework for gradient norm equality in deep neural networks, IEEE Tran. Pattern Anal. Mach. Intell., 2020. |
[54] | A. Geiger, M. Roser, R. Urtasun, Efficient large-scale stereo matching, Comput. Vision, (2010), 25-38. |
[55] | H. Hirschmuller, D. Scharstein, Evaluation of stereo matching costs on images with radiometric differences, IEEE Trans. Pattern Anal. Mach. Intell., 31 (2009), 1582-1599. doi: 10.1109/TPAMI.2008.221 |
[56] | K. Yamaguchi, D. McAllester, R. Urtasun, Efficient joint segmentation, occlusion labeling, stereo and flow estimation, Comput. Vision - ECCV, (2014), 756-771. |
[57] | S. Ren, K. He, R. Girshick, J. Sun, Faster R-Cnn: Towards real-time object detection with region proposal networks, IEEE Trans. Pattern Anal. Mach. Intell., 39 (2015), 91-99. |