Citation: Bin Zhang, Linkun Sun, Yingjie Song, Weiping Shao, Yan Guo, Fang Yuan. DeepFireNet: A real-time video fire detection method based on multi-feature fusion[J]. Mathematical Biosciences and Engineering, 2020, 17(6): 7804-7818. doi: 10.3934/mbe.2020397
[1] | B. U. Toreyin, Y. Dedeoglu, A. E. Cetin, Flame detection in video using hidden Markov models, IEEE International Conference on Image Processing, 2 (2005), II-1230. |
[2] | O. Gunay, K. Taşdemir, B. U. Toreyin, A. E. Çetin, Fire detection in video using LMS based active learning, Fire Technol., 46 (2010), 551-577. |
[3] | H. Zhao, S. Zuo, M. Hou, W. Liu, L. Yu, X. Yang, et al., A novel adaptive signal processing method based on enhanced empirical wavelet transform technology, Sensors, 18 (2018), 3323. doi: 10.3390/s18103323 |
[4] | J. Y. Sun, S. Y. Qi, Design in Fire Prevention Based on Multi-Sensor and WSN, Appl. Mech. Mater., 713 (2015), 2237-2240. |
[5] | J. Sun, H. Jin, Intelligent design in fire prevention based on WSN, 2011 International Conference on Uncertainty Reasoning and Knowledge Engineering. IEEE, 2 (2011), 169-172. |
[6] | W. Deng, J. Xu, Y. Song, H. Zhao, Differential evolution algorithm with wavelet basis function and optimal mutation strategy for complex optimization problem, Appl. Soft Comput., 2020 (2020), 106724. |
[7] | B. Ko, K. H. Cheong, J. Y. Nam, Early fire detection algorithm based on irregular patterns of flames and hierarchical Bayesian Networks, Fire Saf. J., 45 (2010), 262-270. doi: 10.1016/j.firesaf.2010.04.001 |
[8] | M. Mueller, P. Karasev, I. Kolesov, A. Tannenbaum, Optical flow estimation for flame detection in videos, IEEE Trans. Image Process., 22 (2013), 2786-2797. doi: 10.1109/TIP.2013.2258353 |
[9] | H. Zhao, J. Zheng, W. Deng, Y. Song, Semi-supervised broad learning system based on manifold regularization and broad network, IEEE Trans. Circuits Syst., 67 (2020), 983-994. doi: 10.1109/TCSI.2019.2959886 |
[10] | W. Deng, H. Liu, J. Xu, H. Zhao, Y. Song, An improved quantum-inspired differential evolution algorithm for deep belief network, IEEE Trans. Instrum. Meas., 69 (2020), 7319-7327. doi: 10.1109/TIM.2020.2983233 |
[11] | Y. Liu, Y. Mu, K. Chen, Y. Li, J. Guo, Daily activity feature selection in smart homes based on pearson correlation coefficient, Neural Process. Lett., 51 (2020), 1771-1787. doi: 10.1007/s11063-019-10185-8 |
[12] | R. Chen, S. K. Guo, X. Z. Wang, T. L. Zhang, Fusion of multi-RSMOTE with fuzzy integral to classify bug reports with an imbalanced distribution, IEEE Trans. Fuzzy Syst., 27 (2019), 2406-2420. doi: 10.1109/TFUZZ.2019.2899809 |
[13] | W. Deng, H. Liu, J. Xu, H. Zhao, Y. Song, An improved quantum-inspired differential evolution algorithm for deep belief network, IEEE Trans. Instrum. Meas., 69 (2020), 7319-7327. doi: 10.1109/TIM.2020.2983233 |
[14] | Y. Xu, H. Chen, J. Luo, Q. Zhang, S. Jiao, X. Zhang, Enhanced Moth-flame optimizer with mutation strategy for global optimization, Inf. Sci., 492 (2019), 181-203. doi: 10.1016/j.ins.2019.04.022 |
[15] | Y. Liu, X. Wang, Z. Zhai, R. Chen, Y. Jiang, Timely daily activity recognition from headmost sensor events, ISA Trans., 94 (2019), 379-390. doi: 10.1016/j.isatra.2019.04.026 |
[16] | W. Deng, J. Xu, H. Zhao, Y. Song, A novel gate resource allocation method using improved PSO-based QEA, IEEE Trans. Intell. Transp. Syst., 2020 (2020), 1-9. |
[17] | H. Chen, A. A. Heidari, H. Chen, M. Wang, Z. Pan, A. H. Gandomi, Multi-population differential evolution-assisted Harris hawks optimization: Framework and case studies, Future Gener. Comput. Syst., 111 (2020), 175-198. doi: 10.1016/j.future.2020.04.008 |
[18] | Y. Xue, B. Xue, M. Zhang, Self-adaptive particle swarm optimization for large-scale feature selection in classification, ACM Trans. Knowl. Discovery Data, 13 (2019), 1-27. |
[19] | W. Deng, J. Xu, Y. Song, H. Zhao, An effective improved co-evolution ant colony optimization algorithm with multi-strategies and its application, Int. J. Bio-Inspired Comput., 2019 (2019), 1-10. |
[20] | T. H. Chen, P. H. Wu, Y. C. Chiou, An early fire-detection method based on image processing, 2004 International Conference on Image Processing, 3 (2004), 1707-1710. |
[21] | A. Fernandez, M. X. Alvarez, F. Bianconi, Texture description through histograms of equivalent patterns, J. Math. Imaging Vision, 45 (2013), 76-102. doi: 10.1007/s10851-012-0349-8 |
[22] | W. Xu, C. Tian, S. Fang, Fire automatic recognition based on image visual feature, Comput. Eng., 18 (2003), 112-113. |
[23] | T. CElik, H. Demirel, Fire detection in video sequences using a generic color model, Fire Saf. J., 44 (2009), 147-158. doi: 10.1016/j.firesaf.2008.05.005 |
[24] | P. Foggia, A. Saggese, M. Vento, Real-time fire detection for video-surveillance applications using a combination of experts based on color, shape, and motion. IEEE Trans. Circuits Syst. Video Technol., 25 (2015), 1545-1556. doi: 10.1109/TCSVT.2015.2392531 |
[25] | S. Frizzi, R. Kaabi, M. Bouchouicha, J. Ginoux, E. Moreau, F. Fnaiech, Convolutional neural network for video fire and smoke detection, IECON 2016-42nd Annual Conference of the IEEE Industrial Electronics Society, 2016,877-882. |
[26] | T. J. Fu, C. E. Zheng, Y. Tian, Q. M. Qiu, S. J. Lin, Forest fire recognition based on deep convolutional neural network under complex background, Comput. Modernization, 3 (2016), 52-57. |
[27] | M. Kang, B. S. Wang, An image filtering method based on image enhancement, Geomatics Inf. Sci. Wuhan Univ., 34 (2009), 822-825. |
[28] | Y. Gu, L. J. Qin, L. L. Jiang, Research on PCA and K-SVD joint filtering method, Electro-Optic Technol. Appl., 31 (2016), 31-36+45. |
[29] | Y. Q. Zhao, J. Yang, Hyperspectral image denoising via sparse representation and low-rank constraint, IEEE Trans. Geosci. Remote Sens., 53 (2014), 296-308. |
[30] | Y. Xu, Z. Wu, Z. Wei, Spectral-spatial classification of hyperspectral image based on low-rank decomposition, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 8 (2015), 2370-2380. doi: 10.1109/JSTARS.2015.2434997 |
[31] | I. Turkmen, The ANN based detector to remove random-valued impulse noise in images, J. Visual Commun. Image Representation, 34 (2016), 28-36. doi: 10.1016/j.jvcir.2015.10.011 |
[32] | K. J. Wang, X. Y. Xiong, Z. Ren, Highly efficient mean filtering algorithm, Appl. Res. Comput., 27 (2010), 434-438. |
[33] | D. Goyal, M. Singhal, Area-efficient FPGA model of LMS filtering algorithm, Proceedings of the International Conference on Recent Cognizance in Wireless Communication & Image Processing, 2016,943-952. |
[34] | B. Hu, Infrared image de-noising based on wavelet transform and improved median filtering, Mod. Electro. Tech., 34 (2011), 50-52. |
[35] | W. L. Jiang, G. L. Li, W. B. Luo, Application of improved median filtering algorithm to image de-noising, Adv. Mater. Res., 998 (2014), 838-841. |
[36] | H. K. Xu, Y. Y. Qin, H. R. Chen, An improved edge detection algorithm based on Canny, Infrared Technol., 36 (2014), 210-214. |
[37] | Q. Zhang, J. Xu, L. Xu, H. Guo, Deep convolutional neural networks for forest fire detection, 2016 International Forum on Management, Education and Information Technology Application, Atlantis Press, 2016. |
[38] | Y. Zhao, Z. Zhou, M. Xu, Forest fire smoke video detection using spatiotemporal and dynamic texture features, J. Electr. Comput. Eng., 2015 (2015), 1-7. |
[39] | G. F. Shidik, F. N. Adnan, C. Supriyanto, R. A. Pramunendar, P. N. Andono, Multi color feature, background subtraction and time frame selection for fire detection, 2013 International Conference on Robotics, Biomimetics, Intelligent Computational Systems. IEEE, 2013,115-120. |
[40] | R. C. Gonzalez, R. E. Woods, Digital image processing (3rd Edition), Prentice-Hall, Inc., 2007. |
[41] | Y. Wang, H. Wang, C. Yin, M. Dai, Biologically inspired image enhancement based on Retinex, Neurocomputing, 177 (2016), 373-384. doi: 10.1016/j.neucom.2015.10.124 |
[42] | J. Chen, Y. He, J. Wang, Multi-feature fusion based fast video flame detection, Build. Environ., 45 (2010), 1113-1122. doi: 10.1016/j.buildenv.2009.10.017 |
[43] | B. U. Toreyin, Y. Dedeoglu, U. Gudukbay, A. E. Cetin, Computer vision based method for real-time fire and flame detection, Pattern Recognit. Lett., 27 (2006), 49-58. doi: 10.1016/j.patrec.2005.06.015 |
[44] | Y. J. Hu, Z. F. Li, Y. M. Hu, Theory and application of motion analysis based on optical flow, Comput. Meas. Control, 15 (2007), 219-221. |
[45] | H. Zhu, D. Y. Luo, Q. X. Cao, Moving objects detection algorithm based on two consecutive frames subtraction and background subtraction, Comput. Meas. Control, 13 (2005), 215-217. |
[46] | T. Zhang, H. Zhang, R. Wang, Y. Wu, A new JPEG image steganalysis technique combining rich model features and convolutional neural networks, Math. BioSci. Eng., 16 (2019), 4069-4081. doi: 10.3934/mbe.2019201 |
[47] | K. Zhang, W. Zuo, Y. Chen, D. Meng, L. Zhang, Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising, IEEE Trans. Image Process., 26 (2016), 3142-3155. |
[48] | E. K. Wang, F. Wang, R. Sun, X. Liu, A new privacy attack network for remote sensing images classification with small training samples, Math. BioSci. Eng., 16 (2019), 4456-4476. doi: 10.3934/mbe.2019222 |
[49] | J. Dunnings, T. P. Breckon, Experimentally defined convolutional neural network architecture variants for non-temporal real-time fire detection, 2018 25th IEEE International Conference on Image Processing (ICIP), 2018, 1558-1562. |
[50] | C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, et al, Going deeper with convolutions, Proceedings of the IEEE conference on computer vision and pattern recognition, Boston, MA, 2015, 1-9. |
[51] | C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, Z. Wojna, Rethinking the inception architecture for computer vision, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, 2016, 2818-2826. |
[52] | J. Zhang, C. Lu, X. Li, H. J. Kim, J. Wang, A full convolutional network based on DenseNet for remote sensing scene classification, Math. Biosci. Eng., 16 (2019), 3345-3367. doi: 10.3934/mbe.2019167 |
[53] | J. O'Malley, K. H. Zou, Bayesian multivariate hierarchical transformation models for ROC analysis, Stat. Med., 25 (2010), 459-479. |
[54] | J. Sharma, O. C. Granmo, M. Goodwin, J. T. Fidje, Deep convolutional neural networks for fire detection in images, International Conference on Engineering Applications of Neural Networks, 2017,183-193. |
[55] | A. Fernandez, M. X. Alvarez, F. Bianconi, Texture description through histograms of equivalent patterns, J. Math. Imaging Vision, 45 (2013), 76-102. doi: 10.1007/s10851-012-0349-8 |
[56] | J. T. Shi, F. N. Yuan, X. Xia, Research progress of video smoke detection, J. Image Graphics, 23 (2018), 303-322. |