Citation: Waleed M. Hussein, Phil M. Choi, Cheng Zhang, Emma Sierecki, Wayne Johnston, Zhongfan Jia, Michael J. Monteiro, Mariusz Skwarczynski, Yann Gambin, Istvan Toth. Investigating the affinity of poly tert-butyl acrylate toward Toll-Like Receptor 2[J]. AIMS Allergy and Immunology, 2018, 2(3): 141-147. doi: 10.3934/Allergy.2018.3.141
[1] | Purcell AW, McCluskey J, Rossjohn J (2007) More than one reason to rethink the use of peptides in vaccine design. Nat Rev Drug Discov 6: 404–414. doi: 10.1038/nrd2224 |
[2] | Pruksakorn S, Currie B, Brandt E, et al. (1994) Identification of T-cell autoepitopes that cross-react with the C-terminal segment of the M-protein of group-a streptococci. Int Immunol 6: 1235–1244. doi: 10.1093/intimm/6.8.1235 |
[3] | Kotb M, Courtney HS, Dale JB, et al. (1989) Cellular and biochemical responses of human Lymphocytes-T stimulated with streptococcal-m proteins. J Immunol 142: 966–970. |
[4] | Hayman WA, Brandt ER, Relf WA, et al. (1997) Mapping the minimal murine T cell and B cell epitopes within a peptide vaccine candidate from the conserved region of the M protein of group A streptococcus. Int Immunol 9: 1723–1733. doi: 10.1093/intimm/9.11.1723 |
[5] | Skwarczynski M, Zaman M, Urbani CN, et al. (2010) Polyacrylate dendrimer nanoparticles: a self-adjuvanting vaccine delivery system. Angew Chem Int Edit 49: 5742–5745. doi: 10.1002/anie.201002221 |
[6] | Ahmad FAA, Jia Z, Zaman M, et al. (2014) Polymer-peptide hybrids as a highly immunogenic single-dose nanovaccine. Nanomedicine 9: 35–43. doi: 10.2217/nnm.13.7 |
[7] | Chandrudu S, Bartlett S, Khalil ZG, et al. (2016) Linear and branched polyacrylates as a delivery platform for peptide-based vaccines. Ther Deliv 7: 601–609. doi: 10.4155/tde-2016-0037 |
[8] | Zaman M, Skwarczynski M, Malcolm JM, et al. (2011) Self-adjuvanting polyacrylic nanoparticulate delivery system for group A streptococcus (GAS) vaccine. Nanomed-Nanotechnol 7: 168–173. doi: 10.1016/j.nano.2010.10.002 |
[9] | Hussein WM, Liu TY, Jia Z, et al. (2016) Multiantigenic peptide-polymer conjugates as therapeutic vaccines against cervical cancer. Bioorgan Med Chem 24: 4372–4380. doi: 10.1016/j.bmc.2016.07.036 |
[10] | Liu TY, Hussein WM, Giddam AK, et al. (2015) Polyacrylate-based delivery system for self-adjuvanting anticancer peptide vaccine. J Med Chem 58: 888–896. doi: 10.1021/jm501514h |
[11] | Liu TY, Hussein WM, Jia Z, et al. (2013) Self-adjuvanting polymer-peptide conjugates as therapeutic vaccine candidates against cervical cancer. Biomacromolecules 14: 2798–2806. doi: 10.1021/bm400626w |
[12] | Liu TY, Giddam AK, Hussein WM, et al. (2015) Self-adjuvanting therapeutic peptide-based vaccine induce cd8(+) cytotoxic t lymphocyte responses in a murine human papillomavirus tumor model. Curr Drug Deliv 12: 3–8. doi: 10.2174/1567201811666141001155729 |
[13] | Akira S, Takeda K, Kaisho T (2001) Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol 2: 675–680. doi: 10.1038/90609 |
[14] | Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124: 783–801. doi: 10.1016/j.cell.2006.02.015 |
[15] | Iwasaki A, Medzhitov R (2004) Toll-like receptor control of the adaptive immune responses. Nat Immunol 5: 987–995. doi: 10.1038/ni1112 |
[16] | Skwarczynski M, Dougall AM, Khoshnejad M, et al. (2012) Peptide-based subunit vaccine against hookworm infection. PLoS One 7: e46870. doi: 10.1371/journal.pone.0046870 |
[17] | Abdel-Aal ABM, Al-Isae K, Zaman M, et al. (2011) Simple synthetic toll-like receptor 2 ligands. Bioorg Med Chem Lett 21: 5863–5865. doi: 10.1016/j.bmcl.2011.07.102 |
[18] | Abdel-Aal ABM, El-Naggar D, Zaman M, et al. (2012) Design of fully synthetic, self-adjuvanting vaccine incorporating the tumor-associated carbohydrate tn antigen and lipoamino acid-based Toll-like Receptor 2 ligand. J Med Chem 55: 6968–6974. doi: 10.1021/jm300822g |
[19] | Miyake K (2007) Innate immune sensing of pathogens and danger signals by cell surface Toll-like receptors. Semin Immunol 19: 3–10. doi: 10.1016/j.smim.2006.12.002 |
[20] | Tapping RI (2009) Innate immune sensing and activation of cell surface Toll-like receptors. Semin Immunol 21: 175–184. doi: 10.1016/j.smim.2009.05.003 |
[21] | Moyle PM, Toth I (2008) Self-adjuvanting lipopeptide vaccines. Curr Med Chem 15: 506–516. doi: 10.2174/092986708783503249 |
[22] | Eriksson EM, Jackson DC (2007) Recent advances with TLR2-targeting lipopeptide-based vaccines. Curr Protein Pept Sci 8: 412–417. doi: 10.2174/138920307781369436 |
[23] | Hussein WM, Choi PM, Zhang C, et al. (2017) Evaluation of lipopeptides as Toll-like Receptor 2 Ligands. Curr Drug Deliv 14: 935–943. |
[24] | Gagoski D, Mureev S, Giles N, et al. (2015) Gateway-compatible vectors for high-throughput protein expression in pro- and eukaryotic cell-free systems. J Biotechnol 195: 1–7. doi: 10.1016/j.jbiotec.2014.12.006 |
[25] | Kovtun O, Mureev S, Jung W, et al. (2011) Leishmania cell-free protein expression system. Methods 55: 58–64. doi: 10.1016/j.ymeth.2011.06.006 |
[26] | Mureev S, Kovtun O, Nguyen UTT, et al. (2009) Species-independent translational leaders facilitate cell-free expression. Nat Biotechnol 27: 747–752. doi: 10.1038/nbt.1556 |
[27] | Tan ACL, Mifsud EJ, Zeng WG, et al. (2012) Intranasal administration of the TLR2 agonist Pam2Cys provides rapid protection against influenza in mice. Mol Pharm 9: 2710–2718. doi: 10.1021/mp300257x |
[28] | Zeng WG, Eriksson E, Chua B, et al. (2010) Structural requirement for the agonist activity of the TLR2 ligand Pam2Cys. Amino Acids 39: 471–480. doi: 10.1007/s00726-009-0463-0 |