Citation: Ken S. Rosenthal. Immune monitoring of the body’s borders[J]. AIMS Allergy and Immunology, 2018, 2(3): 148-164. doi: 10.3934/Allergy.2018.3.148
[1] | Rosenthal KS (2017) Dealing with garbage is the immune system's main job. MOJ Immunol 5: 00174–00176. |
[2] | Nochi T, Denton PW, Wahl A, et al. (2013) Cryptopatches are essential for the development of human GALT. Cell Rep 3: 1874–1884. doi: 10.1016/j.celrep.2013.05.037 |
[3] | Kim CH (2018) Immune regulation by microbiome metabolites. Immunology 154: 220–229. doi: 10.1111/imm.12930 |
[4] | Peterson LW, Artis D (2014) Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nat Rev Immunol 14: 141–153. doi: 10.1038/nri3608 |
[5] | Birchenough GMH, Johansson ME, Gustafsson JK, et al. (2015) New developments in goblet cell mucus secretion and function. Mucosal Immunol 8: 712–719. doi: 10.1038/mi.2015.32 |
[6] | Archer NK, Adappa ND, Palmer JN, et al. (2016) Interleukin-17A (IL-17A) and IL-17F are critical for antimicrobial peptide production and clearance of staphylococcus aureus nasal colonization. Infect Immun 84: 3575–3583. doi: 10.1128/IAI.00596-16 |
[7] | Zhang LJ, Gallo RL (2016) Antimicrobial peptides. Curr Biol 26: R14–R19. doi: 10.1016/j.cub.2015.11.017 |
[8] | Akbar AN, Vukmanovicstejic M, Taams LS, et al. (2007) The dynamic co-evolution of memory and regulatory CD4+ T cells in the periphery. Nat Rev Immunol 7: 231–237. doi: 10.1038/nri2037 |
[9] | Chassaing B, Ley RE, Gewirtz AT (2014) Intestinal epithelial cell toll-like receptor 5 regulates the intestinal microbiota to prevent low-grade inflammation and metabolic syndrome in mice. Gastroenterology 147: 1363–1377. doi: 10.1053/j.gastro.2014.08.033 |
[10] | Ouyang W, Kolls JY (2008) The biological functions of T helper 17 cell effector cytokines in inflammation. Immunity 28: 454–467. doi: 10.1016/j.immuni.2008.03.004 |
[11] | Zhang S (2018) The role of TGF-β in Th17 differentiation. Immunology. |
[12] | Park BV, Pan F (2015) The role of nuclear receptors in regulation of Th17/Treg biology and its implications for diseases. Cell Mol Immunol 12: 533–542. doi: 10.1038/cmi.2015.21 |
[13] | Coombes JL, Powrie F (2008) Dendritic cells in intestinal immune regulation. Nat Rev Immunol 8: 435–446. doi: 10.1038/nri2335 |
[14] | Kim CH (2018) Immune regulation by microbiome metabolites. Immunology 154: 220–229. doi: 10.1111/imm.12930 |
[15] | Byndloss MX, Olsan EE, Rivera-Chávez F, et al. (2017) Microbiota-activated PPAR-γ signaling inhibits dysbiotic Enterobacteriaceae. Science 357: 570–575. doi: 10.1126/science.aam9949 |
[16] | Velasquezmanoff M (2015) Gut microbiome: The peacekeepers. Nature 518: S3–S11. doi: 10.1038/518S3a |
[17] | Flannigan KL, Denning TL (2018) Segmented filamentous bacteria-induced immune responses: a balancing act between protection and autoimmunity. Immunology 154: 537–546. doi: 10.1111/imm.12950 |
[18] | Surana NK, Kasper DL (2012) The yin yang of bacterial polysaccharides: Lessons learned from B. fragilis PSA. Immunol Rev 245: 13–26. doi: 10.1111/j.1600-065X.2011.01075.x |
[19] | Wéra O, Lancellotti P, Oury C (2016) The dual role of neutrophils in inflammatory bowel diseases. J Clin Med 5: 118–142. doi: 10.3390/jcm5120118 |
[20] | Omenetti S, Pizarro TT (2015) The Treg/Th17 Axis: A dynamic balance regulated by the gut microbiome. Front Immuno 6: 639. |
[21] | Geethanjali P, Clemens N, Moritz L, et al. (2009) STAT3 links IL-22 signaling in intestinal epithelial cells to mucosal wound healing. J Exp Med 206: 1465–1472. doi: 10.1084/jem.20082683 |
[22] | Atarashi K, Suda W, Luo C, et al. (2017) Ectopic colonization of oral bacteria in the intestine drives TH1 cell induction and inflammation. Science 358: 359–365. doi: 10.1126/science.aan4526 |
[23] | Dabbagh K, Takeyama K, Lee HM, et al. (1999) IL-4 induces mucin gene expression and goblet cell metaplasia in vitro and in vivo. J Immunol 162: 6233–6237. |
[24] | Min LW, Krammer PH (2003) Regulation of IL4 gene expression by T cells and therapeutic perspectives. Nat Rev Immunol 3: 534–543. doi: 10.1038/nri1128 |
[25] | Moises VM (2013) An epidemic of absence: A new way of understanding allergies and autoimmune diseases. New York. Simon and Schuster. ISBN-13: 978-1439199398. |
[26] | Zhao Q, Elson CE (2018) Adaptive immune education by gut microbiota antigens. Immunology 154: 28–37. doi: 10.1111/imm.12896 |
[27] | Lloyd CM, Marsland BJ (2017) Lung homeostasis: Influence of age, microbes, and the immune system. Immunity 46: 549–561. doi: 10.1016/j.immuni.2017.04.005 |
[28] | Sato S, Kiyono H (2012) The mucosal immune system of the respiratory tract. Curr Opin Virol 2: 225–232. doi: 10.1016/j.coviro.2012.03.009 |
[29] | Young HJ, Randall TD, Aaron SS (2016) Inducible broncus-associated lymphoid tissue: Taming inflammation in the lung. Front Immuno 7: 258–274. |
[30] | Amarnani A, Rosenthal KS, Mercado JM, et al. (2014) Concurrent treatment of chronic psoriasis and asthma with ustekinumab. J Dermatol Treat 25: 63–66. doi: 10.3109/09546634.2013.782095 |
[31] | Roehr B (2017) Core concept: Tissue resident memory cells emerging as key player in health and disease. Proc Natl Acad Sci USA 114: 12092–12093. doi: 10.1073/pnas.1715754114 |
[32] | Sheridan BS, Lefrançois L (2011) Regional and mucosal memory T cells. Nat Immunol 12: 485–491. doi: 10.1038/ni.2029 |
[33] | Bergsbaken T, Bevan MJ, Fink PJ (2017) Local inflammatory cues regulate differentiation and persistence of CD8+ tissue-resident memory T cells. Cell Rep 19: 114–124. doi: 10.1016/j.celrep.2017.03.031 |
[34] | Wu T, Hu Y, Lee YT, et al. (2014) Lung‐resident memory CD8 T cells (TRM) are indispensable for optimal cross‐protection against pulmonary virus infection. J Leukoc Biol 95: 215–224. doi: 10.1189/jlb.0313180 |
[35] | Tamura S, Iwasaki T, Thompson AH, et al. (1998) Antibody-forming cells in the nasal-associated lymphoid tissue during primary influenza virus infection. J Gen Virol 79: 291–299. doi: 10.1099/0022-1317-79-2-291 |
[36] | Allie SR, Bradley JE, Mudunuru U, et al. (2017) Identification of antigen-specific, lung resident memory B cells after influenza infection. J Immunol 198: 153. |
[37] | Mora JR, von Andrian UH (2008) Differentiation and homing of IgA-secreting cells. Mucosal Immunol 1: 96–109. doi: 10.1038/mi.2007.14 |
[38] | Peterson LW, Artis D (2014) Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nat Rev Immunol 14: 141–153. doi: 10.1038/nri3608 |
[39] | Lee J, Mo JH, Katakura K, et al. (2006) Maintenance of colonic homeostasis by distinctive apical TLR9 signalling in intestinal epithelial cells. Nat Cell Biol 8: 1327–1336. doi: 10.1038/ncb1500 |
[40] | Munoz LE, Herrmann M, Berens C (2014) Dying autologous cells as instructors of the immune system. Clin Exp Immunol 179: 1–4. |
[41] | Birge RB, Boeltz S, Kumar S, et al. (2016) Phosphatidylserine is a global immunosuppressive signal in efferocytosis, infectious disease and cancer. Cell Death Differ 23: 962–978. doi: 10.1038/cdd.2016.11 |
[42] | Elliott MR, Koster KM, Murphy PS (2017) Efferocytosis signaling in the regulation of macrophage inflammatory responses. J Immunol 198: 1387–1394. doi: 10.4049/jimmunol.1601520 |
[43] | Vremec D, Shortman K (2015) What's in a Name? Some early and current issues in dendritic cell nomenclature. Front Immuno 6: 267. |
[44] | Escamilla-Tilch M, et al. (2013) The interplay between pathogen-associated and danger-associated molecular patterns: An inflammatory code in cancer? Immunol Cell Biol 91: 601–610. doi: 10.1038/icb.2013.58 |
[45] | Sonnenberg GF, Artis D (2015) Innate lymphoid cells in the initiation, regulation and resolution of inflammation. Nat Med 21: 698–708. doi: 10.1038/nm.3892 |
[46] | Ai IL, Yan L, Lopez-Lastra S, et al. (2017) Systemic human ILC precursors provide a substrate for tissue ILC differentiation. Cell 168: 1086–1100. doi: 10.1016/j.cell.2017.02.021 |
[47] | Wang S, Xia P, Chen Y, et al. (2017) Regulatory innate lymphoid cells control innate intestinal inflammation. Cell 171: 201–216.e18. doi: 10.1016/j.cell.2017.07.027 |
[48] | Lanier LL (2013) Shades of grey-the blurring view of innate and adaptive immunity. Nat Rev Immunol 13: 73–74. doi: 10.1038/nri3389 |
[49] | Wong EB, Ndung'U T, Kasprowicz VO (2016) The role of mucosal-associated invariant T cells in infectious diseases. Immunology 150: 45–54. |
[50] | Sandberg JK, Norrby-Teglund A, Leeansyah E (2017) Bacterial deception of MAIT cells in a cloud of superantigen and cytokines. PLoS Biol 15: e2003167. doi: 10.1371/journal.pbio.2003167 |
[51] | Ussher JE, Klenerman P, Willberg CB (2014) Mucosal-associated invariant T-cells: New players in anti-bacterial immunity. Front Immuno 5: 1–9. |
[52] | Kurioka A, Walker LJ, Klenerman P, et al. (2016) MAIT cells: new guardians of the liver. Clin Transl Immunol 5: e98. doi: 10.1038/cti.2016.51 |
[53] | Ullrich R, Schieferdecker HL, Ziegler K, et al. (1990) gamma delta T cells in the human intestine express surface markers of activation and are preferentially located in the epithelium. Cell Immunol 128: 619–627. doi: 10.1016/0008-8749(90)90053-T |
[54] | Adams EJ, Gu S, Luoma AM (2015) Human gamma delta T cells: Evolution and ligand recognition. Cell Immunol 296: 31–40. doi: 10.1016/j.cellimm.2015.04.008 |
[55] | Sheridan BS, Romagnoli PA, Pham QM, et al. (2013) Gamma delta t cells exhibit multifunctional and protective memory in intestinal tissues. Immunity 39: 184–195. doi: 10.1016/j.immuni.2013.06.015 |
[56] | Bonneville M, Chen Z, Déchanet-Merville J, et al. (2015) 30 years of gamma delta T cells. Cell Immunol 296: 3–9. doi: 10.1016/j.cellimm.2014.11.001 |
[57] | Chennupati V, Worbs T, Liu X, et al. (2010) Intra- and intercompartmental movement of γδ t cells: Intestinal intraepithelial and peripheral γδ T cells represent exclusive nonoverlapping populations with distinct migration characteristics. J Immunol 185: 5160–5168. doi: 10.4049/jimmunol.1001652 |
[58] | Vantourout P, Hayday A (2013) Six‑of‑the-best: unique contributions of γδ T cells to immunology. Nat Rev Immunol 13: 88–100. doi: 10.1038/nri3384 |
[59] | Steinbach S, Vordermeier HM, Jones GJ (2016) CD4+ and γδ T cells are the main producers of IL-22 and IL-17A in lymphocytes from Mycobacterium bovis-infected cattle. Sci Rep 6: 29990. doi: 10.1038/srep29990 |
[60] | Seyda M, Elkhal A, Quante M, et al. (2016) T cells going innate. Trends Immunol 37: 546–556. doi: 10.1016/j.it.2016.06.004 |
[61] | Hapil FZ, Wingender G (2018) The interaction between iNKT cells and the mucosal microbiota. Immunology. |
[62] | Van RE, Krabbe O, Boes M, et al. (2017) Endogenous lipid antigens for invariant natural killer T cells hold the reins in adipose tissue homeostasis. Immunology 153: 179–189. |
[63] | Vankaer L, Algood HS, Singh K, et al. (2014) CD8αα+ innate-Type lymphocytes in the intestinal epithelium mediate mucosal immunity. Immunity 41: 451–464. doi: 10.1016/j.immuni.2014.08.010 |
[64] | Kaiko GE, Horvat JC, Beagley KW, et al. (2008) Immunological decision-making: How does the immune system decide to mount a helper T-Cell response? Immunology 123: 326–338. doi: 10.1111/j.1365-2567.2007.02719.x |
[65] | Evansmarin HL, Cao AT, Yao S, et al. (2015) Unexpected regulatory role of CCR9 in regulatory t cell development. PLoS One 10: e0134100. doi: 10.1371/journal.pone.0134100 |
[66] | Bunker JJ, Erickson SA, Flynn TM, et al. (2017) Natural polyreactive IgA antibodies coat the intestinal microbiota. Science 358: eaan6619. doi: 10.1126/science.aan6619 |
[67] | Lundell AC, Rabe H, Quiding-Järbrink M, et al. (2010) Development of gut-homing receptors on circulating B cells during infancy. Clin Immunol 138: 97–106. |
[68] | Bouvet JP, Bélec L, Pirès R, et al. (1994) Immunoglobulin G antibodies in human vaginal secretions after parenteral vaccination. Infect Immun 62: 3957–3961. |
[69] | Yoshida M, Claypool SM, Wagner JS, et al. (2004) Human neonatal Fc receptor mediates transport of IgG into luminal secretions for delivery of antigens to mucosal dendritic cells. Immunity 20: 769–783. doi: 10.1016/j.immuni.2004.05.007 |
[70] | Rojas R, Apodaca G (2002) Immunoglobulin transport across polarized epithelial cells. Nat Rev Mol Cell Biol 3: 944–955. doi: 10.1038/nrm972 |
[71] | Randall TD, Mebius RE (2014) The development and function of mucosal lymphoid tissues: a balancing act with micro-organisms. Mucosal Immunol 7: 455–466. doi: 10.1038/mi.2014.11 |
[72] | Nochi T, Denton PW, Wahl A, et al. (2013) Cryptopatches are essential for the development of human GALT. Cell Rep 3: 1874–1884. doi: 10.1016/j.celrep.2013.05.037 |
[73] | Eberl G, Sawa S (2009) Opening the crypt: current facts and hypotheses on the function of cryptopatches. Trends Immunol 31: 50–55. |
[74] | Eberl G (2005) Inducible lymphoid tissues in the adult gut: recapitulation of a fetal developmental pathway? Nat Rev Immunol 5: 413–420. doi: 10.1038/nri1600 |
[75] | Sa VDP, Mebius RE (2010) New insights into the development of lymphoid tissues. Nat Rev Immunol 10: 664–674. doi: 10.1038/nri2832 |
[76] | Hegazy AN, West NR, Stubbington MJT, et al. (2017) Circulating and tissue-resident CD4+ T cells with reactivity to intestinal microbiota are abundant in healthy individuals and function is altered during inflammation. Gastroenterology 153: 1320–1337.e16. doi: 10.1053/j.gastro.2017.07.047 |
[77] | Sheridan BS, Lefrançois L (2011) Regional and mucosal memory T cells. Nat Immunol 12: 485–491. doi: 10.1038/ni.2029 |
[78] | Roychoudhury P, Schiffer JT (2016) Immunological control of HSV by CD8+ tissue-resident memory T cells. J Immunol 196: 136.12. |
[79] | Mishima Y, Liu B, Hansen JJ, et al. (2015) Resident bacteria-stimulated interleukin-10-secreting B cells ameliorate T-cell-mediated colitis by inducing T-regulatory-1 cells that require interleukin-27 signaling. Cell Mol Gastroenterol Hepatol 2015: 295–310. |
[80] | Van d VW, Stanic B, Wirz OF, et al. (2016) Role of regulatory B cells in immune tolerance to allergens and beyond. J Allergy Clin Immunol 138: 654–665. doi: 10.1016/j.jaci.2016.07.006 |
[81] | Varon LS, Rosa JD, Machicote A, et al. (2017) Characterization of tonsillar IL10 secreting B cells and their role in the pathophysiology of tonsillar hypertrophy. Sci Rep 7: 11077. doi: 10.1038/s41598-017-09689-x |