Research article

A two-grid mixed finite volume element method for nonlinear time fractional reaction-diffusion equations

  • Received: 11 September 2021 Accepted: 25 October 2021 Published: 04 November 2021
  • MSC : 65M08, 65M12, 65M15

  • In this paper, a two-grid mixed finite volume element (MFVE) algorithm is presented for the nonlinear time fractional reaction-diffusion equations, where the Caputo fractional derivative is approximated by the classical $ L1 $-formula. The coarse and fine grids (containing the primal and dual grids) are constructed for the space domain, then a nonlinear MFVE scheme on the coarse grid and a linearized MFVE scheme on the fine grid are given. By using the Browder fixed point theorem and the matrix theory, the existence and uniqueness for the nonlinear and linearized MFVE schemes are obtained, respectively. Furthermore, the stability results and optimal error estimates are derived in detailed. Finally, some numerical results are given to verify the feasibility and effectiveness of the proposed algorithm.

    Citation: Zhichao Fang, Ruixia Du, Hong Li, Yang Liu. A two-grid mixed finite volume element method for nonlinear time fractional reaction-diffusion equations[J]. AIMS Mathematics, 2022, 7(2): 1941-1970. doi: 10.3934/math.2022112

    Related Papers:

  • In this paper, a two-grid mixed finite volume element (MFVE) algorithm is presented for the nonlinear time fractional reaction-diffusion equations, where the Caputo fractional derivative is approximated by the classical $ L1 $-formula. The coarse and fine grids (containing the primal and dual grids) are constructed for the space domain, then a nonlinear MFVE scheme on the coarse grid and a linearized MFVE scheme on the fine grid are given. By using the Browder fixed point theorem and the matrix theory, the existence and uniqueness for the nonlinear and linearized MFVE schemes are obtained, respectively. Furthermore, the stability results and optimal error estimates are derived in detailed. Finally, some numerical results are given to verify the feasibility and effectiveness of the proposed algorithm.



    加载中


    [1] Ortigueira, Fractional calculus for scientists and engineers, New York: Springer, 2011.
    [2] R. Hilfer, Applications of fractional calculus in physics, Singapore: World Scientific, 2000.
    [3] R. L. Magin, Fractional calculus in bioengineering, Redding: Begell House, 2006.
    [4] Y. M. Lin, C. J. Xu, Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys., 225 (2007), 1533–1552. doi: 10.1016/j.jcp.2007.02.001. doi: 10.1016/j.jcp.2007.02.001
    [5] Z. Z. Sun, X. N. Wu, A fully discrete difference scheme for a diffusion-wave system, Appl. Numer. Math., 56 (2006), 193–209. doi: 10.1016/j.apnum.2005.03.003. doi: 10.1016/j.apnum.2005.03.003
    [6] H. F. Ding, C. P. Li, A high-order algorithm for time-Caputo-tempered partial differential equation with Riesz derivatives in two spatial dimensions, J. Sci. Comput., 80 (2019), 81–109. doi: 10.1007/s10915-019-00930-5. doi: 10.1007/s10915-019-00930-5
    [7] Y. Zhao, C. Shen, M. Qu, W. P. Bu, Y. F. Tang, Finite element methods for fractional diffusion equations, Int. J. Model. Simul. Sci. Comput., 11 (2020), 2030001. doi: 10.1142/S1793962320300010. doi: 10.1142/S1793962320300010
    [8] Y. M. Zhao, W. P. Bu, J. F. Huang, D. Y. Liu, Y. F. Tang, Finite element method for two-dimensional space-fractional advection-dispersion equations, Appl. Math. Comput., 257 (2015), 553–565. doi: 10.1016/j.amc.2015.01.016. doi: 10.1016/j.amc.2015.01.016
    [9] H. L. Liao, D. F. Li, J. W. Zhang, Sharp error estimate of the nonuniform $L1$ formula for linear reaction-subdiffusion equations, SIAM J. Numer. Anal., 56 (2018), 1112–1133. doi: 10.1137/17M1131829. doi: 10.1137/17M1131829
    [10] J. Q. Xie, D. Liang, Z. Y. Zhang, Two novel energy dissipative difference schemes for the strongly coupled nonlinear space fractional wave equations with damping, Appl. Numer. Math., 157 (2020), 178–209. doi: 10.1016/j.apnum.2020.06.002. doi: 10.1016/j.apnum.2020.06.002
    [11] S. B. Yuste, Weighted average finite difference methods for fractional diffusion equations, J. Comput. Phys., 216 (2006), 264–274. doi: 10.1016/j.jcp.2005.12.006. doi: 10.1016/j.jcp.2005.12.006
    [12] Y. Liu, Y. W. Du, H. Li, F. W. Liu, Y. J. Wang, Some second-order $\theta$ schemes combined with finite element method for nonlinear fractional cable equation, Numer. Algor., 80 (2019), 533–555. doi: 10.1007/s11075-018-0496-0. doi: 10.1007/s11075-018-0496-0
    [13] L. B. Feng, F. W. Liu, I. Turner, An unstructured mesh control volume method for two-dimensional space fractional diffusion equations with variable coefficients on convex domains, J. Comput. Appl. Math., 364 (2020), 112319. doi: 10.1016/j.cam.2019.06.035. doi: 10.1016/j.cam.2019.06.035
    [14] Y. Liu, Z. D. Yu, H. Li, F. W. Liu, J. F. Wang, Time two-mesh algorithm combined with finite element method for time fractional water wave model, Int. J. Heat Mass Tran., 120 (2018), 1132–1145. doi: 10.1016/j.ijheatmasstransfer.2017.12.118. doi: 10.1016/j.ijheatmasstransfer.2017.12.118
    [15] N. Sene, Analytical solutions and numerical schemes of certain generalized fractional diffusion models, Eur. Phys. J. Plus, 134 (2019), 199. doi: 10.1140/epjp/i2019-12531-4. doi: 10.1140/epjp/i2019-12531-4
    [16] M. Yavuz, N. Sene, Stability analysis and numerical computation of the fractional predator-prey model with the harvesting rate, Fractal Fract., 4 (2020), 35. doi: 10.3390/fractalfract4030035. doi: 10.3390/fractalfract4030035
    [17] G. H. Gao, Z. Z. Sun, H. W. Zhang, A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications, J. Comput. Phys., 259 (2014), 33–50. doi: 10.1016/j.jcp.2013.11.017. doi: 10.1016/j.jcp.2013.11.017
    [18] A. A. Alikhanov, A new difference scheme for the time fractional diffusion equation, J. Comput. Phys., 280 (2015), 424–438. doi: 10.1016/j.jcp.2014.09.031. doi: 10.1016/j.jcp.2014.09.031
    [19] R. Mokhtari, F. Mostajeran, A high order formula to approximate the caputo fractional derivative, Commun. Appl. Math. Comput., 2 (2020), 1–29. doi: 10.1007/s42967-019-00023-y. doi: 10.1007/s42967-019-00023-y
    [20] R. Mokhtari, M. Ramezani, G. Haase, Stability and convergence analyses of the FDM based on some $L$-type formulae for solving the subdiffusion equation, Numer. Math. Theor. Meth. Appl., 14 (2021), 945–971. doi: 10.4208/nmtma.OA-2021-0020. doi: 10.4208/nmtma.OA-2021-0020
    [21] J. Zhao, Z. C. Fang, H. Li, Y. Liu, A Crank-Nicolson finite volume element method for time fractional Sobolev equations on triangular grids, Mathematics, 8 (2020), 1591. doi: 10.3390/math8091591. doi: 10.3390/math8091591
    [22] J. Zhao, H. Li, Z. C. Fang, Y. Liu, A mixed finite volume element method for time-fractional reaction-diffusion equations on triangular grids, Mathematics, 7 (2019), 600. doi: 10.3390/math7070600. doi: 10.3390/math7070600
    [23] J. Zhao, Z. C. Fang, H. Li, Y. Liu, Finite volume element method with the WSGD formula for nonlinear fractional mobile/immobile transport equations, Adv. Differ. Equ., 2020 (2020), 360. doi: 10.1186/s13662-020-02786-8. doi: 10.1186/s13662-020-02786-8
    [24] J. C. Xu, A novel two-grid method for semilinear elliptic equations, SIAM J. Sci. Comput., 15 (1994), 231–237. doi: 10.1137/0915016. doi: 10.1137/0915016
    [25] J. C. Xu, Two-grid discretization techniques for linear and nonlinear PDEs, SIAM J. Numer. Anal., 33 (1996), 1759–1777. doi: 10.1137/S0036142992232949. doi: 10.1137/S0036142992232949
    [26] C. N. Dawson, M. F. Wheeler, Two-grid methods for mixed finite element approximations of nonlinear parabolic equations, Contemp. Math., 180 (1994), 191–203. doi: 10.1090/conm/180/01971. doi: 10.1090/conm/180/01971
    [27] J. L. Yan, Q. Zhang, L. Zhu, Z. Y. Zhang, Two-grid methods for finite volume element approximations of nonlinear sobolev equations, Numer. Func. Anal. Opt., 37 (2016), 391–414. doi: 10.1080/01630563.2015.1115415. doi: 10.1080/01630563.2015.1115415
    [28] T. L. Hou, L. P. Chen, Y. Yang, Two-grid methods for expanded mixed finite element approximations of semi-linear parabolic integro-differential equations, Appl. Numer. Math., 132 (2018), 163–181. doi: 10.1016/j.apnum.2018.06.001. doi: 10.1016/j.apnum.2018.06.001
    [29] W. Liu, A two-grid method for the semi-linear reaction-diffusion system of the solutes in the groundwater flow by finite volume element, Math. Comput. Simulat., 142 (2017), 34–50. doi: 10.1016/j.matcom.2017.04.004. doi: 10.1016/j.matcom.2017.04.004
    [30] Y. Liu, Y. W. Du, H. Li, J. C. Li, S. He, A two-grid mixed finite element method for a nonlinear fourth-order reaction-diffusion problem with time-fractional derivative, Comput. Math. Appl., 70 (2015), 2474–2492. doi: 10.1016/j.camwa.2015.09.012. doi: 10.1016/j.camwa.2015.09.012
    [31] Y. Liu, Y. W. Du, H. Li, J. F. Wang, A two-grid finite element approximation for a nonlinear time-fractional Cable equation, Nonlinear Dyn., 85 (2016), 2535–-2548. doi: 10.1007/s11071-016-2843-9. doi: 10.1007/s11071-016-2843-9
    [32] Q. F. Li, Y. P. Chen, Y. Q. Huang, Y. Wang, Two-grid methods for semilinear time fractional reaction diffusion equations by expanded mixed finite element method, Appl. Numer. Math., 157 (2020), 38–54. doi: 10.1016/j.apnum.2020.05.024. doi: 10.1016/j.apnum.2020.05.024
    [33] Q. F. Li, Y. P. Chen, Y. Q. Huang, Y. Wang, Two-grid methods for nonlinear time fractional diffusion equations by $L1$-Galerkin FEM, Math. Comput. Simulat., 185 (2021), 436–451. doi: 10.1016/j.matcom.2020.12.033. doi: 10.1016/j.matcom.2020.12.033
    [34] C. J. Chen, H. Liu, X. C. Zheng, H. Wang, A two-grid MMOC finite element method for nonlinear variable-order time-fractional mobile/immobile advection-diffusion equations, Comput. Math. Appl., 79 (2020), 2771–2783. doi: 10.1016/j.camwa.2019.12.008. doi: 10.1016/j.camwa.2019.12.008
    [35] Y. Liu, N. Liu, H. Li, J. F. Wang, Fast calculation based on a spatial two-grid finite element algorithm for a nonlinear space-time fractional diffusion model, Numer. Meth. Part. D. E., 236 (2020), 1904–1921. doi: 10.1002/num.22509. doi: 10.1002/num.22509
    [36] J. E. Jones, A Mixed finite volume element method for accurate computation of fluid velocities in porous media, University of Colorado, Denver, CO, 1995.
    [37] S. H. Chou, D. Y. Kwak, P. S. Vassilevski, Mixed covolume methods for the elliptic problems on triangular grids, SIAM J. Numer. Anal., 35 (1998), 1850–1861. doi: 10.1137/S0036142997321285. doi: 10.1137/S0036142997321285
    [38] S. Yang, Z. W. Jiang, Mixed covolume method for parabolic problems on triangular grids, Appl. Math. Comput., 215 (2009), 1251–1265. doi: 10.1016/j.amc.2009.06.068. doi: 10.1016/j.amc.2009.06.068
    [39] H. X. Rui, T. C. Lu, An expanded mixed covolume method for elliptic problems, Numer. Meth. Part. D. E., 21 (2005), 8–23. doi: 10.1002/num.20024. doi: 10.1002/num.20024
    [40] Z. C. Fang, J. Zhao, H. Li, Y. Liu, Finite volume element methods for two-dimensional time fractional reaction-diffusion equations on triangular grids, 2021.
    [41] D. F. Li, H. L. Liao, W. W. Sun, J. L. Wang, J. W. Zhang, Analysis of $L1$-Galerkin FEMs for time-fractional nonlinear parabolic problems, Commun. Comput. Phys., 24 (2018), 86–103. doi: 10.4208/cicp.OA-2017-0080. doi: 10.4208/cicp.OA-2017-0080
    [42] F. E. Browder, Existence and uniqueness theorems for solutions of nonlinear boundary value problems, Proc. Symp. Appl. Math., 17 (1965), 24–49. doi: 10.1090/psapm/017/0197933. doi: 10.1090/psapm/017/0197933
    [43] Z. C. Fang, H. Li, An expanded mixed covolume method for sobolev equation with convection term on triangular grids, Numer. Meth. Part. D. E., 29 (2013), 1257–1277. doi: 10.1002/num.21754. doi: 10.1002/num.21754
    [44] J. Douglas, J. E. Roberts, Global estimates for mixed methods for second order elliptic equations, Math. Comput., 44 (1985), 39–52. doi: 10.1090/S0025-5718-1985-0771029-9. doi: 10.1090/S0025-5718-1985-0771029-9
    [45] B. T. Jin, B. Y. Li, Z. Zhou, Correction of high-order BDF convolution quadrature for fractional evolution equations, SIAM J. Sci. Comput., 39 (2017), A3129–A3152. doi: 10.1137/17M1118816. doi: 10.1137/17M1118816
    [46] M. Stynes, E. O'Riordan, J. L. Gracia, Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation, SIAM J. Numer. Anal., 55 (2017), 1057–1079. doi: 10.1137/16M1082329. doi: 10.1137/16M1082329
    [47] F. H. Zeng, Z. Q. Zhang, G. E. Karniadakis, Second-order numerical methods for multi-term fractional differential equations: Smooth and non-smooth solutions, Comput. Meth. Appl. Mech. Eng., 327 (2017), 478–502. doi: 10.1016/j.cma.2017.08.029. doi: 10.1016/j.cma.2017.08.029
    [48] X. C. Zheng, H. Wang, An optimal-order numerical approximation to variable-order space-fractional diffusion equations on uniform or graded meshes, SIAM J. Numer. Anal., 58 (2020), 330–352. doi: 10.1137/19M1245621. doi: 10.1137/19M1245621
    [49] B. L. Yin, Y. Liu, H. Li, Z. M. Zhang, Finite element methods based on two families of second-order numerical formulas for the fractional Cable model with smooth solutions, J. Sci. Comput., 84 (2020), 2. doi: 10.1007/s10915-020-01258-1. doi: 10.1007/s10915-020-01258-1
    [50] B. L. Yin, Y. Liu, H. Li, Z. M. Zhang, Approximation methods for the distributed order calculus using the convolution quadrature, Discrete Contin. Dyn.-B, 26 (2021), 1447–1468. doi: 10.3934/dcdsb.2020168. doi: 10.3934/dcdsb.2020168
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1801) PDF downloads(121) Cited by(5)

Article outline

Figures and Tables

Figures(5)  /  Tables(12)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog