Processing math: 19%
Research article

A two-grid mixed finite volume element method for nonlinear time fractional reaction-diffusion equations

  • Received: 11 September 2021 Accepted: 25 October 2021 Published: 04 November 2021
  • MSC : 65M08, 65M12, 65M15

  • In this paper, a two-grid mixed finite volume element (MFVE) algorithm is presented for the nonlinear time fractional reaction-diffusion equations, where the Caputo fractional derivative is approximated by the classical L1-formula. The coarse and fine grids (containing the primal and dual grids) are constructed for the space domain, then a nonlinear MFVE scheme on the coarse grid and a linearized MFVE scheme on the fine grid are given. By using the Browder fixed point theorem and the matrix theory, the existence and uniqueness for the nonlinear and linearized MFVE schemes are obtained, respectively. Furthermore, the stability results and optimal error estimates are derived in detailed. Finally, some numerical results are given to verify the feasibility and effectiveness of the proposed algorithm.

    Citation: Zhichao Fang, Ruixia Du, Hong Li, Yang Liu. A two-grid mixed finite volume element method for nonlinear time fractional reaction-diffusion equations[J]. AIMS Mathematics, 2022, 7(2): 1941-1970. doi: 10.3934/math.2022112

    Related Papers:

    [1] Huiqin Zhang, Yanping Chen . Two-grid finite element method with an H2N2 interpolation for two-dimensional nonlinear fractional multi-term mixed sub-diffusion and diffusion wave equation. AIMS Mathematics, 2024, 9(1): 160-177. doi: 10.3934/math.2024010
    [2] Changling Xu, Hongbo Chen . A two-grid P20-P1 mixed finite element scheme for semilinear elliptic optimal control problems. AIMS Mathematics, 2022, 7(4): 6153-6172. doi: 10.3934/math.2022342
    [3] Yanjie Zhou, Xianxiang Leng, Yuejie Li, Qiuxiang Deng, Zhendong Luo . A novel two-grid Crank-Nicolson mixed finite element method for nonlinear fourth-order sin-Gordon equation. AIMS Mathematics, 2024, 9(11): 31470-31494. doi: 10.3934/math.20241515
    [4] Zhongdi Cen, Jian Huang, Aimin Xu . A posteriori grid method for a time-fractional Black-Scholes equation. AIMS Mathematics, 2022, 7(12): 20962-20978. doi: 10.3934/math.20221148
    [5] Ailing Zhu, Yixin Wang, Qiang Xu . A weak Galerkin finite element approximation of two-dimensional sub-diffusion equation with time-fractional derivative. AIMS Mathematics, 2020, 5(5): 4297-4310. doi: 10.3934/math.2020274
    [6] Liang He, Yihui Sun, Zhenglong Chen, Fei Teng, Chao Shen, Zhendong Luo . The POD-based reduced-dimension study on the two-grid finite element method for the nonlinear time-fractional wave equation. AIMS Mathematics, 2025, 10(2): 3408-3427. doi: 10.3934/math.2025158
    [7] Cagnur Corekli . The SIPG method of Dirichlet boundary optimal control problems with weakly imposed boundary conditions. AIMS Mathematics, 2022, 7(4): 6711-6742. doi: 10.3934/math.2022375
    [8] Zuliang Lu, Fei Cai, Ruixiang Xu, Lu Xing . Convergence and proposed optimality of adaptive finite element methods for nonlinear optimal control problems. AIMS Mathematics, 2022, 7(11): 19664-19695. doi: 10.3934/math.20221079
    [9] Shengying Mu, Yanhui Zhou . An analysis of the isoparametric bilinear finite volume element method by applying the Simpson rule to quadrilateral meshes. AIMS Mathematics, 2023, 8(10): 22507-22537. doi: 10.3934/math.20231147
    [10] Tiantian Zhang, Wenwen Xu, Xindong Li, Yan Wang . Multipoint flux mixed finite element method for parabolic optimal control problems. AIMS Mathematics, 2022, 7(9): 17461-17474. doi: 10.3934/math.2022962
  • In this paper, a two-grid mixed finite volume element (MFVE) algorithm is presented for the nonlinear time fractional reaction-diffusion equations, where the Caputo fractional derivative is approximated by the classical L1-formula. The coarse and fine grids (containing the primal and dual grids) are constructed for the space domain, then a nonlinear MFVE scheme on the coarse grid and a linearized MFVE scheme on the fine grid are given. By using the Browder fixed point theorem and the matrix theory, the existence and uniqueness for the nonlinear and linearized MFVE schemes are obtained, respectively. Furthermore, the stability results and optimal error estimates are derived in detailed. Finally, some numerical results are given to verify the feasibility and effectiveness of the proposed algorithm.



    In this paper, we consider the following nonlinear time fractional reaction-diffusion equations with the initial and Dirichlet boundary conditions

    {αu(x,t)tαdiv(A(x)u(x,t))+g(u(x,t))=f(x,t),(x,t)Ω×J,u(x,t)|Ω=0,(x,t)Ω×ˉJ,u(x,0)=u0(x),xˉΩ, (1.1)

    where ΩR2 is a bounded convex polygonal domain with the boundary Ω, J=(0,T] with 0<T<. Assume that the functions u0(x), g(u(x,t)) and f(x,t) are smooth enough, and there exists a constant L>0 such that |g(u)|L|u|. The diffusion coefficient matrix A(x)=(aij(x))2×2 is symmetric and uniformly positive definite, that is, there exist two constants A,A>0 such that

    AyTyyTA(x)yAyTy, yR2, xˉΩ.

    Moreover, we should assume that A1(x) satisfies the Lipschitz condition. In (1.1), the Caputo time fractional derivative αu(x,t)tα with order α(0,1) is defined by

    αu(x,t)tα=1Γ(1α)t0u(x,s)s1(ts)αds, (1.2)

    where Γ() is the Gamma function.

    Fractional differential equations (FDEs) can be applied to simulate various natural phenomena in chemistry, physics and biology and so on [1,2,3], which have attracted great interest of more and more scholars. However, it is very difficult to obtain the exact solutions for a large number of FDEs due to the nonlocality of fractional integrals and derivatives and other reasons, such as complex nonlinear terms, initial or boundary conditions. Therefore, a lot of numerical algorithms have been proposed and applied to solve FDEs [4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23], including finite element (FE) methods, finite difference (FD) methods, finite volume/element (FV/FVE) methods, discontinuous Galerkin (DG) methods, spectral methods and so on. In this paper, we establish a two-grid algorithm to solve the nonlinear time fractional reaction-diffusion Eq (1.1).

    The two-grid method is proposed and developed by Xu [24,25] to solve nonlinear elliptic partial differential equations based on FE methods. Because of the advantage of saving computing time, many scholars have extended and applied it to integer order partial differential equations. Dawson et al. [26] presented a two-grid mixed finite element (MFE) method for nonlinear parabolic equations which arises in flow through porous media, and gave the error analysis. Yan et al. [27] proposed a two-grid FVE method for the nonlinear Sobolev equations, and obtained optimal H1-norm error estimate. Hou et al. [28] applied a two-grid expanded MFE method to solve semi-linear parabolic integro-differential equations, and gave the convergence analysis and some numerical results. Liu [29] presented a two-grid FVE method for semi-linear reaction-diffusion system of the solutes in the groundwater flow, and obtained the error estimates in L2-norm and H1-norm. In recent years, the two-grid method was also applied to solve fractional partial differential equations. Liu et al. [30] proposed a two-grid MFE algorithm for a nonlinear fourth-order reaction-diffusion model with the Caputo time fractional derivative, and obtained the unconditional stability and error estimates. Liu et al. [31] presented a two-grid FE algorithm for a time fractional Cable equation, in which the Riemann-Liouville fractional derivative was approximated by the second-order weighted and shifted Grünwald difference (WSGD) scheme. Li et al. [32] constructed a two-grid expanded MFE scheme to solve a semilinear time fractional reaction-diffusion equation, in which the Caputo fractional derivative was approximated by the L1-formula. Li et al. [33] proposed a two-grid FE method for a nonlinear time fractional diffusion equation, and gave some numerical results to confirm the theoretical results. Chen et al. [34] studied a two-grid modified method of characteristics scheme to solve nonlinear variable-order time fractional advection-diffusion equations, and obtained the optimal L2-norm error estimates. Liu et al. [35] presented a two-grid FE fast algorithm to solve a nonlinear space-time fractional diffusion equation, and gave the stability and convergence analysis. From the current literatures, we find that there is no report about the two-grid fast algorithm based on the mixed finite volume element (MFVE) method [36,37,38,39] for solving the FDEs.

    In this paper, we will construct a two-grid MFVE algorithm to solve the nonlinear time fractional reaction-diffusion equations. In temporal discretization, we select the classical L1-formula to approximate the Caputo time fractional derivative. In spatial discretization, we construct coarse and fine grids (containing primal and dual grids), and establish a two-grid MFVE scheme by introducing an auxiliary variable λ and using the transfer operator. The calculation process is divided into two steps: firstly, the coarse solution is computed iteratively by using the nonlinear MFVE scheme on the space coarse grid, then a linearized scheme is constructed by using the coarse solution, and finally solution on the space fine grid is obtained. In our theoretical analysis, we give the existence and uniqueness results of the fully discrete solutions for the two-grid MFVE scheme by applying the Browder fixed point theorem and the matrix theory, and obtain unconditional stability results and error estimates in L2(Ω)-norm for the variable u. Moreover, we derive the conditional stability results and error estimates in (L2(Ω))2-norm and H(div)-norm for the variable λ by using a special analytical technique. Finally, we give some numerical results to verify the feasibility and effectiveness, and find that the proposed two-grid MFVE algorithm can greatly save the computing time.

    The layout of this paper is as follows: By constructing coarse and fine grids (primal and dual) and introducing the transfer operator, a two-grid MFVE algorithm for the nonlinear time fractional reaction-diffusion equation is proposed in Section 2. Some properties of the transfer operator γ and the fractional Gronwall inequality are given, and the existence and uniqueness results are obtained in Section 3. In Sections 4 and 5, the stability and error estimates are derived in detailed. In Section 6, two numerical examples are given to verify the feasibility and effectiveness.

    We shall use the standard Sobolev spaces Wm,p(Ω) with the norm m,p. For p=2, we define Hm(Ω)=Wm,2(Ω) with the norm m, and H0(Ω)=L2(Ω) with the inner product (,) and the norm . We also use H(div,Ω)={v(L2(Ω))2,divvL2(Ω)} with the norm H(div). Furthermore, throughout this paper, the mark C is a generic positive constant, which is independent of the mesh parameters.

    In order to get the MFVE scheme, by introducing an auxiliary variable λ(x,t)=A(x)u(x,t), we can rewrite the primal problem (1.1) as

    {(a)  αu(x,t)tα+divλ(x,t)+g(u(x,t))=f(x,t),(x,t)Ω×J,(b)  A1λ(x,t)+u(x,t)=0,(x,t)Ω×J,(c)  u(x,t)|Ω=0,(x,t)Ω×ˉJ,(d)  u(x,0)=u0(x),xˉΩ. (2.1)

    Then, we can obtain the weak formulation of (2.1): Find (λ,u)V×W such that

    {(a)  (αutα,w)+(divλ,w)+(g(u),w)=(f,w),wW,(b)  (A1λ,v)(divv,u)=0,vV,(c)  u(x,0)=u0(x),xˉΩ, (2.2)

    where V=H(div,Ω) and W=L2(Ω).

    Now, we use Kh to denote a quasiuniform triangulation partition of the domain Ω, that is Kh=KB, where KB stands for the triangle with the barycenter B, referring to Figure 1. Let h=max{hKB}, where hKB is the diameter of the triangle KB. Moreover, we should define the nodes of a triangular element to be its midpoints of three sides, and mark P1,P2,...,PMS as the inner nodes and PMS+1,PMS+2,...,PM as the boundary nodes.

    Figure 1.  Primal and dual partitions.

    We select the lowest order Raviart-Thomas space Vh and piecewise constant function space Wh as the trial function spaces for λ and u, respectively, where

    Vh={vhH(div,Ω):vh|K=(a+bx,c+bx),KKh},Wh={whW:wh|KP0(K),KKh}.

    Based on the primal partition Kh, we construct the dual partition Kh. Referring to Figure 1, the interior node P3 belongs to the common side of two adjacent triangles KB1=ΔA1A2A3 and KB2=ΔA1A3A5, then we define the quadrilateral A1B1A3B2 to be the dual element for P3. In general, for an interior node P, the dual element KP is the union of two triangles KL (with ΔA1B1A3) and KR (with ΔA1A3B2). For a boundary node such as P6, the associated dual element is a triangle KI (with ΔA5B3A4).

    Integrating (2.1) on all the primal and dual partitions, respectively, we obtain

    {(a)  KB(αu(x,t)tα+divλ(x,t)+g(u(x,t)))dx=KBf(x,t)dx,(b)  KP(A1λ(x,t)+u(x,t))dx=0. (2.3)

    We define the transfer operator γh:Vh(L2(Ω))2 as follows

    γhvh=MSj=1vh|KL(Pj)χKjKL+vh|KR(Pj)χKjKR+Mj=MS+1vh|KI(Pj)χKj, for vhVh,

    where χK is characteristic function of a set K. We use ˉYh=γhVh as the test function space, and rewrite (2.3) as

    {(a)  (αutα,wh)+(divλ,wh)+(g(u),wh)=(f,wh),whWh,(b)  (A1λ+u,γhvh)=0,vhVh. (2.4)

    Similar to [37], making use of the operator γh and the Green theorem, we have (wh,γhvh)=(divvh,wh),vhVh,whWh. Then, we obtain the nonlinear semi-discrete MFVE scheme: For the selected appropriate (λh(0),uh(0)), find (λh(t),uh(t))Vh×Wh such that

    {(a)  (αuhtα,wh)+(divλh,wh)+(g(uh),wh)=(f,wh),whWh,(b)  (A1λh,γhvh)(divvh,uh)=0,vhVh. (2.5)

    In order to approximate the Caputo time fractional derivative and give the fully discrete scheme, we should give the grid points tn=nτ (n=0,1,,N) in time interval [0,T], where N is a positive integer and τ=T/N. We denote φn=φ(,tn) for a function φ. Following [4,5], we will approximate the fractional derivative αu(x,t)tα at t=tn by using the L1-formula as follows

    αu(x,tn)tα=1Γ(1α)tn0u(x,s)s1(tns)αds=τ1αΓ(2α)n1k=0bku(x,tnk)u(x,tnk1)τ+Rnt(x)=ταΓ(2α)nk=0bnkuk+Rnt(x), (2.6)

    where bk=(k+1)1αk1α, bn0=(n1)1αn1α, bnn=1, bnk=bnkbnk1 (0<k<n). Setting Dατun=ταΓ(2α)nk=0bnkuk, we have αu(x,tn)tα=Dατun+Rnt(x). Following [4,5], we can get that if uC2(ˉJ,L2(Ω)), then there exist a constant C>0 independent of τ such that Rnt(x)Cτ2α.

    Let λnh and unh be the numerical solutions of λ and u at t=tn, respectively. Then, we can obtain the nonlinear fully discrete MFVE scheme for the problem (1.1): For the properly selected (λ0h,u0h), find (λnh,unh)Vh×Wh, n=1,2,,N, such that

    {(a)  (Dατunh,wh)+(divλnh,wh)+(g(unh),wh)=(fn,wh),whWh,(b)  (A1λnh,γhvh)(divvh,unh)=0,vhVh. (2.7)

    For improving the nonlinear fully discrete MFVE scheme (2.7), we consider the following two-grid MFVE system based on the coarse grid KH and the fine grid Kh with the corresponding dual grids KH and Kh, where hH.

    STEP I. On the coarse primal and dual grids (KH and KH), solve the following nonlinear system for (λnH,unH)VH×WH, n=1,2,,N, such that

    {(a)  (DατunH,wH)+(divλnH,wH)+(g(unH),wH)=(fn,wH),wHWH,(b)  (A1λnH,γHvH)(divvH,unH)=0,vHVH, (2.8)

    where (λ0H,u0H)VH×WH is defined in Section 5.

    STEP II. On the fine primal and dual grids (Kh and Kh), solve the following linearized system for (ˆλnh,ˆunh)Vh×Wh, n=1,2,,N, such that

    {(a)  (Dατˆunh,wh)+(divˆλnh,wh)+(g(unH)+g(unH)(ˆunhunH),wh)=(fn,wh),whWh,(b)  (A1ˆλnh,γhvh)(divvh,ˆunh)=0,vhVh, (2.9)

    where (ˆλ0h,ˆu0h)Vh×Wh is defined in Section 5.

    Remark 2.1. In the actual numerical calculation of the two-grid systems (2.8) and (2.9), we can find a solution (λnH,unH)VH×WH on the coarse primal and dual grids (KH and KH) by calculating the nonlinear implicit system (2.8), then obtain the final solution (ˆλnh,ˆunh)Vh×Wh on the fine primal and dual grids (Kh and Kh) by calculating the linearized system (2.9). This calculation method will be more efficient than the standard nonlinear implicit system (2.7), and we will see this advantage from the numerical results.

    In the proof of existence and uniqueness and subsequent theoretical analysis, we need to use some important properties of transfer operator γ (=H or h), which are as follows:

    Lemma 3.1. [37] The transfer operator γ is bounded

    γvv, vV.

    Lemma 3.2. [38] The following symmetry relations holds

    (ˉA1z,γv)=(ˉA1v,γz), z,vV,

    where ˉA1(x)=A1(B), xKB,

    Lemma 3.3. [38] There exists three constants μ1,μ2,μ3>0 independent of such that

    (A1v,γv)μ1v2, vV,(ˉA1v,γv)μ2v2, vV,|(A1z,γv)(ˉA1z,γv)|μ3zv, z,vV.

    Lemma 3.4. [38] There exists two constants μ4,μ5>0 independent of such that

    (Iγ)vμ4v1,, vV,|(A1z,(Iγ)v)|μ5z1,v, z,vV,|(A1z,(Iγ)v)|μ5z1v, z(H1(Ω))2,vV,

    where z21,=z2+|z|21, and |z|21,=KK(z120,K+z220,K), z=(z1,z2)V.

    Lemma 3.5. Let {λn}n=0 be a function sequence on V, then we have

    nk=0bnk(A1λk,γλn)=12[(A1λn,γλn)+n1k=0bnk(A1λk,γλk)n1k=0bnk(A1(λnλk),γ(λnλk))+n1k=0bnk((A1λn,γλk)(A1λk,γλn))].

    Lemma 3.6. [40] Let φk0, k=0,1,,N, ζ>0 and C01 be two constants, which satisfy

    φnC0n1k=0˜bnkφk+ζ.

    Then, the following relation holds

    φnCn0(φ0+b1n1ζ), n=1,2,,N.

    Furthermore, the above result can be further written as

    φnCn0(φ0+tαn1αταζ).

    Lemma 3.7. [41] Let φn be a function on Ω, then

    (Dατφn,φn)12Dατφn2.

    Lemma 3.8. [41] Let φn,ςn0, n=0,1,, satisfy

    Dατφnλ1φn+λ2φn1+ςn,

    where λ1,λ20 are two constants independent of τ. There exists a constant τ>0 such that, if ττ, then

    φn2(φ0+tαnΓ(1+α)max0jnςj)Eα(2λtαn),1nN,

    where Eα(z)=k=0zkΓ(1+kα) is the Mittag-Leffler function and λ=λ1+λ2(221α).

    Lemma 3.9. [42] [Browder fixed point theorem] Let S be a finite dimensional space with the inner product (,)S and the norm S, and the map G:SS be continuous. Suppose the there exists μ>0 such that (G(ξ),ξ)S0 for ξS with ξS=μ. Then, there exists ξS such that G(ξ)=0 and ξSμ.

    We first give the existence and uniqueness results for the nonlinear MFVE scheme (2.8) by using Lemma 3.9.

    Theorem 3.1. Assume that (λiH,uiH) (i=0,1,,n1) are given. There exists a constant τ0>0 such that, if τ<τ0, then there exists a unique solution (λnH,unH)VH×WH for the nonlinear MFVE scheme (2.8) on the coarse primal and dual grids.

    Proof. Let G:VH×WHVH×WH be the map. For ˉλH,ˉuHVH×WH, we define G(ˉλH,ˉuH) as follows:

    (G(ˉλH,ˉuH),(vH,wH))VH×WH=1Γ(2α)(ˉuH,wH)+τα(g(ˉuH),wH)τα(fn,wH)+τα[(divˉλH,wH)+(A1ˉλH,γHvH)(divvH,ˉuH)]+1Γ(2α)n1k=0bnk(ukH,wH), (vnH,wnH)VH×WH. (3.1)

    The map G is obviously continuous. Furthermore, setting vH=ˉλH,wH=ˉuH in (3.1), and applying Lemma 3.3, we have

    (G(ˉλH,ˉuH),(ˉλH,ˉuH))VH×WH1Γ(2α)ˉuH2+μ1ταˉλH2LταˉuH2τα2fn2τα2ˉuH2+1Γ(2α)n1k=0bnk(ukH22+ˉuH22). (3.2)

    Noting that n1k=0bnk=1, we have

    (G(ˉλH,ˉuH),(ˉλH,ˉuH))VH×WH(12Γ(2α)Lτατα2)ˉuH2+μ1ταˉλH2τα2fn2+12Γ(2α)n1k=0bnkukH2. (3.3)

    Thus, there exists a constant τ0,1>0 such that, if τ<τ0,1, then

    (G(ˉλH,ˉuH),(ˉλH,ˉuH))VH×WH14Γ(2α)ˉuH2+μ1ταˉλH2τα2fn2+12Γ(2α)n1k=0bnkukH2. (3.4)

    Because of the norm equivalence in finite dimensional normed linear space, there exists a constant C0>0 such that ˉλHC0ˉλHH(div). Thus, we have

    (G(ˉλH,ˉuH),(ˉλH,ˉuH))VH×WHC1(ˉλH,ˉuH)2VH×WHτα2fn2+12Γ(2α)n1k=0bnkukH2, (3.5)

    where (ˉλH,ˉuH)2VH×WH=ˉλH2H(div)+ˉu2 and C1=min{14Γ(2α),μ1C20τα}. Let μ=1C1(1+τα2fn212Γ(2α)n1k=0bnkukH2). Based on above analysis, we know that if (ˉλH,ˉuH)2VH×WH=μ, then (G(ˉλH,ˉuH),(ˉλH,ˉuH))VH×WH0. Applying Lemma 3.9, we obtain that there exists (ˉλH,ˉuH)VH×WH such that G(ˉλH,ˉuH)=0. Then (λnH,unH)=(ˉλH,ˉuH) satisfies (2.8).

    Next, we prove the uniqueness of the solution. Let (ΛnH,UnH)VH×WH be another solution of (2.8), and (Λ0H,U0H)=(λ0H,u0H). Making use of (2.8), we obtain

    {(a)  1Γ(2α)(pnH,wh)+τα(divqnH,wh)+τα(g(unH)g(UnH),wh)=0,whWh,(b)  (A1qnH,γhvh)(divvh,pnH)=0,vhVh, (3.6)

    where pnH=unHUnH,qnH=λnHΛnH. Choose wh=pnH,vh=qnH in (3.6) to obtain

    1Γ(2α)pnH2+τα(A1qnH,γhqnH)+τα(g(unH)g(UnH),pnH)=0. (3.7)

    Applying Lemma 3.3, we have

    1Γ(2α)pnH2+μ1ταqnH2g1,ταpnH2. (3.8)

    There exits a constant τ0,2>0 such that, if ττ0,2, then g1,τα12Γ(2α), and

    12Γ(2α)pnH2+μ1ταqnH20. (3.9)

    It follows that pnH=0 and qnH=0. Setting τ0=min{τ0,1,τ0,2}, we have completed the proof of the theorem.

    Now, we give the existence and uniqueness results for the linearized scheme (2.9).

    Theorem 3.2. Assume that (ˆλih,ˆuih) (i=0,1,,n1) are given. There exists a constant τ1 (0<τ1τ0) such that, if τ<τ1, then there exists a unique solution (ˆλnh,ˆunh)Vh×Wh for linearized scheme (2.9) on the fine primal and dual grids.

    Proof. Let {ϕi}M1i=1 and {φj}M2j=1 be the basis functions of Vh and Wh, respectively. Then (ˆλnh,ˆunh) can be expressed as

    ˆλnh=M1i=1rniϕi, ˆunh=M2j=1unjφj. (3.10)

    Substituting (3.10) into (2.9), and taking vh=ϕi (i=1,2,,M1) and wh=φj (j=1,2,,M2), we have

    [1Γ(2α)B1+ταB3ταCCTB2][ˆUnˆΛn]=[ταFnταPn1Γ(2α)n1k=0bnkB1ˆUk0], (3.11)

    where

    ˆΛn=(rn1,rn2,,rnM1)T,ˆUn=(un1,un2,,unM2)T,B1=((φi,φj))i,j=1,2,,M2,B2=((A1ϕi,γhϕj))i,j=1,2,,M1,B3=((g(unH)φi,φj))i,j=1,2,,M2,C=((divϕi,φj))i=1,2,,M1;j=1,2,,M2,Pn=((g(unH)g(unH)unH,φj))Tj=1,2,,M2,Fn=((fn,φj))Tj=1,2,,M2.

    Noting that B1 and B2 are invertible, and applying the multiplication of partitioned matrices, we can get

    [EταCB120E][1Γ(2α)B1+ταB3ταCCTB2]=[1Γ(2α)B1+ταB3+ταCB12CT0CTB2]. (3.12)

    Let ψ(τ)=det(1Γ(2α)B1+ταB3+ταCB12CT), then ψ(τ) is a continuous function. Noting that ψ(0)=det(1Γ(2α)B1)>0. According to the property of continuous function, there exists a constant τ1 (0<τ1τ0) such that, if τ<τ1, then ψ(τ)>12det(1Γ(2α)B1)>0. So the coefficient matrix of (3.11) is invertible, then there exists a unique solution for the linearized scheme (2.9).

    We will give the stability results for the nonlinear MFVE scheme (2.8) and linearized MFVE scheme (2.9) on the coarse and fine grids, respectively.

    Theorem 4.1. Let (λnH,unH)Nn=0VH×WH be the solution of system (2.8), then there exist a constant C independent of H and τ such that

    unHC(u0H+supt[0,T]f(t)). (4.1)

    Moreover, for a constant c0>0, there exist a constant τ2>0 independent of H and τ such that, if Hc0τc0min{τ2,τ0} and H0, then

    λnHCec0Tμ3μ1(u0H+λ0H+supt[0,T]f(t)), (4.2)

    where τ0 is defined in Theorem 3.1, 0=μ12μ3, C>0 is a constant independent of H, τ and c0.

    Proof. Choosing wH=unH and vH=λnH in (2.8), we can get

    (DατunH,unH)+(A1λnH,γHλnH)+(g(unH),unH)=(fn,unH). (4.3)

    Apply the Lemma 3.3 and Lemma 3.7 in (4.3) to obtain

    12DατunH2+μ1λnH212fn2+(12+L)unH2. (4.4)

    Apply Lemma 3.8 in (4.4) to obtain

    unHC(u0H+supt[0,T]f(t)). (4.5)

    Now, making use of (2.8)(b), we have

    (A1DατλnH,γHvH)(divvH,DατunH)=0,vHVH. (4.6)

    Choosing wH=DατunH in (2.8)(a) and vH=λnH in (4.6), we have

    DατunH2+(A1DατλnH,γHλnH)+(g(unH),DατunH)=(fn,DατunH). (4.7)

    Applying Lemma 3.5 in (4.7), and noting that bnk<0 (0k<n), we have

    DατunH2+τα2Γ(2α)(A1λnH,γHλnH)τα2Γ(2α)[n1k=0bnk(A1λkH,γHλkH)+n1k=0bnk((A1λnH,γHλkH)(A1λkH,γHλnH))]+12DατunH2+C[fn2+L2unH2]. (4.8)

    Apply Lemma 3.2 and Lemma 3.3 in (4.8) to obtain

    \begin{align} \begin{split} |(\mathcal{A}^{-1}\boldsymbol\lambda^n_H, \gamma_H \boldsymbol\lambda_H^k)-(\mathcal{A}^{-1}\boldsymbol\lambda^k_H, \gamma_H \boldsymbol\lambda_H^n)| &\leq 2\mu_3H\|\boldsymbol\lambda^k_H\|\|\boldsymbol\lambda_H^n\|\\ &\leq \frac{\mu_3}{\mu_1}H[(\mathcal{A}^{-1}\boldsymbol\lambda^k_H, \gamma_H \boldsymbol\lambda^k_H)+(\mathcal{A}^{-1}\boldsymbol\lambda^n_H, \gamma_H \boldsymbol\lambda^n_H)]. \end{split} \end{align} (4.9)

    Substituting (4.9) into (4.8), we have

    \begin{align} \begin{split} (\mathcal{A}^{-1}\boldsymbol\lambda^n_H, \gamma_H \boldsymbol\lambda_H^n) \leq& -\sum\limits_{k = 0}^{n-1} b_k^n(\mathcal{A}^{-1}\boldsymbol\lambda^k_H, \gamma_H \boldsymbol\lambda_H^k) -\frac{\mu_3}{\mu_1}H\sum\limits_{k = 0}^{n-1}b_k^n(\mathcal{A}^{-1}\boldsymbol\lambda^k_H, \gamma_H \boldsymbol\lambda^k_H)\\ &+\frac{\mu_3}{\mu_1}H(\mathcal{A}^{-1}\boldsymbol\lambda^n_H, \gamma_H \boldsymbol\lambda^n_H)+C\Gamma(2-\alpha)\tau^{\alpha}[\|f^n\|^2+L^2\|u_H^n\|^2]. \end{split} \end{align} (4.10)

    Setting \hbar_0 = \frac{\mu_1}{2\mu_3} , when H\leq\hbar_0 , we have 1-\frac{\mu_3}{\mu_1}H\geq \frac{1}{2} and

    \begin{align} \begin{split} (\mathcal{A}^{-1}\boldsymbol\lambda^n_H, \gamma_H \boldsymbol\lambda_H^n)\leq& -\frac{1+\frac{\mu_3}{\mu_1}H}{1-\frac{\mu_3} {\mu_1}H}\sum\limits_{k = 0}^{n-1} b_k^n(\mathcal{A}^{-1}\boldsymbol\lambda^k_H, \gamma_H \boldsymbol\lambda_H^k)+C\Gamma(2-\alpha) \tau^{\alpha}(\|u_H^0\|^2+\sup\limits_{t \in [0, T]}\|f(t)\|^2). \end{split} \end{align} (4.11)

    Applying Lemma 3.6 to have

    \begin{align} (\mathcal{A}^{-1}\boldsymbol\lambda^n_H, \gamma_H \boldsymbol\lambda_H^n)\leq C(\frac{1+\frac{\mu_3}{\mu_1}H}{1-\frac{\mu_3} {\mu_1}H})^n((\mathcal{A}^{-1}\boldsymbol\lambda^0_H, \gamma_H \boldsymbol\lambda_H^0)+\|u_H^0\|^2+\sup\limits_{t \in [0, T]}\|f(t)\|^2). \end{align} (4.12)

    Let c_0 > 0 be a constant. Selecting H and \tau to satisfy H\leq c_0\tau in (4.12), we have

    \begin{align} (\mathcal{A}^{-1}\boldsymbol\lambda^n_H, \gamma_H \boldsymbol\lambda_H^n)\leq C(\frac{1+\frac{c_0\mu_3}{\mu_1}\tau}{1-\frac{c_0\mu_3} {\mu_1}\tau})^{\frac{T}{\tau}}((\mathcal{A}^{-1}\boldsymbol\lambda^0_H, \gamma_H \boldsymbol\lambda_H^0)+\|u_H^0\|^2+\sup\limits_{t \in [0, T]}\|f(t)\|^2). \end{align} (4.13)

    Noting that

    \begin{align} \lim\limits_{\tau\rightarrow 0}(\frac{1+\frac{c_0\mu_3}{\mu_1}\tau}{1-\frac{c_0\mu_3} {\mu_1}\tau})^{\frac{T}{\tau}} = e^{\frac{2c_0T\mu_3}{\mu_1}}, \end{align} (4.14)

    then, there exists a constant \tau_2 > 0 such that, if \tau < \min\{\tau_2, \tau_0\} , where \tau_0 is defined in Theorem 3.1, then

    \begin{align} \|\boldsymbol\lambda^n_H\|\leq Ce^{\frac{c_0T\mu_3}{\mu_1}}(\|\boldsymbol\lambda^0_H\|+\|u_H^0\|+\sup\limits_{t \in [0, T]}\|f(t)\|). \end{align} (4.15)

    Thus, we complete the proof of this theorem.

    Theorem 4.2. Let (\hat{\boldsymbol\lambda}_h^n, \hat u_h^n)_{n = 0}^{N}\in {\mathit{\boldsymbol{V}}}_h \times W_h be the solution of system (2.9), then there exist a constant C > 0 independent of h and \tau such that

    \begin{align} \|\hat u_h^n\|\leq C(\|u_H^0\|+\|\hat u_h^0\|+\sup\limits_{t \in [0, T]}\|f(t)\|). \end{align} (4.16)

    Moreover, there exists a constant C > 0 independent of h , \tau and c_0 such that, if h\leq c_0\tau\leq c_0\min\{\tau_2, \tau_1\} and h < \hbar_0 , then

    \begin{align} \|\hat{\boldsymbol\lambda}_h^n\|\leq Ce^{\frac{c_0T\mu_3}{\mu_1}}(\|u_H^0\|+\|\hat u_h^0\|+\|\hat{\boldsymbol\lambda}_h^0\| +\sup\limits_{t \in [0, T]}\|f(t)\|), \end{align} (4.17)

    where \tau_1 is defined in Theorem 3.2, c_0, \hbar_0 and \tau_2 are defined in Theorem 4.1.

    Proof. Choosing w_h = \hat u_h^n and {\mathit{\boldsymbol{v}}}_h = \hat{\boldsymbol\lambda}_h^n in (2.9), we have

    \begin{align} (D_{\tau}^\alpha \hat u_h^n, \hat u_h^n)+(\mathcal{A}^{-1}\hat{\boldsymbol\lambda}^n_h, \gamma_h \hat{\boldsymbol\lambda}_h^n)+(g(u^n_H)+g'(u^n_H) (\hat u_h^n-u_H^n), \hat u_h^n) = (f^n, \hat u_h^n). \end{align} (4.18)

    Apply Lemma 3.3 and Lemma 3.7 in (4.18) to obtain

    \begin{align} \begin{split} \frac{1}{2}D_{\tau}^\alpha\|\hat u_h^n\|^2+\mu_1\|\hat{\boldsymbol\lambda}_h^n\|^2 &\leq \frac{1}{2}\|f^n\|^2+(\frac{L}{2}+\frac{1}{2}\|g\|_{1, \infty})\|u^n_H\|^2+(\frac{L+1}{2}+\frac{3}{2}\|g\|_{1, \infty})\|\hat u_h^n\|^2. \end{split} \end{align} (4.19)

    Apply Lemma 3.8 and Theorem 4.1 to obtain

    \begin{align} \|\hat u_h^n\| \leq C(\|\hat u_h^0\|+\|u^0_H\|+\sup\limits_{t \in [0, T]}\|f(t)\|). \end{align} (4.20)

    Now, making use of (2.9) (b) , we have

    \begin{align} (\mathcal{A}^{-1}D_{\tau}^\alpha\hat{\boldsymbol\lambda}^n_h, \gamma_h {\mathit{\boldsymbol{v}}}_h)-({{{\rm{div}}}} {\mathit{\boldsymbol{v}}}_h, D_{\tau}^\alpha \hat u^n_h) = 0, \ \forall {\mathit{\boldsymbol{v}}}_h\in {\mathit{\boldsymbol{V}}}_h. \end{align} (4.21)

    Choosing w_H = D_{\tau}^\alpha \hat u_h^n in (2.9) (a) and {\mathit{\boldsymbol{v}}}_H = \hat{\boldsymbol\lambda}_h^n in (4.21), we have

    \begin{align} \|D_{\tau}^\alpha \hat u_h^n\|^2+(\mathcal{A}^{-1}D_{\tau}^\alpha \hat{\boldsymbol\lambda}^n_h, \gamma_h \hat{\boldsymbol\lambda}_h^n)+(g(u^n_H) +g'(u^n_H) (\hat u_h^n-u_H^n), D_{\tau}^\alpha \hat u_h^n) = (f^n, D_{\tau}^\alpha \hat u_h^n). \end{align} (4.22)

    Apply Lemma 3.5 to get

    \begin{align} \begin{split} &\|D_{\tau}^\alpha \hat u_h^n\|^2+\frac{\tau^{-\alpha}}{2\Gamma(2-\alpha)}[(\mathcal{A}^{-1}\hat{\boldsymbol\lambda}^n_h, \gamma_h \hat{\boldsymbol\lambda}_h^n) +\sum\limits_{k = 0}^{n-1} b_k^n(\mathcal{A}^{-1}\hat{\boldsymbol\lambda}^k_h, \gamma_h \hat{\boldsymbol\lambda}_h^k)\\& +\sum\limits_{k = 0}^{n-1} b_k^n((\mathcal{A}^{-1}\hat{\boldsymbol\lambda}^n_h, \gamma_h \hat{\boldsymbol\lambda}_h^k) -(\mathcal{A}^{-1}\hat{\boldsymbol\lambda}^k_h, \gamma_h \hat{\boldsymbol\lambda}_h^n))-\sum\limits_{k = 0}^{n-1} b_k^n(\mathcal{A}^{-1}(\hat{\boldsymbol\lambda}^k_h -\hat{\boldsymbol\lambda}^n_h), \gamma_h (\hat{\boldsymbol\lambda}^k_h-\hat{\boldsymbol\lambda}^n_h))]\\& \leq (f^n, D_{\tau}^\alpha \hat u_H^n)-(g(u^n_H)+g'(u^n_H) (\hat u_h^n-u_H^n), D_{\tau}^\alpha \hat u_h^n). \end{split} \end{align} (4.23)

    Noting that b_k^n < 0 (0\leq k < n) , we have

    \begin{align} \begin{split} &\|D_{\tau}^\alpha \hat u_h^n\|^2+\frac{\tau^{-\alpha}}{2\Gamma(2-\alpha)}(\mathcal{A}^{-1}\hat{\boldsymbol\lambda}^n_h, \gamma_h \hat{\boldsymbol\lambda}_h^n) \\&\quad\leq -\frac{\tau^{-\alpha}}{2\Gamma(2-\alpha)} \sum\limits_{k = 0}^{n-1}b_k^n(\mathcal{A}^{-1} \hat{\boldsymbol\lambda}^k_h, \gamma_h \hat{\boldsymbol\lambda}_h^k)-\frac{\tau^{-\alpha}}{2\Gamma(2-\alpha)} \sum\limits_{k = 0}^{n-1} b_k^n((\mathcal{A}^{-1}\hat{\boldsymbol\lambda}^n_h, \gamma_h \hat{\boldsymbol\lambda}_h^k)-(\mathcal{A}^{-1}\hat{\boldsymbol\lambda}^k_h, \gamma_h \hat{\boldsymbol\lambda}_h^n)) \\&\qquad +2\|f^n\|^2+(2L^2+2\|g\|_{1, \infty}^2)\|u^n_H\|^2+2\|g\|_{1, \infty}^2\|\hat u_h^n\|^2+\frac{1}{2}\|D_{\tau}^\alpha\hat u_h^n\|^2. \end{split} \end{align} (4.24)

    Making use of (4.1) and (4.20), we can apply the technique of (4.9) to obtain

    \begin{align} \begin{split} (1-\frac{\mu_3} {\mu_1}h)(\mathcal{A}^{-1}\hat{\boldsymbol\lambda}^n_h, \gamma_h\hat{\boldsymbol\lambda}_h^n)\leq& -(1 +\frac{\mu_3} {\mu_1}h)\sum\limits_{k = 0}^{n-1} b_k^n(\mathcal{A}^{-1}\hat{\boldsymbol\lambda}^k_h, \gamma_h \hat{\boldsymbol\lambda}_h^k)\\ &+C\Gamma(2-\alpha) \tau^{\alpha}[\|u_H^0\|^2+\|\hat u^0_h\|^2+\sup\limits_{t \in [0, T]}\|f(t)\|^2]. \end{split} \end{align} (4.25)

    Selecting h to satisfy h\leq \hbar_0 , where \hbar_0 = \frac{\mu_1}{2\mu_3} , we have 1-\frac{\mu_3} {\mu_1}h\geq \frac{1}{2} and

    \begin{align} \begin{split} (\mathcal{A}^{-1}\hat{\boldsymbol\lambda}^n_h, \gamma_h\hat{\boldsymbol\lambda}_h^n)\leq& \!-\!\frac{(1 +\frac{\mu_3} {\mu_1}h)}{(1-\frac{\mu_3} {\mu_1}h)} \sum\limits_{k = 0}^{n-1} b_k^n(\mathcal{A}^{-1}\hat{\boldsymbol\lambda}^k_h, \gamma_h \hat{\boldsymbol\lambda}_h^k) \!+\!C\Gamma(2-\alpha) \tau^{\alpha}[\|u_H^0\|^2\!+\!\|\hat u^0_h\|^2\!+\!\sup\limits_{t \in [0, T]}\|f(t)\|^2]. \end{split} \end{align} (4.26)

    Applying the technique of (4.11)–(4.15), for the positive constant c_0 and \tau_2 which defined in Theorem 4.1, we can obtain that if \tau < \min\{\tau_2, \tau_1\} and h\leq c_0\tau , then

    \begin{align} \|\hat{\boldsymbol\lambda}^n_h\|\leq Ce^{\frac{c_0T\mu_3}{\mu_1}}(\|\hat{\boldsymbol\lambda}^0_h\|+\|u_H^0\|+\|\hat u^0_h\|+\sup\limits_{t \in [0, T]}\|f(t)\|). \end{align} (4.27)

    We complete the proof of the stability.

    Remark 4.1. (I) In Theorems 4.1 and 4.2, we also need to select \tau to satisfy \tau < \tau_0 and \tau < \tau_1 , respectively, because of the existence and uniqueness of the MFVE solutions in Theorems 3.1 and 3.2.

    (II) From Theorems 4.1 and 4.2, we can see that \|u_H^n\| and \|\hat{u}_h^n\| are unconditionally stable, and \|\boldsymbol\lambda_H^n\| and \|\hat{\boldsymbol\lambda}_h^n\| are conditionally stable, because the bilinear (\mathcal{A}^{-1}{\mathit{\boldsymbol{z}}}_\hbar, \gamma_q^*{\mathit{\boldsymbol{w}}}_\hbar) (\forall{\mathit{\boldsymbol{z}}}_\hbar, {\mathit{\boldsymbol{w}}}_\hbar\in {\mathit{\boldsymbol{V}}}_\hbar, \hbar = H or h) does not necessarily satisfy symmetry. When the coefficient \mathcal{A}({\mathit{\boldsymbol{x}}}) is a symmetry and positive definite constant matrix, making use of Lemma 3.2, we can see that (\mathcal{A}^{-1}{\mathit{\boldsymbol{z}}}_\hbar, \gamma_\hbar^*{\mathit{\boldsymbol{w}}}_\hbar) is symmetry, Under this condition, we can obtain that \|\boldsymbol\lambda_H^n\| and \|\hat{\boldsymbol\lambda}_h^n\| are also unconditionally stable.

    In order to get the error estimates for two-grid MFVE systems (2.8) and (2.9), we should introduce the standard L^2 -projection [44] P_{\hbar} : W\rightarrow W_{\hbar} , which satisfies

    \begin{align} &(P_\hbar\chi-\chi, w_{\hbar}) = 0, \ \forall w_\hbar\in W_\hbar, \ \text{for any}\ \chi\in W, \end{align} (5.1)
    \begin{align} &\|\chi-P_\hbar\chi\|_{-s, q}\leq C\hbar^{1+s}\|\chi\|_{1, q}, \ s = 0, 1, \ 2\leq q\leq\infty, \ \chi\in W^{1, q}(\Omega), \end{align} (5.2)

    where \hbar = H or h .

    We introduce a generalized MFVE projection (\tilde{\boldsymbol\lambda}_\hbar, \tilde{u}_\hbar): \bar{J}\rightarrow {\mathit{\boldsymbol{V}}}_\hbar\times W_\hbar such that, for \hbar = H or h ,

    \begin{align} \left\{ \begin{array}{ll} (a)\ \ ({{{\rm{div}}}}(\tilde{\boldsymbol\lambda}_\hbar-\boldsymbol\lambda), w_\hbar) = 0, &\forall w_\hbar\in W_\hbar, \\ (b)\ \ (\mathcal{A}^{-1}(\tilde{\boldsymbol\lambda}_\hbar-\boldsymbol\lambda), \gamma_\hbar {\mathit{\boldsymbol{v}}}_\hbar)-({{{\rm{div}}}} {\mathit{\boldsymbol{v}}}_\hbar, \tilde{u}_\hbar-u) = (\mathcal{A}^{-1}\boldsymbol \lambda, (I-\gamma_\hbar) {\mathit{\boldsymbol{v}}}_\hbar), & \forall {\mathit{\boldsymbol{v}}}_\hbar\in {\mathit{\boldsymbol{V}}}_\hbar. \end{array}\right. \end{align} (5.3)

    Then the above projection satisfies the following estimates.

    Lemma 5.1. [43] There exists a constant C > 0 independent of \hbar and t such that, for j = 0, 1 and \hbar = H or h

    \begin{align*} &\|\frac{\partial^j\boldsymbol\lambda}{\partial t^j}-\frac{\partial^j\tilde{\boldsymbol\lambda}_\hbar}{\partial t^j}\| \leq C\hbar\|\frac{\partial^j\boldsymbol\lambda}{\partial t^j}\|_1, \ \frac{\partial^j\boldsymbol\lambda}{\partial t^j}\in(H^1(\Omega))^2, \\ &\|{{{\rm{div}}}}\frac{\partial^j\boldsymbol\lambda}{\partial t^j}-{{{\rm{div}}}}\frac{\partial^j\tilde{\boldsymbol\lambda}_\hbar}{\partial t^j}\| \leq C\hbar\|{{{\rm{div}}}}\frac{\partial^j\boldsymbol\lambda}{\partial t^j}\|_1, \ \frac{\partial^j\boldsymbol\lambda}{\partial t^j}\in {{\mathit{\boldsymbol{H}}}}^1({{{\rm{div}}}}, \Omega), \\ &\|\frac{\partial^ju}{\partial t^j}-\frac{\partial^j\tilde{u}_\hbar}{\partial t^j}\|\leq C\hbar(\|\frac{\partial^j\boldsymbol\lambda}{\partial t^j}\|_1+\|\frac{\partial^ju}{\partial t^j}\|_1), \ \frac{\partial^j\boldsymbol\lambda}{\partial t^j}\in(H^1(\Omega))^2, \frac{\partial^ju}{\partial t^j}\in H^1(\Omega), \end{align*}

    where {{\mathit{\boldsymbol{H}}}}^1({{{\rm{div}}}}, \Omega) = \{{\mathit{\boldsymbol{v}}}\in (L^2(\Omega))^2: {{{\rm{div}}}} {\mathit{\boldsymbol{v}}}\in H^1(\Omega)\} .

    Lemma 5.2. [38] For 2 < q \leq \infty and \hbar = H or h , the following L^q -estimate holds

    \begin{align*} \|u-\tilde{u}_\hbar\|_{0, q}\leq C\hbar(\|u\|_{1, q}+\|\boldsymbol \lambda\|_1+\|{{{\rm{div}}}} \boldsymbol \lambda\|_1), \ u\in W^{1, q}(\Omega), \boldsymbol\lambda\in (H^1(\Omega))^2\cap {{\mathit{\boldsymbol{H}}}}^1({{{\rm{div}}}}, \Omega). \end{align*}

    Moreover, for j = 0, 1 , the following superconvergence result holds

    \begin{align*} \|\frac{\partial^j P_\hbar u}{\partial t^j}-\frac{\partial^j\tilde{u}_\hbar}{\partial t^j}\| \leq C\hbar^2(\|\frac{\partial^j \boldsymbol\lambda}{\partial t^j}\|_1 +\|\frac{\partial^j {{{\rm{div}}}} \boldsymbol\lambda}{\partial t^j}\|_1), \ \frac{\partial^j u}{\partial t^j}\in H^1(\Omega), \frac{\partial^j \boldsymbol\lambda}{\partial t^j}\in (H^1(\Omega))^2\cap {{\mathit{\boldsymbol{H}}}}^1({{{\rm{div}}}}, \Omega). \end{align*}

    Now, let \beta^n = u^n-\tilde{u}_H^n , \sigma^n = \tilde{u}_H^n -u_H^n , \boldsymbol\zeta^n = \boldsymbol\lambda^n-\tilde{\boldsymbol\lambda}_H^n , \boldsymbol\delta^n = \tilde{\boldsymbol\lambda}_H^n -\boldsymbol\lambda_H^n , where (\tilde{\boldsymbol\lambda}_H^n, \tilde{u}_H^n)\in {\mathit{\boldsymbol{V}}}_H\times W_H is the generalized MFVE projection of (\boldsymbol\lambda, u) , then we can obtain the error equations as follows

    \begin{align} \left\{ \begin{array}{ll} (a)\ \ (D_{\tau}^\alpha \sigma^n\!, \!w_H)\!+\!({{{\rm{div}}}}\boldsymbol \delta^n, w_H)\!+\!(g(u^n)-g(u^n_H), w_H) = \!-\!(D_{\tau}^\alpha \beta^n, w_H) \!-\!(R_t^n({\mathit{\boldsymbol{x}}}), w_H), &\!\forall\! w_H\in W_H, \\ (b)\ \ (\mathcal{A}^{-1}\boldsymbol \delta^n, \gamma_H {\mathit{\boldsymbol{v}}}_H)-({{{\rm{div}}}} {\mathit{\boldsymbol{v}}}_H, \sigma^n) = 0, & \!\forall\! {\mathit{\boldsymbol{v}}}_H\in {\mathit{\boldsymbol{V}}}_H. \end{array}\right. \end{align} (5.4)

    Theorem 5.1. Let (\boldsymbol \lambda_H^n, u_H^n)\in {\mathit{\boldsymbol{V}}}_H \times W_H and (\boldsymbol \lambda^n, u^n)\in {\mathit{\boldsymbol{V}}} \times W be the solutions of systems (2.8) and (2.2), respectively. Assume that u, {{{\rm{div}}}}\boldsymbol\lambda\in \mathcal{C}^2(\bar{J}, H^1(\Omega)) , \boldsymbol\lambda\in\mathcal{C}^2(\bar{J}, (H^1(\Omega))^2) , and (\boldsymbol \lambda_H^0, u_H^0) = (\tilde{\boldsymbol \lambda}_H^0, \tilde{u}_H^0) , then there exists a constant C > 0 independent of H and \tau such that

    \begin{align} &\max\limits_{1\leq n\leq N}\|u^n-u_H^n\|\leq C(\tau^{2-\alpha}+H), \end{align} (5.5)
    \begin{align} &\max\limits_{1\leq n\leq N}\|\tilde{u}_H^n-u_H^n\|\leq C(\tau^{2-\alpha}+H^2). \end{align} (5.6)

    Moreover, there exist a constant C > 0 independent of H , \tau and c_0 such that, if H\leq c_0\tau\leq c_0\min\{\tau_2, \tau_0\} and H < \hbar_0 , then

    \begin{align} &\max\limits_{1\leq n\leq N}\|\boldsymbol\lambda^n-\boldsymbol\lambda_H^n\| \leq C(H+e^{\frac{c_0T\mu_3}{\mu_1}}(\tau^{2-\alpha}+H^2)), \end{align} (5.7)
    \begin{align} &\max\limits_{1\leq n\leq N}\|\tilde{\boldsymbol\lambda}_H^n-\boldsymbol\lambda_H^n\| \leq Ce^{\frac{c_0T\mu_3}{\mu_1}}(\tau^{2-\alpha}+H^2), \end{align} (5.8)
    \begin{align} &\max\limits_{1\leq n\leq N}\|(\boldsymbol\lambda^n-\boldsymbol\lambda_H^n)\|_{{\mathit{\boldsymbol{H}}}({{{\rm{div}}}}, \Omega)} \leq C(H+e^{\frac{c_0T\mu_3}{\mu_1}}(1+\tau^{-\frac{\alpha}{2}})(\tau^{2-\alpha}+H^2)), \end{align} (5.9)

    where \tau_0 is defined in Theorem 3.1, c_0, \hbar_0 and \tau_2 are defined in Theorem 4.1.

    Proof. Choosing {\mathit{\boldsymbol{v}}}_H = \boldsymbol \delta^n and w_H = \sigma^n in (5.4), we have

    \begin{align} (D_{\tau}^\alpha \sigma^n, \sigma^n)+(\mathcal{A}^{-1}\boldsymbol \delta^n, \gamma_H \boldsymbol \delta^n) = -(g(u^n)-g(u^n_H), \sigma^n) -(D_{\tau}^\alpha \beta^n, \sigma^n) -(R_t^n({\mathit{\boldsymbol{x}}}), \sigma^n). \end{align} (5.10)

    Making use of the Lagrange mean value theorem, L^2 -projection P_H and Lemma 5.2, we have

    \begin{equation} \begin{split} -(g(u^n)-g(u^n_H), \sigma^n) & = -(g'(u_*^n)(u^n-u_H^n), \sigma^n)\\ & = -(g'(u_*^n)(u^n-P_Hu^n+P_Hu^n-\tilde{u}_H^n+\sigma^n), \sigma^n)\\ & = -((g'(u_*^n)-P_Hg'(u_*^n))(u^n-P_Hu^n)+g'(u_*^n)(P_Hu^n-\tilde{u}_H^n+\sigma^n), \sigma^n)\\ &\leq CH^4(\|g\|_{2, \infty}^2\|u\|_{L^\infty(H^1(\Omega))}^2 +\|g\|_{1, \infty}^2(\|\boldsymbol\lambda\|_{L^\infty((H^1(\Omega))^2)}+\|{{{\rm{div}}}}\boldsymbol\lambda\|_{L^\infty(H^1(\Omega))})^2 )\\ &\quad+(1+\|g\|_{1, \infty})\|\sigma^n\|^2, \end{split} \end{equation} (5.11)

    where u_*^n is located between u^n and u_H^n . And we can also obtain

    \begin{equation} \begin{split} -(D_{\tau}^\alpha\beta^n, \sigma^n) & = -(D_{\tau}^\alpha(u^n-P_Hu^n+P_Hu^n-\tilde{u}_H^n), \sigma^n)\\ & = -(D_{\tau}^\alpha(P_Hu^n-\tilde{u}_H^n), \sigma^n)\\ &\leq Ct_n^{1-\alpha}H^2(\|\boldsymbol\lambda_t\|_{L^\infty((H^1(\Omega))^2)}+\|{{{\rm{div}}}}\boldsymbol\lambda_t\|_{L^\infty(H^1(\Omega))})\|\sigma^n\|. \end{split} \end{equation} (5.12)

    Substituting (5.11) and (5.12) into (5.10), making use of Lemma 3.7, we obtain

    \begin{align} \begin{split} D_{\tau}^\alpha \|\sigma^n\|^2 \leq& CH^4(\|g\|_{2, \infty}^2\|u\|_{L^\infty(H^1(\Omega))}^2 +\|g\|_{1, \infty}^2(\|\boldsymbol\lambda\|_{L^\infty((H^1(\Omega))^2)}+\|{{{\rm{div}}}}\boldsymbol\lambda\|_{L^\infty(H^1(\Omega))})^2 )\\ &+Ct_n^{2-2\alpha}H^4(\|\boldsymbol\lambda_t\|_{L^\infty((H^1(\Omega))^2)}+\|{{{\rm{div}}}}\boldsymbol\lambda_t\|_{L^\infty(H^1(\Omega))})^2 +2(2+\|g\|_{1, \infty})\|\sigma^n\|^2+\|R_t^n({\mathit{\boldsymbol{x}}})\|^2. \end{split} \end{align} (5.13)

    Noting that \sigma^0 = 0 , applying Lemma 3.8, we obtain

    \begin{align} \begin{split} \|\sigma^n\|\leq C(\tau^{2-\alpha}+H^2). \end{split} \end{align} (5.14)

    Making use of (5.4) (b) , we have

    \begin{align} (\mathcal{A}^{-1}D_{\tau}^\alpha \boldsymbol \delta^n, \gamma_H {\mathit{\boldsymbol{v}}}_H)-({{{\rm{div}}}} {\mathit{\boldsymbol{v}}}_H, D_{\tau}^\alpha \sigma^n) = 0, & \forall {\mathit{\boldsymbol{v}}}_h\in {\mathit{\boldsymbol{V}}}_h. \end{align} (5.15)

    Choosing w_H = D_{\tau}^\alpha \sigma^n in (5.4) (a) and {\mathit{\boldsymbol{v}}}_H = \boldsymbol\delta^n in (5.15), we have

    \begin{align} \begin{split} &\|D_{\tau}^\alpha \sigma^n\|^2+(\mathcal{A}^{-1}D_{\tau}^\alpha \boldsymbol \delta^n, \gamma_H \boldsymbol \delta^n) = -(g(u^n)-g(u^n_H) , D_{\tau}^\alpha \sigma^n)-(D_{\tau}^\alpha \beta^n, D_{\tau}^\alpha \sigma^n)-(R_t^n({\mathit{\boldsymbol{x}}}), D_{\tau}^\alpha \sigma^n). \end{split} \end{align} (5.16)

    For the term -(g(u^n)-g(u^n_H), D_{\tau}^\alpha \sigma^n) , similar to (5.11), we have

    \begin{equation} \begin{split} -(g(u^n)-g(u^n_H), D_{\tau}^\alpha \sigma^n)\leq& CH^4(\|g\|_{2, \infty}^2\|u\|_{L^\infty(H^1(\Omega))}^2 +\|g\|_{1, \infty}^2(\|\boldsymbol\lambda\|_{L^\infty((H^1(\Omega))^2)}+\|{{{\rm{div}}}}\boldsymbol\lambda\|_{L^\infty(H^1(\Omega))})^2 )\\ &+C\|g\|_{1, \infty}^2\|\sigma^n\|^2+\frac{1}{6}\|D_{\tau}^\alpha \sigma^n\|^2. \end{split} \end{equation} (5.17)

    For the term -(D_{\tau}^\alpha \beta^n, D_{\tau}^\alpha \sigma^n) , similar to (5.12), we have

    \begin{equation} \begin{split} -(D_{\tau}^\alpha\beta^n, D_{\tau}^\alpha \sigma^n) \leq Ct_n^{2-2\alpha}H^4(\|\boldsymbol\lambda_t\|_{L^\infty((H^1(\Omega))^2)}+\|{{{\rm{div}}}}\boldsymbol\lambda_t\|_{L^\infty(H^1(\Omega))})^2 +\frac{1}{6}\|D_{\tau}^\alpha \sigma^n\|^2. \end{split} \end{equation} (5.18)

    Substituting (5.17) and (5.18) into (5.16), applying Lemma 3.5, we obtain

    \begin{align} \begin{split} &\frac{1}{2}\|D_{\tau}^\alpha \sigma^n\|^2+\frac{\tau^{-\alpha}}{2\Gamma(2-\alpha)}[(\mathcal{A}^{-1}\boldsymbol \delta^n, \gamma_H \boldsymbol \delta^n)+\sum\limits_{k = 0}^{n-1} b_k^n(\mathcal{A}^{-1}\boldsymbol \delta^k, \gamma_H \boldsymbol \delta^k)\\ &-\sum\limits_{k = 0}^{n-1} b_k^n((\mathcal{A}^{-1}(\boldsymbol \delta^n-\boldsymbol \delta^k), \gamma_H (\boldsymbol \delta^n-\boldsymbol \delta^k))+\sum\limits_{k = 0}^{n-1} b_k^n((\mathcal{A}^{-1}\boldsymbol \delta^n, \gamma_H \boldsymbol \delta^k)-(\mathcal{A}^{-1}\boldsymbol \delta^k, \gamma_H \boldsymbol \delta^n))]\\ &\qquad\leq CH^4(\|g\|_{2, \infty}^2\|u\|_{L^\infty(H^1(\Omega))}^2 +\|g\|_{1, \infty}^2(\|\boldsymbol\lambda\|_{L^\infty((H^1(\Omega))^2)}+\|{{{\rm{div}}}}\boldsymbol\lambda\|_{L^\infty(H^1(\Omega))})^2 )\\ &\qquad\ \ \ +Ct_n^{2-2\alpha}H^4(\|\boldsymbol\lambda_t\|_{L^\infty((H^1(\Omega))^2)}+\|{{{\rm{div}}}}\boldsymbol\lambda_t\|_{L^\infty(H^1(\Omega))})^2 +C\|g\|_{1, \infty}^2\|\sigma^n\|^2+\frac{3}{2}\|R_t^n({\mathit{\boldsymbol{x}}})\|^2. \end{split} \end{align} (5.19)

    Noting that b_k^n < 0 (0\leq k < n) , making use of (4.9) and (5.14), we have

    \begin{align} \begin{split} (1-\frac{\mu_3}{\mu_1}H)(\mathcal{A}^{-1}\boldsymbol \delta^n, \gamma_H \boldsymbol \delta^n) \leq -(1+\frac{\mu_3}{\mu_1}H) \sum\limits_{k = 0}^{n-1} b_k^n(\mathcal{A}^{-1}\boldsymbol \delta^k, \gamma_H \boldsymbol \delta^k) +C\tau^{\alpha}(\tau^{2(2-\alpha)}+H^4). \end{split} \end{align} (5.20)

    Selecting H to satisfy H\leq \hbar_0 , where \hbar_0 = \frac{\mu_1}{2\mu_3} , we have 1-\frac{\mu_3} {\mu_1}H\geq \frac{1}{2} and

    \begin{align} \begin{split} (\mathcal{A}^{-1}\boldsymbol \delta^n, \gamma_H \boldsymbol \delta^n) \leq -\frac{1+\frac{\mu_3}{\mu_1}H}{1-\frac{\mu_3}{\mu_1}H} \sum\limits_{k = 0}^{n-1} b_k^n(\mathcal{A}^{-1}\boldsymbol \delta^k, \gamma_H \boldsymbol \delta^k) +C\tau^{\alpha}(\tau^{2(2-\alpha)}+H^4). \end{split} \end{align} (5.21)

    Applying the technique of (4.11)–(4.15), for the positive constant c_0 and \tau_2 which defined in Theorem 4.1, noting that \boldsymbol\delta^0 = {\mathit{\boldsymbol{0}}} , we can obtain that if \tau < \min\{\tau_2, \tau_0\} and H\leq c_0\tau , then

    \begin{align} \begin{split} \|\boldsymbol \delta^n\| \leq& Ce^{\frac{c_0T\mu_3}{\mu_1}}(\tau^{2-\alpha}+H^2). \end{split} \end{align} (5.22)

    Finally, we estimate \|\boldsymbol\lambda^n-\boldsymbol\lambda_H^n\|_{{\mathit{\boldsymbol{H}}}({{{\rm{div}}}}, \Omega)} . Choosing w_H = {{{\rm{div}}}} \boldsymbol\delta^n in (5.4) (a) and v_H = \boldsymbol\delta^n in (5.15), we have

    \begin{align} \begin{split} (\mathcal{A}^{-1}D_{\tau}^\alpha \boldsymbol \delta^n, \gamma_H \boldsymbol \delta^n)+\|{{{\rm{div}}}}\boldsymbol \delta^n\|^2 +(g(u^n)-g(u^n_H), {{{\rm{div}}}} \boldsymbol\delta^n) = -(D_{\tau}^\alpha \beta^n, {{{\rm{div}}}} \boldsymbol\delta^n) -(R_t^n({\mathit{\boldsymbol{x}}}), {{{\rm{div}}}} \boldsymbol\delta^n). \end{split} \end{align} (5.23)

    Noting that

    \begin{align} \begin{split} -(\mathcal{A}^{-1}D_{\tau}^\alpha \boldsymbol \delta^n, \gamma_H \boldsymbol \delta^n)& = \frac{\tau^{-\alpha}} {\Gamma(2-\alpha)}[\sum\limits_{k = 0}^{n-1}(-b_k^n)(\mathcal{A}^{-1}\boldsymbol \delta^k, \gamma_H \boldsymbol \delta^n) -(\mathcal{A}^{-1}\boldsymbol \delta^n, \gamma_H \boldsymbol \delta^n)]\\ &\leq C\frac{\tau^{-\alpha}} {\Gamma(2-\alpha)}\sum\limits_{k = 0}^{n-1}(-b_k^n)\|\boldsymbol \delta^k\|\|\boldsymbol \delta^n\|\\ &\leq Ce^{\frac{2c_0T\mu_3}{\mu_1}}\frac{1}{\Gamma(2-\alpha)}\tau^{-\alpha}(\tau^{2-\alpha}+H^2)^2, \end{split} \end{align} (5.24)

    similar to the proof of (5.17) and (5.18), we obtain

    \begin{align} \begin{split} \frac{1}{2}\|{{{\rm{div}}}}\boldsymbol \delta^n\|^2 \leq& Ce^{\frac{2c_0T\mu_3}{\mu_1}}\tau^{-\alpha}(\tau^{2-\alpha}+H^2)^2 +C\|g\|_{1, \infty}^2\|\sigma^n\|^2+\frac{3}{2}\|R_t^n({\mathit{\boldsymbol{x}}})\|^2\\ &+CH^4(\|g\|_{2, \infty}^2\|u\|_{L^\infty(H^1(\Omega))}^2 +\|g\|_{1, \infty}^2(\|\boldsymbol\lambda\|_{L^\infty((H^1(\Omega))^2)}+\|{{{\rm{div}}}}\boldsymbol\lambda\|_{L^\infty(H^1(\Omega))})^2 )\\ &+Ct_n^{2-2\alpha}H^4(\|\boldsymbol\lambda_t\|_{L^\infty((H^1(\Omega))^2)}+\|{{{\rm{div}}}}\boldsymbol\lambda_t\|_{L^\infty(H^1(\Omega))})^2. \end{split} \end{align} (5.25)

    Making use of (5.14), we have

    \begin{align} \begin{split} \|{{{\rm{div}}}}\boldsymbol \delta^n\| \leq& C(\tau^{2-\alpha}+H^2+e^{\frac{c_0T\mu_3}{\mu_1}}\tau^{-\frac{\alpha}{2}}(\tau^{2-\alpha}+H^2)). \end{split} \end{align} (5.26)

    Then, apply Lemmas 5.1 and 5.2 to complete the proof.

    Remark 5.1. For 2 < q\leq\infty , making use of the inverse estimate and Lemma 5.2, we obtain

    \begin{align} \begin{split} \|u^n-u_H^n\|_{0, q}\leq& \|u^n-\tilde{u}_H^n\|_{0, q}+\|\tilde{u}_H^n-u_H^n\|_{0, q}\\ \leq & \|u^n-\tilde{u}_H^n\|_{0, q}+H^{\frac{2}{q}-1}\|\tilde{u}_H^n-u_H^n\|\\ \leq & C(H+H^{\frac{2}{q}-1}(\tau^{2-\alpha}+H^2)). \end{split} \end{align} (5.27)

    Moreover, when q = 4 , we have

    \begin{align*} \|u^n-u_H^n\|_{0, 4} \leq C(H+H^{-\frac{1}{2}}\tau^{2-\alpha})), \end{align*}

    which will be applied to the following estimates for the linearized MFVE scheme (2.9).

    Next, we give the error estimates for the linearized MFVE scheme (2.9). Let \vartheta^n = u^n-\tilde{u}_h^n , \xi^n = \tilde{u}^n_h-\hat{u}_h^n , \boldsymbol\rho^n = \boldsymbol\lambda^n-\tilde{\boldsymbol\lambda}_h^n , \boldsymbol\theta^n = \tilde{\boldsymbol\lambda}^n_h-\hat{\boldsymbol\lambda}_h^n , where (\tilde{\boldsymbol\lambda}_h^n, \tilde{u}_h^n)\in {\mathit{\boldsymbol{V}}}_h\times W_h is the generalized MFVE projection of (\boldsymbol\lambda, u) , then we can obtain the error equations as follows

    \begin{align} \left\{ \begin{array}{ll} (D_{\tau}^\alpha \xi^n, w_h)+({{{\rm{div}}}} \boldsymbol\theta^n, w_h) = -(G, w_h)-(D_{\tau}^\alpha \vartheta^n, w_h)-(R_t^n({\mathit{\boldsymbol{x}}}), w_h), &\forall w_h\in W_h, \\ (\mathcal{A}^{-1}\boldsymbol \theta^n, \gamma_h {\mathit{\boldsymbol{v}}}_h)-({{{\rm{div}}}} {\mathit{\boldsymbol{v}}}_h, \xi^n) = 0, & \forall {\mathit{\boldsymbol{v}}}_h\in {\mathit{\boldsymbol{V}}}_h, \end{array}\right. \end{align} (5.28)

    where G = g(u^n)-g(u^n_H)-g'(u^n_H)(\hat u_h^n-u^n_H) .

    Theorem 5.2. Let (\hat{\boldsymbol \lambda}_h^n, \hat u_h^n)\in {\mathit{\boldsymbol{V}}}_h \times W_h and (\boldsymbol \lambda^n, u^n)\in {\mathit{\boldsymbol{V}}} \times W be the solutions of systems (2.9) and (2.2), respectively. Assume that u\in \mathcal{C}^2(\bar{J}, W^{1, 4}(\Omega)) , \boldsymbol\lambda\in\mathcal{C}^2(\bar{J}, (H^1(\Omega))^2) , {{{\rm{div}}}}\boldsymbol\lambda\in \mathcal{C}^2(\bar{J}, H^1(\Omega)) , and (\hat{\boldsymbol \lambda}_h^0, \hat{u}_h^0) = (\tilde{\boldsymbol \lambda}_h^0, \tilde{u}_h^0) , then there exists a constant C > 0 independent of h and \tau such that

    \begin{align} \max\limits_{1\leq n\leq N}\|u^n-\hat u_h^n\|\leq C(\tau^{2-\alpha}+h+H^2+H^{-1}\tau^{4-2\alpha}). \end{align} (5.29)

    Moreover, there exist a constant C > 0 independent of h , \tau and c_0 such that, if h\leq c_0\tau\leq c_0\min\{\tau_2, \tau_1\} and h < \hbar_0 , then

    \begin{align} &\max\limits_{1\leq n\leq N}\|\boldsymbol\lambda^n-\hat{\boldsymbol\lambda}_h^n\| \leq C(h+e^{\frac{c_0T\mu_3}{\mu_1}}(\tau^{2-\alpha}+h^2+H^2+H^{-1}\tau^{4-2\alpha})), \end{align} (5.30)
    \begin{align} &\max\limits_{1\leq n\leq N}\|(\boldsymbol\lambda^n-\hat{\boldsymbol\lambda}_h^n)\|_{{\mathit{\boldsymbol{H}}}({{{\rm{div}}}}, \Omega)} \leq C(h+e^{\frac{c_0T\mu_3}{\mu_1}}(1+\tau^{-\frac{\alpha}{2}})(\tau^{2-\alpha}+h^2+H^2+H^{-1}\tau^{4-2\alpha})), \end{align} (5.31)

    where \tau_1 is defined in Theorem 3.2, c_0, \hbar_0 and \tau_2 are defined in Theorem 4.1.

    Proof. Choosing {\mathit{\boldsymbol{v}}}_h = \boldsymbol \theta^n and w_h = \xi^n in (5.28), we have

    \begin{align} (D_{\tau}^\alpha \xi^n, \xi^n)+(\mathcal{A}^{-1} \boldsymbol\theta^n, \gamma_h \boldsymbol \theta^n) = -(G, \xi^n)-(D_{\tau}^\alpha \vartheta^n, \xi^n) -(R_t^n({\mathit{\boldsymbol{x}}}), \xi^n). \end{align} (5.32)

    Making use of the Taylor expansion for g(u^n) on u = u_H^n , we have

    \begin{align} g(u^n) = g(u_H^n)+g'(u_H^n)(u^n-u_H^n)+\frac{1}{2}g''(u_\diamond^n)(u^n-u_H^n)^2, \end{align} (5.33)

    where u_\diamond^n is located between u^n and u_H^n . Noting that

    \begin{equation} \begin{split} -(G, \xi^n) & = -(g'(u_H^n)(u^n-\hat u_h^n)+\frac{1}{2}g''(u_\diamond^n)(u^n-u_H^n)^2, \xi^n)\\ &\leq Ch^4(\|g\|_{2, \infty}^2\|u\|_{L^\infty(H^1(\Omega))}^2 +\|g\|_{1, \infty}^2(\|\boldsymbol\lambda\|_{L^\infty((H^1(\Omega))^2)}+\|{{{\rm{div}}}}\boldsymbol\lambda\|_{L^\infty(H^1(\Omega))})^2 )\\ &\ \ \ +C\|g\|_{2, \infty}^2 \|u^n-u_H^n\|_{0, 4}^4+(1+\|g\|_{1, \infty})\|\xi^n\|^2, \end{split} \end{equation} (5.34)

    similar to (5.12) for (D_{\tau}^\alpha \vartheta^n, \xi^n) , applying Lemma 3.7, we obtain

    \begin{align} \begin{split} D_{\tau}^\alpha \|\xi^n\|^2\leq &Ch^4(\|g\|_{2, \infty}^2\|u\|_{L^\infty(H^1(\Omega))}^2 +\|g\|_{1, \infty}^2(\|\boldsymbol\lambda\|_{L^\infty((H^1(\Omega))^2)}+\|{{{\rm{div}}}}\boldsymbol\lambda\|_{L^\infty(H^1(\Omega))})^2 )\\ &+Ct_n^{2-2\alpha}h^4(\|\boldsymbol\lambda_t\|_{L^\infty((H^1(\Omega))^2)}+\|{{{\rm{div}}}}\boldsymbol\lambda_t\|_{L^\infty(H^1(\Omega))})^2\\ &+C\|g\|_{2, \infty}^2 \|u^n-u_H^n\|_{0, 4}^4+2(2+\|g\|_{1, \infty})\|\xi^n\|^2+\|R_t^n({\mathit{\boldsymbol{x}}})\|^2. \end{split} \end{align} (5.35)

    Applying Remark 5.1, Lemma 5.1 and Lemma 3.8, noting that \xi^0 = 0 , we obtain

    \begin{align} \begin{split} \|\xi^n\|\leq & C(\tau^{2-\alpha}+h^2+H^2+H^{-1}\tau^{4-2\alpha}). \end{split} \end{align} (5.36)

    Now, making use of (5.28) (b) , we have

    \begin{align} (\mathcal{A}^{-1}D_{\tau}^\alpha \boldsymbol \theta^n, \gamma_h {\mathit{\boldsymbol{v}}}_h)-({{{\rm{div}}}} {\mathit{\boldsymbol{v}}}_h, D_{\tau}^\alpha \xi^n) = 0, & \forall {\mathit{\boldsymbol{v}}}_h\in {\mathit{\boldsymbol{V}}}_h. \end{align} (5.37)

    Choosing w_h = D_{\tau}^\alpha\xi^n in (5.28) (a) and {\mathit{\boldsymbol{v}}}_h = \boldsymbol \theta^n in (5.37), we have

    \begin{align} \|D_{\tau}^\alpha\xi^n\|^2+(\mathcal{A}^{-1}D_{\tau}^\alpha \boldsymbol \theta^n, \gamma_h \boldsymbol \theta^n) = -(G, D_{\tau}^\alpha \xi^n)-(D_{\tau}^\alpha \vartheta^n, D_{\tau}^\alpha \xi^n) -(R_t^n({\mathit{\boldsymbol{x}}}), D_{\tau}^\alpha \xi^n). \end{align} (5.38)

    For the term -(G, D_{\tau}^\alpha \xi^n) , similar to (5.34), we have

    \begin{equation} \begin{split} -(G, D_{\tau}^\alpha \xi^n) & = -(g'(u_H^n)(u^n-\hat u_h^n)+\frac{1}{2}g''(u_\diamond^n)(u^n-u_H^n)^2, D_{\tau}^\alpha \xi^n)\\ &\leq Ch^4(\|g\|_{2, \infty}^2\|u\|_{L^\infty(H^1(\Omega))}^2 +\|g\|_{1, \infty}^2(\|\boldsymbol\lambda\|_{L^\infty((H^1(\Omega))^2)}+\|{{{\rm{div}}}}\boldsymbol\lambda\|_{L^\infty(H^1(\Omega))})^2 )\\ &\ \ \ +C\|g\|_{2, \infty}^2 \|u^n-u_H^n\|_{0, 4}^4+C\|g\|_{1, \infty}^2\|\xi^n\|^2+\frac{1}{6}\|D_{\tau}^\alpha \xi^n\|^2. \end{split} \end{equation} (5.39)

    Similar to (5.12) for (D_{\tau}^\alpha \vartheta^n, D_{\tau}^\alpha \xi^n) , applying Lemma 3.5 in (5.38), we obtain

    \begin{align} \begin{split} &\|D_{\tau}^\alpha \xi^n\|^2+\frac{\tau^{-\alpha}}{2\Gamma(2-\alpha)}[(\mathcal{A}^{-1}\boldsymbol \theta^n, \gamma_h \boldsymbol \theta^n) +\sum\limits_{k = 0}^{n-1} b_k^n(\mathcal{A}^{-1}\boldsymbol \theta^k, \gamma_h \boldsymbol \theta^k)\\ &-\sum\limits_{k = 0}^{n-1} b_k^n(\mathcal{A}^{-1}(\boldsymbol \theta^n -\boldsymbol \theta^k), \gamma_h (\boldsymbol \theta^n-\boldsymbol \theta^k)) +\sum\limits_{k = 0}^{n-1} b_k^n((\mathcal{A}^{-1}\boldsymbol \theta^n, \gamma_h \boldsymbol \theta^k)-(\mathcal{A}^{-1}\boldsymbol \theta^k, \gamma_h \boldsymbol \theta^n))]\\ &\qquad\leq Ch^4(\|g\|_{2, \infty}^2\|u\|_{L^\infty(H^1(\Omega))}^2 +\|g\|_{1, \infty}^2(\|\boldsymbol\lambda\|_{L^\infty((H^1(\Omega))^2)}+\|{{{\rm{div}}}}\boldsymbol\lambda\|_{L^\infty(H^1(\Omega))})^2 )\\ &\qquad\ \ \ +C\|g\|_{2, \infty}^2 \|u^n-u_H^n\|_{0, 4}^4+C\|g\|_{1, \infty}^2\|\xi^n\|^2+C\|R_t^n({\mathit{\boldsymbol{x}}})\|^2\\ &\qquad\ \ \ +Ct_n^{2-2\alpha}h^4(\|\boldsymbol\lambda_t\|_{L^\infty((H^1(\Omega))^2)}+\|{{{\rm{div}}}}\boldsymbol\lambda_t\|_{L^\infty(H^1(\Omega))})^2 +\frac{1}{2}\|D_{\tau}^\alpha \xi^n\|^2. \end{split} \end{align} (5.40)

    Noting that b_k^n < 0 (0\leq k < n) , and making use of (5.36), we get

    \begin{align} \begin{split} (1\!-\!\frac{\mu_3}{\mu_1}h)(\mathcal{A}^{-1}\boldsymbol \theta^n, \gamma_h \boldsymbol \theta^n) \leq-(1+\frac{\mu_3}{\mu_1}h) \sum\limits_{k = 0}^{n-1} b_k^n(\mathcal{A}^{-1}\boldsymbol \theta^k, \gamma_h \boldsymbol \theta^k) \!+\!C\tau^\alpha(\tau^{4-2\alpha}\!+\!h^4\!+\!(H\!+\!H^{\!-\!\frac{1}{2}}\tau^{2\!-\!\alpha})^4). \end{split} \end{align} (5.41)

    Selecting h to satisfy h\leq \hbar_0 , where \hbar_0 = \frac{\mu_1}{2\mu_3} , we have 1-\frac{\mu_3}{\mu_1}h\geq \frac{1}{2} and

    \begin{align} \begin{split} (\mathcal{A}^{-1}\boldsymbol \theta^n, \gamma_h \boldsymbol \theta^n) \leq-\frac{1+\frac{\mu_3}{\mu_1}h}{1-\frac{\mu_3}{\mu_1}h} \sum\limits_{k = 0}^{n-1} b_k^n(\mathcal{A}^{-1}\boldsymbol \theta^k, \gamma_h \boldsymbol \theta^k)+C\tau^\alpha(\tau^{4-2\alpha}+h^4+(H+H^{-\frac{1}{2}}\tau^{2-\alpha})^4). \end{split} \end{align} (5.42)

    Applying the technique of (4.11)–(4.15), for the positive constant c_0 and \tau_2 which defined in Theorem 4.1, we can obtain that if \tau < \min\{\tau_2, \tau_1\} and h\leq c_0\tau , then

    \begin{align} \begin{split} \|\boldsymbol \theta^n\| \leq& Ce^{\frac{c_0T\mu_3}{\mu_1}}(\tau^{2-\alpha}+h^2+H^2+H^{-1}\tau^{4-2\alpha}). \end{split} \end{align} (5.43)

    Apply Lemma 5.1 to complete the proof of (5.29) and (5.30).

    Then, we estimate \|{{{\rm{div}}}}(\boldsymbol\lambda^n-\boldsymbol\lambda_h^n)\| . Choosing w_h = {{{\rm{div}}}} \boldsymbol \theta^n in (5.28) and {\mathit{\boldsymbol{v}}}_h = \boldsymbol \theta^n in (5.37), we have

    \begin{align} \begin{split} (\mathcal{A}^{-1}D_{\tau}^\alpha \boldsymbol \theta^n, \gamma_h \boldsymbol \theta^n)+\|{{{\rm{div}}}}\boldsymbol \theta^n\|^2 = -(G, {{{\rm{div}}}} \boldsymbol \theta^n)-(D_{\tau}^\alpha \vartheta^n, {{{\rm{div}}}} \boldsymbol \theta^n) -(R_t^n({\mathit{\boldsymbol{x}}}), {{{\rm{div}}}} \boldsymbol \theta^n). \end{split} \end{align} (5.44)

    Apply Lemma 3.7 to obtain

    \begin{align} \begin{split} \frac{1}{2}\|{{{\rm{div}}}}\boldsymbol \theta^n\|^2\leq-(\mathcal{A}^{-1}D_{\tau}^\alpha \boldsymbol \theta^n, \gamma_h \boldsymbol \theta^n) -(G, {{{\rm{div}}}} \boldsymbol \theta^n)-(D_{\tau}^\alpha \vartheta^n, {{{\rm{div}}}} \boldsymbol \theta^n) -(R_t^n({\mathit{\boldsymbol{x}}}), {{{\rm{div}}}} \boldsymbol \theta^n). \end{split} \end{align} (5.45)

    Applying the technique of (5.24) and (5.25), we have

    \begin{align} \begin{split} \|{{{\rm{div}}}}\boldsymbol \theta^n\|\leq& C(\tau^{2-\alpha}+h^2+H^2+H^{-1}\tau^{4-2\alpha}+e^{\frac{c_0T\mu_3}{\mu_1}}\tau^{-\frac{\alpha}{2}} (\tau^{2-\alpha}+h^2+H^2+H^{-1}\tau^{4-2\alpha})). \end{split} \end{align} (5.46)

    Finally, apply Lemma 5.1 and Remark 5.1 to complete the proof of (5.31).

    Remark 5.2. (I) In Theorem 5.1, we should assume that u, {{{\rm{div}}}}\boldsymbol\lambda\in \mathcal{C}^2(\bar{J}, H^1(\Omega)) , \boldsymbol\lambda\in\mathcal{C}^2(\bar{J}, (H^1(\Omega))^2) . We also need add the regularity u\in \mathcal{C}^2(\bar{J}, W^{1, 4}(\Omega)) in Theorem 5.2. Moreover, it should be pointed out that the solutions of FDEs usually show the initial weak singularity, some numerical methods [45,46,47,48,49,50] were proposed to deal with this problem.

    (II) Similar to Remark 4.1, when the coefficient \mathcal{A}({\mathit{\boldsymbol{x}}}) is a symmetry and positive definite constant matrix, we can remove the conditions H\leq c_0\tau and h\leq c_0\tau in the analysis and results of Theorems 5.1 and 5.2, respectively.

    In this section, we will give two examples with some numerical results to test the convergence rates and the influence of the fractional parameters. In (1.1), we choose \Omega = (0, 1)^2 , J = (0, T] , \mathcal{A}({\mathit{\boldsymbol{x}}}) as the identity matrix, and the exact solution (similar as in [12,31])

    u({\mathit{\boldsymbol{x}}}, t) = t^{\varpi}\sin(2\pi x_1)\sin(2\pi x_2), {\mathit{\boldsymbol{x}}} = (x_1, x_2)\in\bar\Omega, t\in \bar{J},

    where \varpi is a parameter. Then, we can get the auxiliary variable

    \begin{align*} \boldsymbol\lambda({\mathit{\boldsymbol{x}}}, t) = (-t^{\varpi}\cos(2\pi x_1)\sin(2\pi x_2), -t^{\varpi}\sin(2\pi x_1)\cos(2\pi x_2)), \end{align*}

    and the source function

    f({\mathit{\boldsymbol{x}}}, t) = (\frac{\Gamma(\varpi+1)}{\Gamma(\varpi+1-\alpha)}t^{\varpi-\alpha} +8 \pi^2 t^{\varpi})\sin(2\pi x_1)\sin(2\pi x_2)+g(t^{\varpi}\sin(2\pi x_1)\sin(2\pi x_2)).

    Example 6.1. By choosing T = 1 , g(u) = \sin(u) , and \varpi = 2 , we carry out numerical simulation for some different fractional parameters \alpha = 0.2, 0.4, 0.6.0.8 and grid sizes. In Tables 1 and 2, we take \tau = 1/5, 1/8, 1/10 , h\thickapprox \sqrt{2}\tau^{2-\alpha}, H^2\thickapprox 2\tau^{2-\alpha} (in two-grid MFVE algorithm), and h\thickapprox \sqrt{2}\tau^{2-\alpha} (in MFVE algorithm (2.7)), and obtain that the convergence rates in time direction are close to 2-\alpha for u in L^2(\Omega) -norm and \boldsymbol\lambda in (L^2(\Omega))^2 and {\mathit{\boldsymbol{H}}}({{{\rm{div}}}}, \Omega) -norms, which is consistent with the theoretical results in Theorems 5.1 and 5.2. For testing convergence rates in space direction, we fix the time step length \tau = 1/100 , select the coarse and fine grid sizes to satisfy h = H^2/\sqrt{2} = \sqrt{2}/4, \sqrt{2}/16, \sqrt{2}/25, \sqrt{2}/36 , and give numerical results and computing time for the two-grid MFVE algorithm in Table 3. At the same time, in Table 4, we give some numerical results for the MFVE algorithm (2.7) with grid sizes h = \sqrt{2}/4, \sqrt{2}/16, \sqrt{2}/25, \sqrt{2}/36 . We can see that the convergence rates are close to 1 . Moreover, we choose the coarse and fine grid sizes to satisfy h = H^2/\sqrt{2} = \sqrt{2}/4, \sqrt{2}/16, \sqrt{2}/25, \sqrt{2}/36 and h = \sqrt{2}\tau , give numerical results for the two-grid MFVE algorithm in Table 5, and the corresponding numerical results for the MFVE algorithm (2.7) in Table 6. Then we obtain the same conclusions as that discussed in Tables 3 and 4. Furthermore, for the time parameter t = 1 , we show the graphs of the exact solutions for u and \boldsymbol \lambda with h = \sqrt{2}/32 in Figures 2 and 4, respectively, also show the graphs of the numerical solutions based on the two-grid MFVE algorithm with h = \sqrt{2}\tau = H^2/\sqrt{2} = \sqrt{2}/25 in Figures 3 and 5. We find that the numerical solutions and the exact solutions have the same numerical behaviors.

    Table 1.  Numerical results of two-grid MFVE method with \!\sqrt{2}h\!\thickapprox\!H^2\!\thickapprox\!\!2\tau^{2\!-\!\alpha} in Example 6.1.
    \alpha \tau u L^2 Rates \boldsymbol\lambda (L^2)^2 Rates \boldsymbol\lambda {\mathit{\boldsymbol{H}}}({{{\rm{div}}}}) Rates CPU(s)
    0.2 1/5 5.8737E-02 4.4976E-01 4.6277E+00 0.65
    1/8 2.6515E-02 1.6922 1.9978E-01 1.7266 2.0305E+00 1.7527 37.96
    1/10 1.8318E-02 1.6574 1.3464E-01 1.7684 1.3398E+00 1.8632 563.84
    0.4 1/5 8.0866E-02 6.1961E-01 6.3754E+00 0.26
    1/8 3.8300E-02 1.5901 2.9246E-01 1.5973 3.0012E+00 1.6030 5.71
    1/10 2.7028E-02 1.5621 2.0417E-01 1.6106 2.0779E+00 1.6477 44.57
    0.6 1/5 1.0468E-01 8.0240E-01 8.2477E+00 0.12
    1/8 5.8699E-02 1.2309 4.4978E-01 1.2316 4.6292E+00 1.2288 0.98
    1/10 4.2683E-02 1.4279 3.2635E-01 1.4377 3.3528E+00 1.4456 4.55
    0.8 1/5 1.4887E-01 1.1400E+00 1.1662E+01 0.04
    1/8 8.7251E-02 1.1368 6.6995E-01 1.1310 6.8995E+00 1.1169 0.22
    1/10 6.5859E-02 1.2605 5.0497E-01 1.2669 5.1991E+00 1.2680 0.82

     | Show Table
    DownLoad: CSV
    Table 2.  Numerical results of MFVE method with h\thickapprox \sqrt{2}\tau^{2-\alpha} in Example 6.1.
    \alpha h u L^2 Rates \boldsymbol\lambda (L^2)^2 Rates \boldsymbol\lambda {\mathit{\boldsymbol{H}}}({{{\rm{div}}}}) Rates CPU(s)
    0.2 1/5 5.8136E-02 4.4711E-01 4.6025E+00 2.28
    1/8 2.4930E-02 1.8015 1.9182E-01 1.8005 1.9770E+00 1.7979 199.75
    1/10 1.6621E-02 1.8167 1.2790E-01 1.8165 1.3184E+00 1.8158 2421.55
    0.4 1/5 8.0427E-02 6.1829E-01 6.3565E+00 0.48
    1/8 3.7386E-02 1.6299 2.8763E-01 1.6282 2.9636E+00 1.6236 24.77
    1/10 2.6175E-02 1.5977 2.0140E-01 1.5971 2.0757E+00 1.5958 201.41
    0.6 1/5 1.0441E-01 8.0223E-01 8.2333E+00 0.19
    1/8 5.8123E-02 1.2462 4.4704E-01 1.2441 4.6026E+00 1.2374 3.15
    1/10 4.1866E-02 1.4703 3.2209E-01 1.4692 3.3183E+00 1.4662 16.84
    0.8 1/5 1.4856E-01 1.1405E+00 1.1652E+01 0.05
    1/8 8.7070E-02 1.1367 6.6933E-01 1.1339 6.8801E+00 1.1210 0.38
    1/10 6.5363E-02 1.2851 5.0269E-01 1.2831 5.1742E+00 1.2770 2.43

     | Show Table
    DownLoad: CSV
    Table 3.  Numerical results of two-grid MFVE method with τ = 1/100 in Example 6.1.
    \alpha H h u L^2 Rates \boldsymbol\lambda (L^2)^2 Rates \boldsymbol\lambda {\mathit{\boldsymbol{H}}}({{{\rm{div}}}}) Rates CPU(s)
    0.2 \sqrt{2} /2 \sqrt{2} /4 2.5504E-01 1.9551E+00 1.9629E+01 0.12
    \sqrt{2} /4 \sqrt{2} /16 6.5918E-02 0.9760 5.0488E-01 0.9766 5.1957E+00 0.9588 10.79
    \sqrt{2} /5 \sqrt{2} /25 4.2717E-02 0.9721 3.2625E-01 0.9784 3.3509E+00 0.9828 67.58
    \sqrt{2} /6 \sqrt{2} /36 3.0397E-02 0.9331 2.3037E-01 0.9544 2.3518E+00 0.9710 329.64
    0.4 \sqrt{2} /2 \sqrt{2} /4 2.5492E-01 1.9546E+00 1.9629E+01 0.12
    \sqrt{2} /4 \sqrt{2} /16 6.5894E-02 0.9759 5.0481E-01 0.9765 5.1956E+00 0.9588 11.23
    \sqrt{2} /5 \sqrt{2} /25 4.2689E-02 0.9727 3.2618E-01 0.9786 3.3507E+00 0.9829 66.57
    \sqrt{2} /6 \sqrt{2} /36 3.0358E-02 0.9349 2.3026E-01 0.9550 2.3515E+00 0.9712 331.08
    0.6 \sqrt{2} /2 \sqrt{2} /4 2.5479E-01 1.9541E+00 1.9629E+01 0.12
    \sqrt{2} /4 \sqrt{2} /16 6.5864E-02 0.9759 5.0473E-01 0.9764 5.1955E+00 0.9588 10.95
    \sqrt{2} /5 \sqrt{2} /25 4.2658E-02 0.9733 3.2610E-01 0.9788 3.3505E+00 0.9830 66.47
    \sqrt{2} /6 \sqrt{2} /36 3.0313E-02 0.9369 2.3014E-01 0.9558 2.3512E+00 0.9713 329.51
    0.8 \sqrt{2} /2 \sqrt{2} /4 2.5465E-01 1.9535E+00 1.9630E+01 0.11
    \sqrt{2} /4 \sqrt{2} /16 6.5830E-02 0.9758 5.0466E-01 0.9763 5.1956E+00 0.9588 10.66
    \sqrt{2} /5 \sqrt{2} /25 4.2624E-02 0.9740 3.2602E-01 0.9790 3.3506E+00 0.9829 66.49
    \sqrt{2} /6 \sqrt{2} /36 3.0264E-02 0.9391 2.3004E-01 0.9564 2.3512E+00 0.9713 330.54

     | Show Table
    DownLoad: CSV
    Table 4.  Numerical results of MFVE method with \tau = 1/100 in Example 6.1.
    \alpha h u L^2 Rates \boldsymbol\lambda (L^2)^2 Rates \boldsymbol\lambda {\mathit{\boldsymbol{H}}}({{{\rm{div}}}}) Rates CPU(s)
    0.2 \sqrt{2} /4 2.5479E-01 1.9571E+00 1.9624E+01 0.23
    \sqrt{2} /16 6.5395E-02 0.9810 5.0286E-01 0.9802 5.1740E+00 0.9617 27.36
    \sqrt{2} /25 4.1874E-02 0.9989 3.2213E-01 0.9979 3.3182E+00 0.9953 190.66
    \sqrt{2} /36 2.9084E-02 0.9995 2.2378E-01 0.9991 2.3060E+00 0.9980 1181.80
    0.4 \sqrt{2} /4 2.5470E-01 1.9567E+00 1.9625E+01 0.18
    \sqrt{2} /16 6.5393E-02 0.9808 5.0285E-01 0.9801 5.1740E+00 0.9617 27.61
    \sqrt{2} /25 4.1874E-02 0.9988 3.2213E-01 0.9979 3.3182E+00 0.9953 190.46
    \sqrt{2} /36 2.9084E-02 0.9995 2.2378E-01 0.9991 2.3060E+00 0.9980 1180.70
    0.6 \sqrt{2} /4 2.5460E-01 1.9562E+00 1.9625E+01 0.23
    \sqrt{2} /16 6.5390E-02 0.9805 5.0284E-01 0.9799 5.1740E+00 0.9617 27.26
    \sqrt{2} /25 4.1873E-02 0.9988 3.2212E-01 0.9979 3.3182E+00 0.9953 191.45
    \sqrt{2} /36 2.9084E-02 0.9995 2.2377E-01 0.9991 2.3060E+00 0.9980 1187.40
    0.8 \sqrt{2} /4 2.5449E-01 1.9556E+00 1.9625E+01 0.21
    \sqrt{2} /16 6.5386E-02 0.9803 5.0282E-01 0.9798 5.1740E+00 0.9617 26.96
    \sqrt{2} /25 4.1871E-02 0.9987 3.2212E-01 0.9978 3.3182E+00 0.9953 190.56
    \sqrt{2} /36 2.9083E-02 0.9995 2.2377E-01 0.9991 2.3060E+00 0.9980 1193.80

     | Show Table
    DownLoad: CSV
    Table 5.  Numerical results of two-grid MFVE method with h = \sqrt{2}\tau in Example 6.1.
    \alpha H h u L^2 Rates \boldsymbol\lambda (L^2)^2 Rates \boldsymbol\lambda {\mathit{\boldsymbol{H}}}({{{\rm{div}}}}) Rates CPU(s)
    0.2 \sqrt{2} /2 \sqrt{2} /4 2.5504E-01 1.9551E+00 1.9629E+01 0.020
    \sqrt{2} /4 \sqrt{2} /16 6.5919E-02 0.9760 5.0488E-01 0.9766 5.1958E+00 0.9588 1.42
    \sqrt{2} /5 \sqrt{2} /25 4.2717E-02 0.9721 3.2626E-01 0.9784 3.3509E+00 0.9828 11.87
    \sqrt{2} /6 \sqrt{2} /36 3.0397E-02 0.9331 2.3037E-01 0.9544 2.3518E+00 0.9710 87.79
    0.4 \sqrt{2} /2 \sqrt{2} /4 2.5492E-01 1.9545E+00 1.9630E+01 0.021
    \sqrt{2} /4 \sqrt{2} /16 6.5896E-02 0.9759 5.0484E-01 0.9765 5.1959E+00 0.9588 1.34
    \sqrt{2} /5 \sqrt{2} /25 4.2691E-02 0.9726 3.2620E-01 0.9786 3.3509E+00 0.9829 11.92
    \sqrt{2} /6 \sqrt{2} /36 3.0360E-02 0.9349 2.3027E-01 0.9550 2.3516E+00 0.9712 87.84
    0.6 \sqrt{2} /2 \sqrt{2} /4 2.5479E-01 1.9538E+00 1.9631E+01 0.020
    \sqrt{2} /4 \sqrt{2} /16 6.5870E-02 0.9758 5.0480E-01 0.9763 5.1963E+00 0.9588 1.33
    \sqrt{2} /5 \sqrt{2} /25 4.2664E-02 0.9732 3.2616E-01 0.9787 3.3511E+00 0.9829 11.96
    \sqrt{2} /6 \sqrt{2} /36 3.0318E-02 0.9368 2.3019E-01 0.9557 2.3516E+00 0.9713 88.40
    0.8 \sqrt{2} /2 \sqrt{2} /4 2.5464E-01 1.9530E+00 1.9632E+01 0.019
    \sqrt{2} /4 \sqrt{2} /16 6.5845E-02 0.9757 5.0482E-01 0.9759 5.1975E+00 0.9587 1.34
    \sqrt{2} /5 \sqrt{2} /25 4.2639E-02 0.9737 3.2619E-01 0.9786 3.3520E+00 0.9828 11.95
    \sqrt{2} /6 \sqrt{2} /36 3.0278E-02 0.9388 2.3017E-01 0.9561 2.3524E+00 0.9712 88.11

     | Show Table
    DownLoad: CSV
    Table 6.  Numerical results of MFVE method with h = \sqrt{2}\tau in Example 6.1.
    \alpha h u L^2 Rates \boldsymbol\lambda (L^2)^2 Rates \boldsymbol\lambda {\mathit{\boldsymbol{H}}}({{{\rm{div}}}}) Rates CPU(s)
    0.2 \sqrt{2} /4 2.5478E-01 1.9570E+00 1.9624E+01 0.016
    \sqrt{2} /16 6.5394E-02 0.9810 5.0286E-01 0.9802 5.1740E+00 0.9617 4.12
    \sqrt{2} /25 4.1874E-02 0.9988 3.2213E-01 0.9979 3.3182E+00 0.9953 44.61
    \sqrt{2} /36 2.9084E-02 0.9995 2.2378E-01 0.9991 2.3060E+00 0.9980 407.31
    0.4 \sqrt{2} /4 2.5468E-01 1.9565E+00 1.9625E+01 0.013
    \sqrt{2} /16 6.5390E-02 0.9808 5.0284E-01 0.9800 5.1740E+00 0.9617 4.13
    \sqrt{2} /25 4.1873E-02 0.9988 3.2212E-01 0.9979 3.3182E+00 0.9953 45.10
    \sqrt{2} /36 2.9084E-02 0.9995 2.2377E-01 0.9991 2.3060E+00 0.9980 425.11
    0.6 \sqrt{2} /4 2.5456E-01 1.9557E+00 1.9625E+01 0.012
    \sqrt{2} /16 6.5384E-02 0.9805 5.0280E-01 0.9798 5.1740E+00 0.9617 4.10
    \sqrt{2} /25 4.1871E-02 0.9987 3.2211E-01 0.9978 3.3182E+00 0.9954 45.55
    \sqrt{2} /36 2.9083E-02 0.9994 2.2377E-01 0.9990 2.3060E+00 0.9980 424.78
    0.8 \sqrt{2} /4 2.5442E-01 1.9548E+00 1.9625E+01 0.013
    \sqrt{2} /16 6.5373E-02 0.9802 5.0274E-01 0.9796 5.1741E+00 0.9617 4.23
    \sqrt{2} /25 4.1867E-02 0.9985 3.2209E-01 0.9977 3.3183E+00 0.9954 45.52
    \sqrt{2} /36 2.9081E-02 0.9993 2.2376E-01 0.9989 2.3061E+00 0.9980 426.82

     | Show Table
    DownLoad: CSV
    Figure 2.  The exact solution of u at t = 1 with h = \sqrt{2}/32 .
    Figure 3.  The numerical solution of u at t\! = \!1 with h\! = \!\sqrt{2}\!\tau\! = \!H^2\!/\!\sqrt{2}\! = \!\sqrt{2}\!/\!25 .
    Figure 4.  The exact solution of \boldsymbol\lambda = (\lambda_1, \lambda_2) at t = 1 with h = \sqrt{2}/32 .
    Figure 5.  The numerical solution of \boldsymbol\lambda = (\lambda_{1}, \lambda_{2}) at t = 1 with h = \sqrt{2}\tau = H^2/\sqrt{2} = \sqrt{2}/25 .

    Example 6.2. In this example, we take T = 1 , g(u) = u^3-u , and \varpi = 2+\alpha , then obtain the exact solution u({\mathit{\boldsymbol{x}}}, t) = t^{2+\alpha}\sin(2\pi x_1)\sin(2\pi x_2), {\mathit{\boldsymbol{x}}} = (x_1, x_2)\in [0, 1]^2, t\in [0, 1] , the auxiliary variable \boldsymbol \lambda({\mathit{\boldsymbol{x}}}, t) = -\nabla u({\mathit{\boldsymbol{x}}}, t) . For some different fractional parameters \alpha = 0.2, 0.4, 0.6.0.8 and grid sizes, we conduct numerical experiments as in Example 6.1. For the two-grid MFVE algorithm and MFVE algorithm (2.7), we can see that the convergence rates in time direction are close to 2-\alpha (in Tables 7 and 8), and the convergence rates in space direction are close to 1 (in Tables 9 and 10). Moreover, in Tables 11 and 12, we choose h = \sqrt{2}\tau = H^2/\sqrt{2} (in two-grid MFVE algorithm) and h = \sqrt{2}\tau (in MFVE algorithm), then obtain the same convergence rates as in Tables 9 and 10.

    Table 7.  Numerical results of two-grid MFVE method with \!\sqrt{2}h\!\thickapprox\!H^2\!\thickapprox\!\!2\tau^{2\!-\!\alpha} in Example 6.2.
    \alpha \tau u L^2 Rates \boldsymbol\lambda (L^2)^2 Rates \boldsymbol\lambda {\mathit{\boldsymbol{H}}}({{{\rm{div}}}}) Rates CPU(s)
    0.2 1/5 5.8163E-02 4.4738E-01 4.6060E+00 0.76
    1/8 2.5745E-02 1.7341 1.9636E-01 1.7520 2.0493E+00 1.7231 38.24
    1/10 1.7569E-02 1.7122 1.3248E-01 1.7635 1.3984E+00 1.7128 481.85
    0.4 1/5 8.0430E-02 6.1858E-01 6.3587E+00 0.203
    1/8 3.7676E-02 1.6135 2.8895E-01 1.6195 2.9888E+00 1.6063 5.61
    1/10 2.6375E-02 1.5981 2.0111E-01 1.6242 2.0981E+00 1.5856 44.01
    0.6 1/5 1.0442E-01 8.0368E-01 8.2469E+00 0.09
    1/8 5.8141E-02 1.2458 4.4727E-01 1.2469 4.6059E+00 1.2393 0.98
    1/10 4.2132E-02 1.4434 3.2328E-01 1.4549 3.3406E+00 1.4394 4.50
    0.8 1/5 1.4832E-01 1.1422E+00 1.1672E+01 0.09
    1/8 8.7128E-02 1.1318 6.7024E-01 1.1343 6.8830E+00 1.1237 0.22
    1/10 6.5371E-02 1.2875 5.0289E-01 1.2873 5.1769E+00 1.2766 0.82

     | Show Table
    DownLoad: CSV
    Table 8.  Numerical results of MFVE method with h\thickapprox \sqrt{2}\tau^{2-\alpha} in Example 6.2.
    \alpha h u - L^2 Rates \boldsymbol\lambda - (L^2)^2 Rates \boldsymbol\lambda - \boldsymbol H({{{\rm{div}}}}) Rates CPU(s)
    0.2 1/5 5.8141E-02 4.4713E-01 4.6025E+00 2.04
    1/8 2.4930E-02 1.8017 1.9182E-01 1.8006 1.9770E+00 1.7979 205.44
    1/10 1.6621E-02 1.8168 1.2790E-01 1.8165 1.3184E+00 1.8158 2463.05
    0.4 1/5 8.0441E-02 6.1834E-01 6.3565E+00 0.38
    1/8 3.7388E-02 1.6302 2.8764E-01 1.6284 2.9636E+00 1.6236 25.03
    1/10 2.6175E-02 1.5977 2.0140E-01 1.5972 2.0757E+00 1.5958 185.43
    0.6 1/5 1.0443E-01 8.0230E-01 8.2334E+00 0.17
    1/8 5.8126E-02 1.2466 4.4705E-01 1.2443 4.6026E+00 1.2374 3.11
    1/10 4.1867E-02 1.4704 3.2209E-01 1.4692 3.3183E+00 1.4662 16.77
    0.8 1/5 1.4859E-01 1.1405E+00 1.1653E+01 0.18
    1/8 8.7070E-02 1.1372 6.6931E-01 1.1340 6.8804E+00 1.1210 0.44
    1/10 6.5361E-02 1.2852 5.0267E-01 1.2831 5.1744E+00 1.2770 2.50

     | Show Table
    DownLoad: CSV
    Table 9.  Numerical results of two-grid MFVE method with \tau = 1/100 in Example 6.2.
    \alpha H h u L^2 Rates \boldsymbol\lambda (L^2)^2 Rates \boldsymbol\lambda {\mathit{\boldsymbol{H}}}({{{\rm{div}}}}) Rates CPU(s)
    0.2 \sqrt{2} /2 \sqrt{2} /4 2.5509E-01 1.9610E+00 1.9625E+01 0.13
    \sqrt{2} /4 \sqrt{2} /16 6.5423E-02 0.9816 5.0316E-01 0.9813 5.1769E+00 0.9613 11.55
    \sqrt{2} /5 \sqrt{2} /25 4.2207E-02 0.9821 3.2345E-01 0.9901 3.3406E+00 0.9816 67.63
    \sqrt{2} /6 \sqrt{2} /36 2.9633E-02 0.9700 2.2714E-01 0.9694 2.3749E+00 0.9357 337.08
    0.4 \sqrt{2} /2 \sqrt{2} /4 2.5500E-01 1.9605E+00 1.9625E+01 0.12
    \sqrt{2} /4 \sqrt{2} /16 6.5418E-02 0.9814 5.0315E-01 0.9811 5.1769E+00 0.9613 11.09
    \sqrt{2} /5 \sqrt{2} /25 4.2163E-02 0.9843 3.2332E-01 0.9909 3.3401E+00 0.9819 68.19
    \sqrt{2} /6 \sqrt{2} /36 2.9567E-02 0.9732 2.2693E-01 0.9709 2.3739E+00 0.9365 335.08
    0.6 \sqrt{2} /2 \sqrt{2} /4 2.5488E-01 1.9599E+00 1.9625E+01 0.12
    \sqrt{2} /4 \sqrt{2} /16 6.5411E-02 0.9811 5.0314E-01 0.9809 5.1770E+00 0.9613 11.02
    \sqrt{2} /5 \sqrt{2} /25 4.2099E-02 0.9874 3.2314E-01 0.9921 3.3394E+00 0.9824 67.74
    \sqrt{2} /6 \sqrt{2} /36 2.9471E-02 0.9780 2.2661E-01 0.9732 2.3723E+00 0.9378 337.56
    0.8 \sqrt{2} /2 \sqrt{2} /4 2.5473E-01 1.9592E+00 1.9625E+01 0.12
    \sqrt{2} /4 \sqrt{2} /16 6.5404E-02 0.9808 5.0313E-01 0.9806 5.1770E+00 0.9613 11.56
    \sqrt{2} /5 \sqrt{2} /25 4.2019E-02 0.9914 3.2291E-01 0.9937 3.3385E+00 0.9830 67.61
    \sqrt{2} /6 \sqrt{2} /36 2.9351E-02 0.9840 2.2621E-01 0.9761 2.3701E+00 0.9395 336.04

     | Show Table
    DownLoad: CSV
    Table 10.  Numerical results of MFVE method with \tau = 1/100 in Example 6.2.
    \alpha h u - L^2 Rates \boldsymbol\lambda - (L^2)^2 Rates \boldsymbol\lambda - \boldsymbol H({{{\rm{div}}}}) Rates CPU(s)
    0.2 \sqrt{2} /4 2.5527E-01 1.9592E+00 1.9625E+01 0.18
    \sqrt{2} /16 6.5402E-02 0.9823 5.0288E-01 0.9810 5.1740E+00 0.9617 27.90
    \sqrt{2} /25 4.1876E-02 0.9990 3.2214E-01 0.9980 3.3182E+00 0.9953 191.53
    \sqrt{2} /36 2.9085E-02 0.9996 2.2378E-01 0.9991 2.3060E+00 0.9980 1166.74
    0.4 \sqrt{2} /4 2.5516E-01 1.9587E+00 1.9625E+01 0.16
    \sqrt{2} /16 6.5399E-02 0.9820 5.0287E-01 0.9808 5.1740E+00 0.9617 28.73
    \sqrt{2} /25 4.1875E-02 0.9989 3.2213E-01 0.9979 3.3182E+00 0.9954 198.13
    \sqrt{2} /36 2.9085E-02 0.9996 2.2378E-01 0.9991 2.3060E+00 0.9980 1216.14
    0.6 \sqrt{2} /4 2.5502E-01 1.9581E+00 1.9625E+01 0.19
    \sqrt{2} /16 6.5395E-02 0.9817 5.0286E-01 0.9806 5.1740E+00 0.9617 28.53
    \sqrt{2} /25 4.1874E-02 0.9989 3.2213E-01 0.9979 3.3182E+00 0.9954 198.66
    \sqrt{2} /36 2.9084E-02 0.9995 2.2378E-01 0.9991 2.3060E+00 0.9980 1220.80
    0.8 \sqrt{2} /4 2.5484E-01 1.9572E+00 1.9625E+01 0.19
    \sqrt{2} /16 6.5390E-02 0.9812 5.0283E-01 0.9803 5.1740E+00 0.9617 28.19
    \sqrt{2} /25 4.1872E-02 0.9988 3.2212E-01 0.9979 3.3182E+00 0.9954 198.22
    \sqrt{2} /36 2.9083E-02 0.9995 2.2377E-01 0.9991 2.3061E+00 0.9980 1221.50

     | Show Table
    DownLoad: CSV
    Table 11.  Numerical results of two-grid MFVE method with h = \sqrt{2}\tau in Example 6.2.
    \alpha H h u L^2 Rates \boldsymbol\lambda (L^2)^2 Rates \boldsymbol\lambda {\mathit{\boldsymbol{H}}}({{{\rm{div}}}}) Rates CPU(s)
    0.2 \sqrt{2} /2 \sqrt{2} /4 2.5509E-01 1.9609E+00 1.9625E+01 0.011
    \sqrt{2} /4 \sqrt{2} /16 6.5423E-02 0.9816 5.0316E-01 0.9812 5.1769E+00 0.9613 1.32
    \sqrt{2} /5 \sqrt{2} /25 4.2208E-02 0.9820 3.2345E-01 0.9900 3.3406E+00 0.9816 12.01
    \sqrt{2} /6 \sqrt{2} /36 2.9634E-02 0.9700 2.2715E-01 0.9693 2.3749E+00 0.9357 90.82
    0.4 \sqrt{2} /2 \sqrt{2} /4 2.5498E-01 1.9603E+00 1.9625E+01 0.011
    \sqrt{2} /4 \sqrt{2} /16 6.5416E-02 0.9813 5.0314E-01 0.9810 5.1769E+00 0.9613 1.32
    \sqrt{2} /5 \sqrt{2} /25 4.2166E-02 0.9840 3.2334E-01 0.9908 3.3402E+00 0.9818 12.06
    \sqrt{2} /6 \sqrt{2} /36 2.9570E-02 0.9732 2.2694E-01 0.9708 2.3740E+00 0.9365 92.40
    0.6 \sqrt{2} /2 \sqrt{2} /4 2.5483E-01 1.9594E+00 1.9625E+01 0.012
    \sqrt{2} /4 \sqrt{2} /16 6.5405E-02 0.9810 5.0309E-01 0.9808 5.1769E+00 0.9613 1.33
    \sqrt{2} /5 \sqrt{2} /25 4.2109E-02 0.9867 3.2318E-01 0.9917 3.3397E+00 0.9821 11.98
    \sqrt{2} /6 \sqrt{2} /36 2.9481E-02 0.9777 2.2666E-01 0.9729 2.3726E+00 0.9376 91.20
    0.8 \sqrt{2} /2 \sqrt{2} /4 2.5462E-01 1.9579E+00 1.9625E+01 0.012
    \sqrt{2} /4 \sqrt{2} /16 6.5385E-02 0.9807 5.0299E-01 0.9804 5.1768E+00 0.9613 1.32
    \sqrt{2} /5 \sqrt{2} /25 4.2039E-02 0.9897 3.2300E-01 0.9924 3.3393E+00 0.9824 12.03
    \sqrt{2} /6 \sqrt{2} /36 2.9374E-02 0.9831 2.2634E-01 0.9753 2.3711E+00 0.9390 91.93

     | Show Table
    DownLoad: CSV
    Table 12.  Numerical results of MFVE method with h = \sqrt{2}\tau in Example 6.2.
    \alpha h u - L^2 Rates \boldsymbol\lambda - (L^2)^2 Rates \boldsymbol\lambda - \boldsymbol H({{{\rm{div}}}}) Rates CPU(s)
    0.2 \sqrt{2} /4 2.5527E-01 1.9592E+00 1.9625E+01 0.011
    \sqrt{2} /16 6.5401E-02 0.9823 5.0288E-01 0.9810 5.1740E+00 0.9617 4.00
    \sqrt{2} /25 4.1876E-02 0.9990 3.2214E-01 0.9980 3.3182E+00 0.9954 43.04
    \sqrt{2} /36 2.9085E-02 0.9996 2.2378E-01 0.9991 2.3060E+00 0.9980 393.60
    0.4 \sqrt{2} /4 2.5515E-01 1.9586E+00 1.9625E+01 0.015
    \sqrt{2} /16 6.5397E-02 0.9820 5.0286E-01 0.9808 5.1740E+00 0.9617 4.02
    \sqrt{2} /25 4.1875E-02 0.9989 3.2213E-01 0.9979 3.3182E+00 0.9954 42.51
    \sqrt{2} /36 2.9084E-02 0.9995 2.2378E-01 0.9991 2.3060E+00 0.9980 389.52
    0.6 \sqrt{2} /4 2.5499E-01 1.9577E+00 1.9625E+01 0.012
    \sqrt{2} /16 6.5389E-02 0.9817 5.0282E-01 0.9805 5.1740E+00 0.9617 3.91
    \sqrt{2} /25 4.1872E-02 0.9988 3.2212E-01 0.9978 3.3182E+00 0.9954 42.56
    \sqrt{2} /36 2.9083E-02 0.9995 2.2377E-01 0.9990 2.3060E+00 0.9980 386.93
    0.8 \sqrt{2} /4 2.5477E-01 1.9563E+00 1.9626E+01 0.015
    \sqrt{2} /16 6.5373E-02 0.9812 5.0274E-01 0.9801 5.1742E+00 0.9617 3.91
    \sqrt{2} /25 4.1866E-02 0.9985 3.2209E-01 0.9977 3.3183E+00 0.9954 42.67
    \sqrt{2} /36 2.9081E-02 0.9993 2.2376E-01 0.9989 2.3061E+00 0.9980 412.74

     | Show Table
    DownLoad: CSV

    Base on the above the numerical results in Tables 16 and Figures 25 for Example 6.1 and Tables 712 for Example 6.2, we can know that the convergence rates are consistent with the theoretical results in Theorems 5.1 and 5.2. We also find that the two-grid MFVE algorithm can save the computing time compared with the MFVE algorithm while maintaining the same convergence rates. Finally, numerical results and the figures show that the proposed two-grid MFVE algorithm for the nonlinear time fractional reaction-diffusion equations is feasible and effective.

    In this paper, we construct the two-grid MFVE fast algorithm to solve the nonlinear time fractional reaction-diffusion equations with the Caputo time fractional derivative. We obtain the stability results and the optimal error estimates for u (in L^2(\Omega) -norm) and \boldsymbol \lambda (in (L^2(\Omega))^2 -norm), and the sub-optimal error estimates for \boldsymbol \lambda (in H({{{\rm{div}}}}, \Omega) -norm). Furthermore, we also give two numerical examples to verify that the proposed algorithm can greatly save the computing time. In future works, for the Caputo fractional derivative (1.2) with \alpha\in (0, 1) , we will try to use other approximation methods (such as L1 - 2 , L2 - 1_{\sigma} , L1 - 2 - 3 formulas [17,18,19,20]) and the two-grid MFVE method to solve more fractional partial differential equations in scientific and engineering fields.

    This work was supported by the National Natural Science Foundation of China (11701299, 12161063, 11761053), the Natural Science Foundation of Inner Mongolia Autonomous Region (2020MS01003, 2021MS01018), the Prairie Talent Project of Inner Mongolia Autonomous Region, and the Postgraduate Scientific Research Innovation Support Project of Inner Mongolia University.

    The authors declared that they have no conflicts of interest to this work.



    [1] Ortigueira, Fractional calculus for scientists and engineers, New York: Springer, 2011.
    [2] R. Hilfer, Applications of fractional calculus in physics, Singapore: World Scientific, 2000.
    [3] R. L. Magin, Fractional calculus in bioengineering, Redding: Begell House, 2006.
    [4] Y. M. Lin, C. J. Xu, Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys., 225 (2007), 1533–1552. doi: 10.1016/j.jcp.2007.02.001. doi: 10.1016/j.jcp.2007.02.001
    [5] Z. Z. Sun, X. N. Wu, A fully discrete difference scheme for a diffusion-wave system, Appl. Numer. Math., 56 (2006), 193–209. doi: 10.1016/j.apnum.2005.03.003. doi: 10.1016/j.apnum.2005.03.003
    [6] H. F. Ding, C. P. Li, A high-order algorithm for time-Caputo-tempered partial differential equation with Riesz derivatives in two spatial dimensions, J. Sci. Comput., 80 (2019), 81–109. doi: 10.1007/s10915-019-00930-5. doi: 10.1007/s10915-019-00930-5
    [7] Y. Zhao, C. Shen, M. Qu, W. P. Bu, Y. F. Tang, Finite element methods for fractional diffusion equations, Int. J. Model. Simul. Sci. Comput., 11 (2020), 2030001. doi: 10.1142/S1793962320300010. doi: 10.1142/S1793962320300010
    [8] Y. M. Zhao, W. P. Bu, J. F. Huang, D. Y. Liu, Y. F. Tang, Finite element method for two-dimensional space-fractional advection-dispersion equations, Appl. Math. Comput., 257 (2015), 553–565. doi: 10.1016/j.amc.2015.01.016. doi: 10.1016/j.amc.2015.01.016
    [9] H. L. Liao, D. F. Li, J. W. Zhang, Sharp error estimate of the nonuniform L1 formula for linear reaction-subdiffusion equations, SIAM J. Numer. Anal., 56 (2018), 1112–1133. doi: 10.1137/17M1131829. doi: 10.1137/17M1131829
    [10] J. Q. Xie, D. Liang, Z. Y. Zhang, Two novel energy dissipative difference schemes for the strongly coupled nonlinear space fractional wave equations with damping, Appl. Numer. Math., 157 (2020), 178–209. doi: 10.1016/j.apnum.2020.06.002. doi: 10.1016/j.apnum.2020.06.002
    [11] S. B. Yuste, Weighted average finite difference methods for fractional diffusion equations, J. Comput. Phys., 216 (2006), 264–274. doi: 10.1016/j.jcp.2005.12.006. doi: 10.1016/j.jcp.2005.12.006
    [12] Y. Liu, Y. W. Du, H. Li, F. W. Liu, Y. J. Wang, Some second-order \theta schemes combined with finite element method for nonlinear fractional cable equation, Numer. Algor., 80 (2019), 533–555. doi: 10.1007/s11075-018-0496-0. doi: 10.1007/s11075-018-0496-0
    [13] L. B. Feng, F. W. Liu, I. Turner, An unstructured mesh control volume method for two-dimensional space fractional diffusion equations with variable coefficients on convex domains, J. Comput. Appl. Math., 364 (2020), 112319. doi: 10.1016/j.cam.2019.06.035. doi: 10.1016/j.cam.2019.06.035
    [14] Y. Liu, Z. D. Yu, H. Li, F. W. Liu, J. F. Wang, Time two-mesh algorithm combined with finite element method for time fractional water wave model, Int. J. Heat Mass Tran., 120 (2018), 1132–1145. doi: 10.1016/j.ijheatmasstransfer.2017.12.118. doi: 10.1016/j.ijheatmasstransfer.2017.12.118
    [15] N. Sene, Analytical solutions and numerical schemes of certain generalized fractional diffusion models, Eur. Phys. J. Plus, 134 (2019), 199. doi: 10.1140/epjp/i2019-12531-4. doi: 10.1140/epjp/i2019-12531-4
    [16] M. Yavuz, N. Sene, Stability analysis and numerical computation of the fractional predator-prey model with the harvesting rate, Fractal Fract., 4 (2020), 35. doi: 10.3390/fractalfract4030035. doi: 10.3390/fractalfract4030035
    [17] G. H. Gao, Z. Z. Sun, H. W. Zhang, A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications, J. Comput. Phys., 259 (2014), 33–50. doi: 10.1016/j.jcp.2013.11.017. doi: 10.1016/j.jcp.2013.11.017
    [18] A. A. Alikhanov, A new difference scheme for the time fractional diffusion equation, J. Comput. Phys., 280 (2015), 424–438. doi: 10.1016/j.jcp.2014.09.031. doi: 10.1016/j.jcp.2014.09.031
    [19] R. Mokhtari, F. Mostajeran, A high order formula to approximate the caputo fractional derivative, Commun. Appl. Math. Comput., 2 (2020), 1–29. doi: 10.1007/s42967-019-00023-y. doi: 10.1007/s42967-019-00023-y
    [20] R. Mokhtari, M. Ramezani, G. Haase, Stability and convergence analyses of the FDM based on some L-type formulae for solving the subdiffusion equation, Numer. Math. Theor. Meth. Appl., 14 (2021), 945–971. doi: 10.4208/nmtma.OA-2021-0020. doi: 10.4208/nmtma.OA-2021-0020
    [21] J. Zhao, Z. C. Fang, H. Li, Y. Liu, A Crank-Nicolson finite volume element method for time fractional Sobolev equations on triangular grids, Mathematics, 8 (2020), 1591. doi: 10.3390/math8091591. doi: 10.3390/math8091591
    [22] J. Zhao, H. Li, Z. C. Fang, Y. Liu, A mixed finite volume element method for time-fractional reaction-diffusion equations on triangular grids, Mathematics, 7 (2019), 600. doi: 10.3390/math7070600. doi: 10.3390/math7070600
    [23] J. Zhao, Z. C. Fang, H. Li, Y. Liu, Finite volume element method with the WSGD formula for nonlinear fractional mobile/immobile transport equations, Adv. Differ. Equ., 2020 (2020), 360. doi: 10.1186/s13662-020-02786-8. doi: 10.1186/s13662-020-02786-8
    [24] J. C. Xu, A novel two-grid method for semilinear elliptic equations, SIAM J. Sci. Comput., 15 (1994), 231–237. doi: 10.1137/0915016. doi: 10.1137/0915016
    [25] J. C. Xu, Two-grid discretization techniques for linear and nonlinear PDEs, SIAM J. Numer. Anal., 33 (1996), 1759–1777. doi: 10.1137/S0036142992232949. doi: 10.1137/S0036142992232949
    [26] C. N. Dawson, M. F. Wheeler, Two-grid methods for mixed finite element approximations of nonlinear parabolic equations, Contemp. Math., 180 (1994), 191–203. doi: 10.1090/conm/180/01971. doi: 10.1090/conm/180/01971
    [27] J. L. Yan, Q. Zhang, L. Zhu, Z. Y. Zhang, Two-grid methods for finite volume element approximations of nonlinear sobolev equations, Numer. Func. Anal. Opt., 37 (2016), 391–414. doi: 10.1080/01630563.2015.1115415. doi: 10.1080/01630563.2015.1115415
    [28] T. L. Hou, L. P. Chen, Y. Yang, Two-grid methods for expanded mixed finite element approximations of semi-linear parabolic integro-differential equations, Appl. Numer. Math., 132 (2018), 163–181. doi: 10.1016/j.apnum.2018.06.001. doi: 10.1016/j.apnum.2018.06.001
    [29] W. Liu, A two-grid method for the semi-linear reaction-diffusion system of the solutes in the groundwater flow by finite volume element, Math. Comput. Simulat., 142 (2017), 34–50. doi: 10.1016/j.matcom.2017.04.004. doi: 10.1016/j.matcom.2017.04.004
    [30] Y. Liu, Y. W. Du, H. Li, J. C. Li, S. He, A two-grid mixed finite element method for a nonlinear fourth-order reaction-diffusion problem with time-fractional derivative, Comput. Math. Appl., 70 (2015), 2474–2492. doi: 10.1016/j.camwa.2015.09.012. doi: 10.1016/j.camwa.2015.09.012
    [31] Y. Liu, Y. W. Du, H. Li, J. F. Wang, A two-grid finite element approximation for a nonlinear time-fractional Cable equation, Nonlinear Dyn., 85 (2016), 2535–-2548. doi: 10.1007/s11071-016-2843-9. doi: 10.1007/s11071-016-2843-9
    [32] Q. F. Li, Y. P. Chen, Y. Q. Huang, Y. Wang, Two-grid methods for semilinear time fractional reaction diffusion equations by expanded mixed finite element method, Appl. Numer. Math., 157 (2020), 38–54. doi: 10.1016/j.apnum.2020.05.024. doi: 10.1016/j.apnum.2020.05.024
    [33] Q. F. Li, Y. P. Chen, Y. Q. Huang, Y. Wang, Two-grid methods for nonlinear time fractional diffusion equations by L1-Galerkin FEM, Math. Comput. Simulat., 185 (2021), 436–451. doi: 10.1016/j.matcom.2020.12.033. doi: 10.1016/j.matcom.2020.12.033
    [34] C. J. Chen, H. Liu, X. C. Zheng, H. Wang, A two-grid MMOC finite element method for nonlinear variable-order time-fractional mobile/immobile advection-diffusion equations, Comput. Math. Appl., 79 (2020), 2771–2783. doi: 10.1016/j.camwa.2019.12.008. doi: 10.1016/j.camwa.2019.12.008
    [35] Y. Liu, N. Liu, H. Li, J. F. Wang, Fast calculation based on a spatial two-grid finite element algorithm for a nonlinear space-time fractional diffusion model, Numer. Meth. Part. D. E., 236 (2020), 1904–1921. doi: 10.1002/num.22509. doi: 10.1002/num.22509
    [36] J. E. Jones, A Mixed finite volume element method for accurate computation of fluid velocities in porous media, University of Colorado, Denver, CO, 1995.
    [37] S. H. Chou, D. Y. Kwak, P. S. Vassilevski, Mixed covolume methods for the elliptic problems on triangular grids, SIAM J. Numer. Anal., 35 (1998), 1850–1861. doi: 10.1137/S0036142997321285. doi: 10.1137/S0036142997321285
    [38] S. Yang, Z. W. Jiang, Mixed covolume method for parabolic problems on triangular grids, Appl. Math. Comput., 215 (2009), 1251–1265. doi: 10.1016/j.amc.2009.06.068. doi: 10.1016/j.amc.2009.06.068
    [39] H. X. Rui, T. C. Lu, An expanded mixed covolume method for elliptic problems, Numer. Meth. Part. D. E., 21 (2005), 8–23. doi: 10.1002/num.20024. doi: 10.1002/num.20024
    [40] Z. C. Fang, J. Zhao, H. Li, Y. Liu, Finite volume element methods for two-dimensional time fractional reaction-diffusion equations on triangular grids, 2021.
    [41] D. F. Li, H. L. Liao, W. W. Sun, J. L. Wang, J. W. Zhang, Analysis of L1-Galerkin FEMs for time-fractional nonlinear parabolic problems, Commun. Comput. Phys., 24 (2018), 86–103. doi: 10.4208/cicp.OA-2017-0080. doi: 10.4208/cicp.OA-2017-0080
    [42] F. E. Browder, Existence and uniqueness theorems for solutions of nonlinear boundary value problems, Proc. Symp. Appl. Math., 17 (1965), 24–49. doi: 10.1090/psapm/017/0197933. doi: 10.1090/psapm/017/0197933
    [43] Z. C. Fang, H. Li, An expanded mixed covolume method for sobolev equation with convection term on triangular grids, Numer. Meth. Part. D. E., 29 (2013), 1257–1277. doi: 10.1002/num.21754. doi: 10.1002/num.21754
    [44] J. Douglas, J. E. Roberts, Global estimates for mixed methods for second order elliptic equations, Math. Comput., 44 (1985), 39–52. doi: 10.1090/S0025-5718-1985-0771029-9. doi: 10.1090/S0025-5718-1985-0771029-9
    [45] B. T. Jin, B. Y. Li, Z. Zhou, Correction of high-order BDF convolution quadrature for fractional evolution equations, SIAM J. Sci. Comput., 39 (2017), A3129–A3152. doi: 10.1137/17M1118816. doi: 10.1137/17M1118816
    [46] M. Stynes, E. O'Riordan, J. L. Gracia, Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation, SIAM J. Numer. Anal., 55 (2017), 1057–1079. doi: 10.1137/16M1082329. doi: 10.1137/16M1082329
    [47] F. H. Zeng, Z. Q. Zhang, G. E. Karniadakis, Second-order numerical methods for multi-term fractional differential equations: Smooth and non-smooth solutions, Comput. Meth. Appl. Mech. Eng., 327 (2017), 478–502. doi: 10.1016/j.cma.2017.08.029. doi: 10.1016/j.cma.2017.08.029
    [48] X. C. Zheng, H. Wang, An optimal-order numerical approximation to variable-order space-fractional diffusion equations on uniform or graded meshes, SIAM J. Numer. Anal., 58 (2020), 330–352. doi: 10.1137/19M1245621. doi: 10.1137/19M1245621
    [49] B. L. Yin, Y. Liu, H. Li, Z. M. Zhang, Finite element methods based on two families of second-order numerical formulas for the fractional Cable model with smooth solutions, J. Sci. Comput., 84 (2020), 2. doi: 10.1007/s10915-020-01258-1. doi: 10.1007/s10915-020-01258-1
    [50] B. L. Yin, Y. Liu, H. Li, Z. M. Zhang, Approximation methods for the distributed order calculus using the convolution quadrature, Discrete Contin. Dyn.-B, 26 (2021), 1447–1468. doi: 10.3934/dcdsb.2020168. doi: 10.3934/dcdsb.2020168
  • This article has been cited by:

    1. Yining Yang, Yang Liu, Cao Wen, Hong Li, Jinfeng Wang, Efficient time second-order SCQ formula combined with a mixed element method for a nonlinear time fractional wave model, 2022, 30, 2688-1594, 440, 10.3934/era.2022023
    2. Yunhua Zeng, Zhijun Tan, Two-grid finite element methods for nonlinear time fractional variable coefficient diffusion equations, 2022, 434, 00963003, 127408, 10.1016/j.amc.2022.127408
    3. Gexian Fan, Wei Liu, Yingxue Song, A modified-upwind with block-centred finite difference scheme based on the two-grid algorithm for convection-diffusion-reaction equations, 2023, 0020-7160, 1, 10.1080/00207160.2023.2168123
    4. Kang Li, Zhijun Tan, A two-grid fully discrete Galerkin finite element approximation for fully nonlinear time-fractional wave equations, 2023, 0924-090X, 10.1007/s11071-023-08265-5
    5. Yaxin Hou, Cao Wen, Yang Liu, Hong Li, A two-grid ADI finite element approximation for a nonlinear distributed-order fractional sub-diffusion equation, 2023, 18, 1556-1801, 855, 10.3934/nhm.2023037
    6. Zhijun Tan, α-robust analysis of fast and novel two-grid FEM with nonuniform L1 scheme for semilinear time-fractional variable coefficient diffusion equations, 2024, 131, 10075704, 107830, 10.1016/j.cnsns.2024.107830
    7. Yingxue Song, Wei Liu, Gexian Fan, Second-order efficient algorithm for coupled nonlinear model of groundwater transport system, 2024, 531, 0022247X, 127847, 10.1016/j.jmaa.2023.127847
    8. Zhijun Tan, Second-order non-uniform and fast two-grid finite element methods for non-linear time-fractional mobile/immobile equations with weak regularity, 2025, 486, 00963003, 129043, 10.1016/j.amc.2024.129043
    9. Cao Wen, Jinfeng Wang, Yang Liu, Hong Li, Zhichao Fang, Unconditionally optimal time two-mesh mixed finite element algorithm for a nonlinear fourth-order distributed-order time fractional diffusion equation, 2024, 460, 01672789, 134090, 10.1016/j.physd.2024.134090
    10. Pengshan Wang, Wei Liu, Gexian Fan, Yingxue Song, An Efficient Second-Order Algorithm Upon MAC Scheme for Nonlinear Incompressible Darcy–Brinkman–Forchheimer Model, 2024, 26, 1422-6928, 10.1007/s00021-024-00851-w
    11. Zhijun Tan, An α-robust and new two-grid nonuniform L2-1 FEM for nonlinear time-fractional diffusion equation, 2024, 174, 08981221, 530, 10.1016/j.camwa.2024.10.023
    12. Zhijun Tan, Yunhua Zeng, Temporal second-order fully discrete two-grid methods for nonlinear time-fractional variable coefficient diffusion-wave equations, 2024, 466, 00963003, 128457, 10.1016/j.amc.2023.128457
    13. Kang Li, Zhijun Tan, Two-grid fully discrete finite element algorithms on temporal graded meshes for nonlinear multi-term time-fractional diffusion equations with variable coefficient, 2023, 125, 10075704, 107360, 10.1016/j.cnsns.2023.107360
    14. Lihong Zhang, Keke Lu, Bashir Ahmad, Numerical simulation and error analysis for a novel fractal-fractional reaction diffusion model with weighted reaction, 2024, 03784754, 10.1016/j.matcom.2024.11.013
    15. Yan Wang, Yining Yang, Nian Wang, Hong Li, Yang Liu, Two-grid mixed finite element method combined with the BDF2-θ for a two-dimensional nonlinear fractional pseudo-hyperbolic wave equation, 2025, 25, 25900374, 100530, 10.1016/j.rinam.2024.100530
    16. Zehui Ma, Rahmatjan Imin, A High‐Precision Meshless Method for Time‐Fractional Mixed Diffusion and Wave Equations, 2025, 126, 0029-5981, 10.1002/nme.70020
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2525) PDF downloads(135) Cited by(16)

Figures and Tables

Figures(5)  /  Tables(12)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog