The main purpose of this paper is to study a class of the $ p $-ary functions $ f_{\lambda, u, v}(x) = Tr_1^k(\lambda x^{p^k+1})+Tr^n_1(ux)Tr_1^n(vx) $ for any odd prime $ p $ and $ n = 2k, \lambda\in GF(p^k)^*, u, v\in GF(p^n)^*. $ With the help of Fourier transforms, we are able to subdivide the class of all $ f_{\lambda, u, v} $ into sublcasses of bent, near-bent and 2-plateaued functions. It is shown that the choice of $ \lambda, u $ and $ v $, ensuring that $ f $ is bent, 2-plateaued or near-bent, is directly related to finding the subset $ A\subset GF(p)^3 $. The efficient method for defining the set $ A\subset GF(p)^3 $ is described in detail.
Citation: Samed Bajrić. On a class of bent, near-bent, and 2-plateaued functions over finite fields of odd characteristic[J]. AIMS Mathematics, 2022, 7(2): 1971-1981. doi: 10.3934/math.2022113
The main purpose of this paper is to study a class of the $ p $-ary functions $ f_{\lambda, u, v}(x) = Tr_1^k(\lambda x^{p^k+1})+Tr^n_1(ux)Tr_1^n(vx) $ for any odd prime $ p $ and $ n = 2k, \lambda\in GF(p^k)^*, u, v\in GF(p^n)^*. $ With the help of Fourier transforms, we are able to subdivide the class of all $ f_{\lambda, u, v} $ into sublcasses of bent, near-bent and 2-plateaued functions. It is shown that the choice of $ \lambda, u $ and $ v $, ensuring that $ f $ is bent, 2-plateaued or near-bent, is directly related to finding the subset $ A\subset GF(p)^3 $. The efficient method for defining the set $ A\subset GF(p)^3 $ is described in detail.
[1] | C. Carlet, S. Mesnager, Four decades of research on bent functions, Design, Codes Cryptogr., 78 (2016), 5–50. doi: 10.1007/s10623-015-0145-8. doi: 10.1007/s10623-015-0145-8 |
[2] | T. Helleseth, A. Kholosha, Monomial and quadratic bent functions over the finite fields of odd characteristic, IEEE T. Inform. Theory, 52 (2006), 2018–2032. doi: 10.1109/TIT.2006.872854. doi: 10.1109/TIT.2006.872854 |
[3] | P. V. Kumar, R. A. Scholtz, L. R. Welch, Generalized bent functions and their properties, J. Comb. Theory, Series A, 40 (1985), 90–107. doi: 10.1016/0097-3165(85)90049-4. doi: 10.1016/0097-3165(85)90049-4 |
[4] | S. C. Liu, J. J. Komo, Nonbinary Kasami sequences over $GF(p)$, IEEE T. Inform. Theory, 38 (1992), 1409–1412. doi: 10.1109/18.144728. doi: 10.1109/18.144728 |
[5] | S. Mesnager, Bent functions: Fundamentals and results, Springer, Berlin, 2016. doi: 10.1007/978-3-319-32595-8. |
[6] | O. S. Rothaus, On bent functions, J. Comb. Theory, Series A, 20 (1976), 300–305. doi: 10.1016/0097-3165(76)90024-8. |
[7] | Y. Qi, C. Tang, Z. Zhou, C. Fan, New infinite families of $p$-ary weakly regular bent functions, arXiv: 1508.05672, 2015. doi: 10.3934/amc.2018019. |
[8] | G. Xu, X. Cao, S. Xu, Constructing new APN functions and bent functions over finite fields of odd characteristic via the switching method, Cryptogr. Commun. 8 (2016), 155–171. doi: 10.1007/s12095-015-0145-6. |
[9] | G. Xu, X. Cao, S. Xu, Several classes of quadratic ternary bent, near-bent and 2-plateaued functions, Int. J. Found. Comput. S., 28 (2017), 1–18. doi: 10.1142/S0129054117500010. doi: 10.1142/S0129054117500010 |
[10] | Y. Zheng, X. M. Zhang, On plateaued functions, IEEE T. Inform. Theory, 47 (2001), 1215–1223. doi: 10.1109/18.915690. |