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Abstract: The main purpose of this paper is to study a class of the p-ary functions fλ,u,v(x) =

Trk
1(λxpk+1) + Trn

1(ux)Trn
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the help of Fourier transforms, we are able to subdivide the class of all fλ,u,v into sublcasses of bent,
near-bent and 2-plateaued functions. It is shown that the choice of λ, u and v, ensuring that f is bent,
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1. Introduction

Bent functions are extreme combinatorial objects with several areas of application, such as coding
theory, maximum length sequences, cryptography, and the theory of difference sets to name a few.
Boolean bent functions were introduced by Rothaus [6], who also considered two classes of bent
functions. Among other equivalent characterizations of bent functions, the one that is most often used
is a characterization of bent functions as a class of Boolean functions having so-called flat Walsh
spectrum. It means that for any bent function over GF(2)n, its Hamming distance to any affine function
in n variables is constant, including the distance to the all-zero function (or all-one function). The
bent property of f is commonly specified in terms of its flat Walsh spectrum, that is requiring that
W f (λ) = ±2n/2 for any λ ∈ GF(2n), where,

W f (λ) =
∑

x∈GF(2n)

(−1) f (x)+Trn
1(λx). (1.1)

Here, Trn
1 : GF(2n)→ GF(2) denotes the absolute trace function defined by Trn

1(x) = x+x2+. . .+x2n−1
.
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On the other hand, a generalization to finite fields of odd characteristic was first suggested in [3]
and a function f : GF(pn)→ GF(p) is bent if and only if its Fourier transform defined by

f̂ (a) =
∑

x∈GF(pn)

ω f (x)−Trn
1(ax), (1.2)

is flat, that is, | f̂ (a)| = pn/2 for any a ∈ GF(pn). Here, ω = e
2πı
p denotes the primitive root of unity

where ı =
√
−1. Some surveys of known results on p-ary bent functions can be found in [1, 3, 5] and

the references therein.
The classes of plateaued functions introduced by Zheng and Zhang [10] are good candidates for

designing cryptographic functions since they possess various desirable cryptographic characteristics.
They can be balanced for both odd and even number of variables, and they do not possess nonzero
linear structures. In particular, the functions whose Fourier spectrum belong to {0,±p

n+1
2 } are known as

near-bent functions and, they play a significant role in certain cryptographic primitives.
In 2016 and 2017, G. Xu et. al. [8, 9] characterised the Fourier transform of the p-ary functions of

the form

Trk
1(λxpk+1) + Trn

1(ux)Trn
1(vx), (1.3)

for the special case p = 3 and n = 2k, λ ∈ GF(pk)∗, u, v ∈ GF(pn)∗. The authors proved that some of
these p-ary functions are also bent under certain conditions. Furthermore, a construction of quadratic
ternary bent, near-bent and 2-plateaued functions from some known ternary bent functions are pre-
sented.

In this work we generalise the method for computing Fourier transform originally given in [8] for
multinomial trace functions f = fλ,u,v : GF(pn) → GF(p) of the form Trk

1(λxpk+1) + Trn
1(ux)Trn

1(vx)
for any odd prime p, where n = 2k, λ ∈ GF(pk)∗, u, v ∈ GF(pn)∗. It is shown that the choice of λ, u and
v, ensuring that f is bent, 2-plateaued or near-bent is directly related to finding the subset A ⊂ GF(p)3

(cf. Section 4). Moreover, we give an efficient method for defining the set A that corresponds for any
odd prime p. This is not the case in the previous works, where the set A is only explicitly defined just
for the case p = 3.

The rest of this article is organized as follows. In Section 2 some basic definitions and notions are
given. The analysis of the Fourier transform of the function f is presented in Section 3. Some sufficient
conditions for a given function to be bent, 2-plateaued and near-bent are derived in Section 4. Some
concluding remarks are found in Section 5.

2. Preliminaries

In the sequel, let Fpn denote the finite Galois field GF(pn) consisting of pn elements. The group of
units of Fpn , denoted by F∗pn , is a cyclic group consisting of pn−1 elements. An element α ∈ Fpn is said
to be a primitive element if it is a generator of the multiplicative group F∗pn . Fpn is an n-dimensional
vector space over Fp. After fixing an Fp-basis (γ0, . . . , γn−1) of Fpn , the mapping

Fn
p 3 (α0, . . . , αn−1) 7→ α0γ0 + . . . + αn−1γn−1 ∈ Fpn

defines an isomorphism of vector spaces over Fp.
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A bent function f (x) is called regular if for every a ∈ Fpn the normalized Fourier coefficient p−
n
2 f̂ (a)

equals to complex p-th root of unity, that is, p−
n
2 f̂ (a) = ω f ∗(a) where the function f ∗(a) is called the

dual of f (x). A binary bent function is always regular. For odd p, a p-ary bent function f (x) may not
be regular, but its Fourier transform coefficients [3] satisfy

f̂ (a) =

{
±p

n
2ω f ∗(a), if p ≡ 1 (mod 4)

±ıp
n
2ω f ∗(a), if p ≡ 3 (mod 4) and n is odd

. (2.1)

Such a function is called weakly regular, if for all a ∈ Fpn , ı is fixed.
If for all a ∈ F(pn), f̂ (a) ∈ {0,±p

n+s
2 }, where 0 ≤ s ≤ n, then a p-ary function f (x) is called s-plateaued.

In the case of s = 1, f is called near-bent.
The trace function Trn

k : Fpn → Fpk , a mapping to the subfield Fpk , where k | n, is defined as

Trn
k (x) = x + xpk

+ xp2k
+ . . . + xp(n/k−1)k

, for all x ∈ Fpn . (2.2)

3. The Fourier coefficients of fλ,u,v

Let fλ,u,v(x) = Trk
1(λxpk+1) + Trn

1(ux)Trn
1(vx), where n = 2k, λ ∈ F∗pk , u, v ∈ F∗pn . In this section we

compute the Fourier transform of the function f (x) for any odd prime p. This result will help us to
divide the class of functions fλ,u,v into subclasses of bent, near-bent and 2-plateaued functions.

Before we prove the main theorem we need the following preparatory result.

Lemma 1. [2, 4] Let n = 2k and λ ∈ F∗pk . For any odd prime p, the p-ary monomial g(x) = Trk
1(λxpk+1)

is a weakly regular bent function. Moreover, for a ∈ Fpn the corresponding Fourier transform coeffi-
cient of g(x) is equal to

ĝ(a) = −pkω−Trk
1(λ−1apk+1). (3.1)

The authors in [8] computed the Fourier transform of the function fλ,u,v for p = 3. In what follows, we
continue the work of [8, 9] and present the general form of the Fourier transform of fλ,u,v for any odd
prime p.

Theorem 1. Let n = 2k be a positive integer and u, v ∈ F∗pn . Define the function f (x) by

f (x) = g(x) + Trn
1(ux)Trn

1(vx), (3.2)

where g(x) = Trk
1(λxpk+1) is a p-ary function defined on Fpn . Then for any a ∈ Fpn , the corresponding

Fourier transform coefficient of f = fλ,u,v is equal to

f̂ (a) =
1
p

∑
0≤i, j<p

ωi jĝ(a − jv + iu). (3.3)

Proof. For i, j = 0, . . . , p − 1 and u, v ∈ F∗pn define the sets Ti = {x ∈ Fpn | Trn
1(ux) = i} and denote

S i(a) =
∑
x∈Ti

ωg(x)−Trn
1(ax), Ri(a − jv) =

∑
x∈Ti

ωg(x)−Trn
1((a− jv)x).
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The Fourier transform coefficient of f (x) at a is equal to

f̂ (a) =
∑
x∈Fpn

ω f (x)−Trn
1(ax) =

∑
x∈Fpn

ωg(x)+Trn
1(ux)Trn

1(vx)−Trn
1(ax)

=
∑
x∈T0

ωg(x)−Trn
1(ax) +

∑
x∈T1

ωg(x)−Trn
1((a−v)x) +

∑
x∈T2

ωg(x)−Trn
1((a−2v)x) + . . . +

∑
x∈Tp−1

ωg(x)−Trn
1((a−(p−1)v)x)

= S 0(a) + R1(a − v) + R2(a − 2v) + . . . + Rp−1(a − (p − 1)v)

= S 0(a) +

p−1∑
j=1

R j(a − jv)

Let us first compute S 0(a). By definition of Ti we have∑
x∈Ti

ωg(x)−Trn
1((a+u)x) =

∑
x∈Ti

ωg(x)−Trn
1(ax)−i = ω−iS i(a).

Therefore, for any b ∈ Fp the Fourier transform of the function g at the point a + bu can be computed
as

ĝ(a + bu) =

p−1∑
i=0

ω−biS i(a). (3.4)

Since ω ∈ C is a primitive p-root of unity, 1 + ω + ω2 + . . . + ωp−1 = 0. Hence, adding p equations
of (3.4) gives

S 0(a) =
1
p

p−1∑
i=0

ĝ(a + iu). (3.5)

Next we calculate R j(a − jv). Similar to the above, using the definition of Ti, we have

ĝ(a − jv + bu) =

p−1∑
i=0

ω−biRi(a − jv)

The last expression can be written in the matrix form as

ĝ(a − jv)
ĝ(a − jv + u)

ĝ(a − jv + 2u)
...

ĝ(a − jv + (p − 1)u)


=



1 1 1 . . . 1 1
1 ωp−1 ωp−2 . . . ω2 ω

1 ωp−2 ω2·(p−2) . . . ω(p−2)·(p−2) ω(p−1)·(p−2)

...
...

... . . .
...

...

1 ω ω2 . . . ωp−2 ωp−1


·



R0(a − jv)
R1(a − jv)
R2(a − jv)

...

Rp−1(a − jv)


.

where the coefficient matrix represents Discrete Fourier Transform (DFT) matrix. It is well-known
that the inverse DFT matrix is

1
p



1 1 1 . . . 1 1
1 ω ω2 . . . ωp−2 ωp−1

...
...

... . . .
...

...

1 ωp−2 ω2·(p−2) . . . ω(p−2)·(p−2) ω(p−1)·(p−2)

1 ωp−1 ωp−2 . . . ω2 ω


.
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Therefore, we have

R j(a − jv) =
1
p

p−1∑
i=0

ωi· jĝ(a − jv + iu). (3.6)

Then the desired conclusion follows from (3.5) and (3.6). �

In what follows, we give explicit formulas for computing S 0(a) and R j(a− jv) given by (3.5) and (3.6),
respectively.

Let g(x) = Trk
1(λxpk+1). According to (3.1) and using the fact Trn

1(x) = Trk
1(Trn

k (x)), we have

ĝ(a + iu) = −pkω−Trk
1(λ−1apk+1)−iTrn

1(λ−1apk
u)−ipk+1Trk

1(λ−1upk+1), i = 0, . . . , p − 1.

Denote c1 = Trn
1(λ−1apk

u) and t1 = Trk
1(λ−1upk+1). By (3.5) it follows

S 0(a) = −
1
p

pkω−Trk
1(λ−1apk+1)[1 + ω−c1−t1 + ω−2c1−2pk+1t1 + . . . + ω−(p−1)c1−(p−1)pk+1t1].

Since ω is a primitive p-th root of unity it holds ωpk
= 1, i.e., ωpk+1 = ω. Therefore

S 0(a) = −
1
p

pkω−Trk
1(λ−1apk+1)[1 + ω−c1−t1 + ω−2c1−2·2t1 + . . . + ω2c1−2·2t1 + ωc1−t1]. (3.7)

On the other side,

ĝ(a − jv + iu) = −pkω−Trk
1(λ−1(a−v)pk+1)−i jTrn

1(λ−1apk
u)+i jTrn

1(λ−1vpk
u)−(i j)pk+1Trk

1(λ−1upk+1).

Denote c2 = Trn
1(λ−1apk

v), t2 = Trk
1(λ−1vpk+1) and t0 = Trn

1(λ−1vpk
u). By (3.6) it follows

R j(a − jv) = −
1
p

pkω−Trk
1(λ−1apk+1)[ω jc2− j· jt2 + ω j+ jc2− j· jt2−c1+ jt0−t1 + ω2 j+ jc2− j· jt2−2c1+2 jt0−2·2t1 . . . +

ω(p−1) j+ jc2− j· jt2−(p−1)c1+ j(p−1)·t0−(p−1)(p−1)·t1]. (3.8)

In the next section we apply the above computation to construct some (near)-bent and 2-plateaued
functions in the form of (3.2).

4. Quadratic p-ary bent, near-bent and 2-plateaued functions

To make it easier construction of bent, near-bent and 2-plateaued functions, we are going to con-
struct a subset A of F3

p, p > 3, which will help us to separate bent from non-bent functions. Its
construction is described in the following way:
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A = { (0, 1, 1
4 mod p) , (0, 2, a02), . . . , (0, p − 1, a0(p−1)),

(1, 1, 1) , (1, 2, a12), (1, 3, a13), . . . , (1, p − 1, a1(p−1)),
(2, 1, a21), (2, 2, a22), (2, 3, a23), . . . , (2, p − 1, a2(p−1)),
(3, 1, 4) , (3, 2, a32), (3, 3, a33), . . . , (3, p − 1, a3(p−1)),
...

(
p − 3

2
, 1, a( p−3

2 )1), (
p − 3

2
, 2, a( p−3

2 )2), . . . , (
p − 3

2
, p − 1, a( p−3

2 )(p−1)),

(
p − 1

2
, 1, a( p−3

2 )1), (
p − 1

2
, 2, a( p−3

2 )2), . . . , (
p − 1

2
, p − 1, a( p−3

2 )(p−1)), (4.1)

...

(p − 3, 1, 1), (p − 3, 2, a12), (p − 3, 3, a13), . . . , (p − 3, p − 1, p − 1),

(p − 2, 1,
1
4

mod p), (p − 2, 2, a02), (p − 2, 3, a13), . . . , (p − 2, p − 1, a0(p−1)),

(p − 1, 0, 0) , . . . , (p − 1, 0, p − 1), (p − 1, 1, 0), . . . , (p − 1, p − 1, 0) }

where ai j ∈ {0, 1, . . . , p − 1} and the boxed triples are fixed for any prime number p. The remaining
coefficients ai j must satisfy the following conditions:

1. In each row, the product of the second and third numbers of a triple satisfies

1 · ai1 ≡ 2 · ai2 ≡ 3 · ai3 ≡ . . . ≡ (p − 1) · ai(p−1) mod p

2. The first p−1
2 rows are symmetric to the next p−1

2 rows in such a way that first and (p − 2) row,
second and (p − 3), third and (p − 4), and so on, have the same second and third number of each
triple.

3. In each column, the sum of the third numbers of a triple satisfies

a0 j + a1 j + a2 j + . . . + a( p−3
2 ) j ≡ 0 mod p

Remark 1. Note that we have p − 1 rows with p − 1 triples, and the last row has 2p − 1 triples, which
means that the cardinality of the subset A is

#A = (p − 1) · (p − 1) + (2p − 1) = p2.

Remark 2. The equation in third condition has more than one solution for any odd prime p > 7. In
total, there is ( p−7

2 )! · ( p−7
2 )! possible solutions taking into account the first two conditions.

Example 1. Let us compute the set A for p = 11. At the beginning we have

A = { (0, 1, 1
4 mod 11) , (0, 2, a02), . . . , (0, 9, a09), (0, 10, a010),

(1, 1, 1) , (1, 2, a12), . . . , (1, 9, a19), (1, 10, a110),
(2, 1, a21), (2, 2, a22), . . . , (2, 9, a29), (2, 10, a210),
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(3, 1, 4) , (3, 2, a32), . . . , (3, 9, a39), (3, 10, a310),
(4, 1, a41), (4, 2, a42), . . . , (4, 9, a49), (4, 10, a410),
(5, 1, a41), (5, 2, a42), . . . , (5, 9, a49), (5, 10, a410),
(6, 1, 4) , (6, 2, a32), . . . , (6, 9, a39), (6, 10, a310),

(7, 1, a21), (7, 2, a22), . . . , (7, 9, a29), (7, 10, a210),
(8, 1, 1) , (8, 2, a12), . . . , (8, 9, a19), (8, 10, a110),

(9, 1, 1
4 mod p) , (9, 2, a02), . . . , (9, 9, a09), (9, 10, a010),

(10, 0, 0) , (10, 0, 1), . . . , (10, 9, 0), (10, 10, 0) }

With the help of boxed triples and given conditions the remaining coefficients in the rows can be
computed. For instance, in the first row, since 1

4 ≡ 3 mod 11, we are solving the following equations

1 · 3 ≡ 2 · a02 ≡ . . . ≡ 9 · a09 ≡ 10 · a010 ≡ 3 mod 11

It is easy to see that a02 = 7, a03 = 1, a04 = 9, a05 = 5, a06 = 6, a07 = 2, a08 = 10, a09 = 4, a010 = 8.
After other computations we get

A = {(0, 1, 3), (0, 2, 7), (0, 3, 1), (0, 4, 9), (0, 5, 5), (0, 6, 6), (0, 7, 2), (0, 8, 10), (0, 9, 4), (0, 10, 8)
(1, 1, 1), (1, 2, 6), (1, 3, 4), (1, 4, 3), (1, 5, 9), (1, 6, 2), (1, 7, 8), (1, 8, 7), (1, 9, 5), (1, 10, 10)
(2, 1, a21), (2, 2, a22), (2, 3, a23), (2, 4, a24), (2, 5, a25), (2, 6, a26), (2, 7, a27), (2, 8, a28),
(2, 9, a29), (2, 10, a210), (3, 1, 4), (3, 2, 2), (3, 3, 5), (3, 4, 1), (3, 5, 3), (3, 6, 8), (3, 7, 10),
(3, 8, 6), (3, 9, 9), (3, 10, 7), (4, 1, a41), (4, 2, a42), (4, 3, a43), (4, 4, a44), (4, 5, a45), (4, 6, a46),
(4, 7, a47), (4, 8, a48), (4, 9, a49), (4, 10, a410), (5, 1, a41), (5, 2, a42), (5, 3, a43), (5, 4, a44), (5, 5, a45),
(5, 6, a46), (5, 7, a47), (5, 8, a48), (5, 9, a49), (5, 10, a410), (6, 1, 4), (6, 2, 2), (6, 3, 5), (6, 4, 1),
(6, 5, 3), (6, 6, 8), (6, 7, 10), (6, 8, 6), (6, 9, 9), (6, 10, 7), (7, 1, a21), (7, 2, a22), (7, 3, a23), (7, 4, a24),
(7, 5, a25), (7, 6, a26), (7, 7, a27), (7, 8, a28), (7, 9, a29), (7, 10, a210), (8, 1, 1), (8, 2, 6), (8, 3, 4),
(8, 4, 3), (8, 5, 9), (8, 6, 2), (8, 7, 8), (8, 8, 7), (8, 9, 5), (8, 10, 10), (9, 1, 3), (9, 2, 7), (9, 3, 1),
(9, 4, 9), (9, 5, 5), (9, 6, 6), (9, 7, 2), (9, 8, 10), (9, 9, 4), (9, 10, 8), (10, 0, 0), (10, 0, 1), (10, 0, 2),
(10, 0, 3), (10, 0, 4), (10, 0, 5), (10, 0, 6), (10, 0, 7), (10, 0, 8), (10, 0, 9), (10, 0, 10), (10, 1, 0),
(10, 2, 0), (10, 3, 0), (10, 4, 0), (10, 5, 0), (10, 6, 0), (10, 7, 0), (10, 8, 0), (10, 9, 0), (10, 10, 0) }

With the help of third condition we can calculate the rest of the coefficients. In fact, we only need to
solve the following equation

3 + 1 + a21 + 4 + a41 ≡ 0 mod 11
a21 + a41 ≡ 3 mod 11

The possible solutions are a21 = 5, a41 = 9, or a21 = 9, a41 = 5, or a21 = 8, a41 = 6 or a21 = 6, a41 = 8.
We can choose whatever solution we want. Therefore, for a21 = 9 and a41 = 5 we have

A = {(0, 1, 3), (0, 2, 7), (0, 3, 1), (0, 4, 9), (0, 5, 5), (0, 6, 6), (0, 7, 2), (0, 8, 10), (0, 9, 4), (0, 10, 8)
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(1, 1, 1), (1, 2, 6), (1, 3, 4), (1, 4, 3), (1, 5, 9), (1, 6, 2), (1, 7, 8), (1, 8, 7), (1, 9, 5), (1, 10, 10)
(2, 1, 9), (2, 2, 10), (2, 3, 3), (2, 4, 5), (2, 5, 4), (2, 6, 7), (2, 7, 6), (2, 8, 8), (2, 9, 1), (2, 10, 2)
(3, 1, 4), (3, 2, 2), (3, 3, 5), (3, 4, 1), (3, 5, 3), (3, 6, 8), (3, 7, 10), (3, 8, 6), (3, 9, 9), (3, 10, 7)
(4, 1, 5), (4, 2, 8), (4, 3, 9), (4, 4, 4), (4, 5, 1), (4, 6, 10), (4, 7, 7), (4, 8, 2), (4, 9, 3), (4, 10, 6)
(5, 1, 5), (5, 2, 8), (5, 3, 9), (5, 4, 4), (5, 5, 1), (5, 6, 10), (5, 7, 7), (5, 8, 2), (5, 9, 3), (5, 10, 6)
(6, 1, 4), (6, 2, 2), (6, 3, 5), (6, 4, 1), (6, 5, 3), (6, 6, 8), (6, 7, 10), (6, 8, 6), (6, 9, 9), (6, 10, 7)
(7, 1, 9), (7, 2, 10), (7, 3, 3), (7, 4, 5), (7, 5, 4), (7, 6, 7), (7, 7, 6), (7, 8, 8), (7, 9, 1), (7, 10, 2)
(8, 1, 1), (8, 2, 6), (8, 3, 4), (8, 4, 3), (8, 5, 9), (8, 6, 2), (8, 7, 8), (8, 8, 7), (8, 9, 5), (8, 10, 10)
(9, 1, 3), (9, 2, 7), (9, 3, 1), (9, 4, 9), (9, 5, 5), (9, 6, 6), (9, 7, 2), (9, 8, 10), (9, 9, 4), (9, 10, 8)
(10, 0, 0), (10, 0, 1), (10, 0, 2), (10, 0, 3), (10, 0, 4), (10, 0, 5), (10, 0, 6), (10, 0, 7), (10, 0, 8),
(10, 0, 9), (10, 0, 10), (10, 1, 0), (10, 2, 0), (10, 3, 0), (10, 4, 0), (10, 5, 0), (10, 6, 0),
(10, 7, 0), (10, 8, 0), (10, 9, 0), (10, 10, 0) }

The following conjecture is the main result of this section and shows how the set A defined above
can be used in the construction of quadratic bent, near-bent and 2-plateaued functions. Unfortunately,
we are unable to give a complete proof, for the following reasons: first, not all triples of the set A are
described in a general way, so we are not able to verify all triples, and second, the triples of F3

p cannot
be described in a way that is suitable for our proof technique. Therefore, we give a partial proof, and
complete proof remains as an interesting problem for all mathematics enthusiasts.

Conjecture 1. Let n = 2k with k > 1 and λ ∈ F∗pk , u, v ∈ F∗pn . Let the subset A ⊂ F3
p be defined as in

(4.1) and fλ,u,v(x) be a p-ary function defined as f = fλ,u,v(x) = Trk
1(λxpk+1) + Trn

1(ux)Trn
1(vx). Denote

a triple T = (Trn
1(λ−1vpk

u),Trk
1(λ−1upk+1),Trk

1(λ−1vpk+1)). Then

1. If T ∈ F3
p \ A, then f is bent.

2. If T ∈ A \ {(p − 1, 0, 0)}, then f is near-bent.
3. If T = (p − 1, 0, 0), then f is a 2-plateaued function.

Idea of Proof. Let us show the proof technique for the third statement. According to (3.7) and (3.8)
we have

S 0(a) = −
1
p

pkω−Trk
1(λ−1apk+1)[1 + ω−c1 + ω−2c1 + . . . + ω2c1 + ωc1]

R j(a − jv) = −
1
p

pkω−Trk
1(λ−1apk+1)[ω jc2 + ω j+ jc2−c1 + . . . + ω j(p−1)+ jc2−(p−1)c1].

Then, using equation (3.3) we get

f̂ (a) = −
1
p

pkω−Trk
1(λ−1apk+1)[

p−1∑
i=0

(ωic2 + ωi(c2+p)−c1 + . . . + ωi(c2+(p−1)p)−(p−1)c1)]

If c2 = 0, then

f̂ (a) = −
1
p

pkω−Trk
1(λ−1apk+1)[p + ω−c1 p + ω−2c1 p + . . . + ω−(p−1)c1 p]
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= −pkω−Trk
1(λ−1apk+1)[1 + ω−c1 + ω−2c1 + . . . + ω−(p−1)c1].

If c1 = 0, then f̂ (a) = −pk+1ω−Trk
1(λ−1apk+1), otherwise is 0.

If c2 , 0, then f̂ (a) = 0.

Therefore, | f̂ (a)| ∈ {0, pk+1} for all a ∈ Fpn . Then f is 2-plateaued.

This technique can also be used to prove either of the first two statements, but we are unable to check
all possible triples.

Example 2. Let p = 7 and define the function f (x) = Trk
1(λx7k+1) + Trn

1(ux)Trn
1(vx). By (4.1) we can

define the set A as

A = { (0, 1, 2), (0, 2, 1), (0, 3, 3), (0, 4, 4), (0, 5, 6), (0, 6, 5),
(1, 1, 1), (1, 2, 4, (1, 3, 5), (1, 4, 2), (1, 5, 3), (1, 6, 6),
(2, 1, 4), (2, 2, 2), (2, 3, 6), (2, 4, 1), (2, 5, 5), (2, 6, 3),
(3, 1, 4), (3, 2, 2), (3, 3, 6), (3, 4, 1), (3, 5, 5), (3, 6, 3),
(4, 1, 1), (4, 2, 4), (4, 3, 5), (4, 4, 2), (4, 5, 3), (4, 6, 6),
(5, 1, 2), (5, 2, 1), (5, 3, 3), (5, 4, 4), (5, 5, 6), (5, 6, 5),
(6, 0, 0), (6, 0, 1), (6, 0, 2), (6, 0, 3), (6, 0, 4), (6, 0, 5), (6, 0, 6),
(6, 1, 0), (6, 2, 0), (6, 3, 0), (6, 4, 0), (6, 5, 0), (6, 6, 0) }

In what follows, we give some triples (t0, t1, t2) such that the function f is bent, near-bent and 2-
plateaued, respectively. It can be easily verified that for any T ∈ F3

7 \ A the function f is bent. For
instance, if T = (2, 3, 4), then

f̂ (a) =



7kω−Trk
1(λ−1a7k+1), if (c1, c2) = {(0, 0)}

7kω−Trk
1(λ−1a7k+1)+1, if (c1, c2) = {(1, 0), (1, 1), (2, 3), (2, 6),

(5, 1), (5, 4), (6, 0), (6, 6)}
7kω−Trk

1(λ−1a7k+1)+2, if (c1, c2) = {(1, 3), (1, 5), (3, 0), (3, 3),
(4, 0), (4, 4), (6, 2), (6, 4)}

7kω−Trk
1(λ−1a7k+1)+3, if (c1, c2) = {(0, 2), (0, 5), (1, 4), (2, 4),

(2, 5), (5, 2), (5, 3), (6, 3)}
7kω−Trk

1(λ−1a7k+1)+4, if (c1, c2) = {(2, 0), (2, 2), (3, 1), (3, 2),
(4, 5), (4, 6), (5, 0), (5, 5)}

7kω−Trk
1(λ−1a7k+1)+5, if (c1, c2) = {(0, 3), (0, 4), (2, 1), (3, 4),

(3, 6), (4, 1), (4, 3), (5, 6)}
7kω−Trk

1(λ−1a7k+1)+6, if (c1, c2) = {(0, 1), (0, 6), (1, 2), (1, 6),
(3, 5), (4, 2), (6, 1), (6, 5)}

.

Similarly, for any T ∈ A \ (6, 0, 0) the function f is near-bent. For instance, if T = (1, 1, 1), then

f̂ (a) =


±7k+ 1

2ω−Trk
1(λ−1a7k+1), if (c1, c2) = {(0, 0), (1, 1), (2, 2), (3, 3),

(4, 4), (5, 5), (6, 6)}
0, otherwise

.
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At the end, if T = (6, 0, 0) then f is 2-plateaued, i.e.,

f̂ (a) =

 −7k+1ω−Trk
1(λ−1a7k+1), if (c1, c2) = {(0, 0)}

0, otherwise
.

5. Conclusions

The exact computation of the Fourier transform for a given p-ary function of the form fλ,u,v has
been established. Also, certain conditions such that a given p-ary function is bent, near-bent or 2-
plateaued has been presented. It will be interesting to completely determine the distribution of the
Fourier spectrum of these functions and try to determine the Fourier transform of the other p-ary
functions using the presented method.
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