The environment around us naturally represents number of its components in fractal structures. Some fractal patterns are also artificially simulated using real life mathematical systems. In this paper, we use the fractal operator combined to the fractional operator with both exponential and Mittag-leffler laws to analyze and solve generalized three-dimensional systems related to real life phenomena. Numerical solutions are provided in each case and applications to some related systems are given. Numerical simulations show the existence of the models' initial three-dimensional structure followed by its self- replication in fractal structure mathematically produced. The whole dynamics are also impacted by the fractional part of the operator as the derivative order changes.
Citation: Emile Franc Doungmo Goufo, Abdon Atangana. On three dimensional fractal dynamics with fractional inputs and applications[J]. AIMS Mathematics, 2022, 7(2): 1982-2000. doi: 10.3934/math.2022114
The environment around us naturally represents number of its components in fractal structures. Some fractal patterns are also artificially simulated using real life mathematical systems. In this paper, we use the fractal operator combined to the fractional operator with both exponential and Mittag-leffler laws to analyze and solve generalized three-dimensional systems related to real life phenomena. Numerical solutions are provided in each case and applications to some related systems are given. Numerical simulations show the existence of the models' initial three-dimensional structure followed by its self- replication in fractal structure mathematically produced. The whole dynamics are also impacted by the fractional part of the operator as the derivative order changes.
[1] | A. M. Reynolds, C. J. Rhodes, The lévy flight paradigm: Random search patterns and mechanisms, Ecology, 90 (2009), 877–887. doi: 10.1890/08-0153.1. doi: 10.1890/08-0153.1 |
[2] | T. Kim, S. Kim, Singularity spectra of fractional brownian motions as a multi-fractal, Chaos, Soliton. Fract., 19 (2004), 613–619. doi: 10.1016/S0960-0779(03)00187-5. doi: 10.1016/S0960-0779(03)00187-5 |
[3] | M. Mignotte, A fractal projection and markovian segmentation-based approach for multimodal change detection, IEEE T. Geosci. Remote, 58 (2020), 8046–8058. doi: 10.1109/TGRS.2020.2986239. doi: 10.1109/TGRS.2020.2986239 |
[4] | M. O. Cáceres, Non-markovian processes with long-range correlations: Fractal dimension analysis, Braz. J. phys., 29 (1999), 125–135. doi: 10.1590/S0103-97331999000100011. doi: 10.1590/S0103-97331999000100011 |
[5] | A. Atangana, J. Nieto, Numerical solution for the model of RLC circuit via the fractional derivative without singular kernel, Adv. Mech. Eng., 7 (2015), 1–7. doi: 10.1177/1687814015613758. doi: 10.1177/1687814015613758 |
[6] | D. Brockmann, L. Hufnagel, Front propagation in reaction-superdiffusion dynamics: Taming Lévy flights with fluctuations, Phys. Rev. Lett. 98 (2007), 178–301. doi: 10.1103/PhysRevLett.98.178301. |
[7] | E. F. D. Goufo, S. Kumar, S. Mugisha, Similarities in a fifth-order evolution equation with and with no singular kernel, Chaos, Soliton. Fract., 130 (2020), 109467. doi: 10.1016/j.chaos.2019.109467. doi: 10.1016/j.chaos.2019.109467 |
[8] | W. Wang, M. A. Khan, Analysis and numerical simulation of fractional model of bank data with fractal–fractional atangana–baleanu derivative, J. Comput. Appl. Math., 369 (2020), 112646. doi: 10.1016/j.cam.2019.112646. doi: 10.1016/j.cam.2019.112646 |
[9] | S. Das, Convergence of Riemann-Liouvelli and Caputo Derivative Definitions for Practical Solution of Fractional Order Differential Equation, Int. J. Appl. Math. Stat., 23 (2011), 64–74. doi: 10.1416/i.ijams.2011.03.017. doi: 10.1416/i.ijams.2011.03.017 |
[10] | A. Atangana, T. Mekkaoui, Trinition the complex number with two imaginary parts: Fractal, chaos and fractional calculus, Chaos, Soliton. Fract., 128 (2019), 366–381. doi: 10.1016/j.chaos.2019.08.018. doi: 10.1016/j.chaos.2019.08.018 |
[11] | E. F. D. Goufo, Fractal and fractional dynamics for a 3d autonomous and two-wing smooth chaotic system, Alexandria Engineering Journal, (2020). doi: 10.1016/j.aej.2020.03.011. |
[12] | E. F. D. Goufo, Application of the caputo-fabrizio fractional derivative without singular kernel to korteweg-de vries-burgers equation, Math, Model, Anal., 21 (2016), 188–198. doi: 10.3846/13926292.2016.1145607. doi: 10.3846/13926292.2016.1145607 |
[13] | A. Atangana, Fractal-fractional differentiation and integration: Connecting fractal calculus and fractional calculus to predict complex system, Chaos, Soliton. Fract., 102 (2017), 396–406. doi: 10.1016/j.chaos.2017.04.027. doi: 10.1016/j.chaos.2017.04.027 |
[14] | S. İ. ARAZ, Numerical analysis of a new volterra integro-differential equation involving fractal-fractional operators, Chaos, Soliton. Fract., 130 (2020), 109396. doi: 10.1016/j.chaos.2019.109396. doi: 10.1016/j.chaos.2019.109396 |
[15] | E. F. Doungmo Goufo, The proto-lorenz system in its chaotic fractional and fractal structure, Int. J. Bifurcat. Chaos, 30 (2020), 2050180. doi: 10.1142/S0218127420501801. doi: 10.1142/S0218127420501801 |
[16] | M. V. Berry, S. Klein, Integer, fractional and fractal talbot effects, J. Mod. Optic. 43 (1996), 2139–2164. doi: 10.1080/09500349608232876. |
[17] | A. A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, (Elsevier Science Limited, 2006). ISBN: 9780444518323 0444518320 0080462073 9780080462073. |
[18] | S. Pooseh, H. S. Rodrigues, D. F. Torres, Fractional derivatives in dengue epidemics, In: AIP Conference Proceedings, 1389(1), AIP-2011,739–742. https://arXiv.org/pdf/1108.1683.pdf. |
[19] | W. Macek, R. Branco, M. Korpyś, T. Łagoda, Fractal dimension for bending–torsion fatigue fracture characterisation, Measurement, 184 (2021), 109910. doi: 10.1016/j.measurement.2021.109910. doi: 10.1016/j.measurement.2021.109910 |
[20] | L. R. Carney, J. J. Mecholsky Jr, Relationship between fracture toughness and fracture surface fractal dimension in aisi 4340 steel (2013). doi: 10.4236/msa.2013.44032. |
[21] | A. Atangana, S. I. Araz, Atangana-seda numerical scheme for labyrinth attractor with new differ, Geophys. J. Int., 13 (2020), 529–539. doi: 10.1142/S0218348X20400447. doi: 10.1142/S0218348X20400447 |
[22] | K. Diethelm, N. J. Ford, A. D. Freed, A predictor-corrector approach for the numerical solution of fractional differential equations, Nonlinear Dynam., 29 (2002), 3–22. doi: 10.1023/A:1016592219341. doi: 10.1023/A:1016592219341 |