Research article

On the Burr XII-Power Cauchy distribution: Properties and applications

  • Received: 08 December 2020 Accepted: 12 April 2021 Published: 27 April 2021
  • MSC : 60E05, 62E15, 62F10

  • We propose a new four-parameter lifetime model with flexible hazard rate called the Burr XII Power Cauchy (BXII-PC) distribution. We derive the BXII-PC distribution via (ⅰ) the T-X family technique and (ⅱ) nexus between the exponential and gamma variables. The new proposed distribution is flexible as it has famous sub-models such as Burr XII-half Cauchy, Lomax-power Cauchy, Lomax-half Cauchy, Log-logistic-power Cauchy, log-logistic-half Cauchy. The failure rate function for the BXII-PC distribution is flexible as it can accommodate various shapes such as the modified bathtub, inverted bathtub, increasing, decreasing; increasing-decreasing and decreasing-increasing-decreasing. Its density function can take shapes such as exponential, J, reverse-J, left-skewed, right-skewed and symmetrical. To illustrate the importance of the BXII-PC distribution, we establish various mathematical properties such as random number generator, moments, inequality measures, reliability measures and characterization. Six estimation methods are used to estimate the unknown parameters of the proposed distribution. We perform a simulation study on the basis of the graphical results to demonstrate the performance of the maximum likelihood, maximum product spacings, least squares, weighted least squares, Cramer-von Mises and Anderson-Darling estimators of the parameters of the BXII-PC distribution. We consider an application to a real data set to prove empirically the potentiality of the proposed model.

    Citation: Fiaz Ahmad Bhatti, G. G. Hamedani, Mashail M. Al Sobhi, Mustafa Ç. Korkmaz. On the Burr XII-Power Cauchy distribution: Properties and applications[J]. AIMS Mathematics, 2021, 6(7): 7070-7092. doi: 10.3934/math.2021415

    Related Papers:

  • We propose a new four-parameter lifetime model with flexible hazard rate called the Burr XII Power Cauchy (BXII-PC) distribution. We derive the BXII-PC distribution via (ⅰ) the T-X family technique and (ⅱ) nexus between the exponential and gamma variables. The new proposed distribution is flexible as it has famous sub-models such as Burr XII-half Cauchy, Lomax-power Cauchy, Lomax-half Cauchy, Log-logistic-power Cauchy, log-logistic-half Cauchy. The failure rate function for the BXII-PC distribution is flexible as it can accommodate various shapes such as the modified bathtub, inverted bathtub, increasing, decreasing; increasing-decreasing and decreasing-increasing-decreasing. Its density function can take shapes such as exponential, J, reverse-J, left-skewed, right-skewed and symmetrical. To illustrate the importance of the BXII-PC distribution, we establish various mathematical properties such as random number generator, moments, inequality measures, reliability measures and characterization. Six estimation methods are used to estimate the unknown parameters of the proposed distribution. We perform a simulation study on the basis of the graphical results to demonstrate the performance of the maximum likelihood, maximum product spacings, least squares, weighted least squares, Cramer-von Mises and Anderson-Darling estimators of the parameters of the BXII-PC distribution. We consider an application to a real data set to prove empirically the potentiality of the proposed model.



    加载中


    [1] P. R. Rider, Generalized Cauchy distribution, Ann. Math. Stat., 9 (1957), 215-223. doi: 10.1007/BF02892507
    [2] R. C. Dahiya, P. G. Staneski, N. R. Chaganty, Maximum likelihood estimation of parameters of the truncated Cauchy distribution, Commun. Stat. Theory Methods, 30 (2001), 1737-1750. doi: 10.1081/STA-100105695
    [3] S. Nadarajah, S. Kotz, A truncated Cauchy distribution, Int. J. Math. Educ. Sci. Technol., 37 (2006), 605-608. doi: 10.1080/00207390600595223
    [4] N. L. Johnson, S. Kotz, N. Balakrishnan, Continuous Univariate Distributions, Second edition, New York: Wiley, 1994.
    [5] N. Eugene, C. Lee, F. Famoye, Beta-normal distribution and its applications, Commun. Stat. Theory Methods, 31 (2002), 497-512. doi: 10.1081/STA-120003130
    [6] E. Alshawarbeh, F. Famoye, C. Lee, Beta-Cauchy distribution: Some properties and applications, J. Stat. Theory Appl., 12 (2013), 378-391.
    [7] E. Alshawarbeh, C. Lee, F. Famoye, The beta-Cauchy distribution, J. Probab. Stat. Sci., 10 (2012), 41-57.
    [8] E. Jacob, K. Jayakumar, On half-Cauchy distribution and process, Int. J. Stat. Math., 3 (2012), 77-81.
    [9] G. M. Cordeiro, A. J. Lemonte, The beta-half Cauchy distribution, J. Probab. Stat., 2011 (2011), 904705.
    [10] G. G. Hamedani, I. Ghosh, Kumaraswamy-half-Cauchy distribution: Characterizations and related results, Int. J. Stat. Probab., 4 (2015), 94-100.
    [11] M. H. Tahir, M. Zubair, G. M. Cordeiro, A. Alzaatreh, M. Mansoor, The Weibull-Power Cauchy distribution: Model, properties and applications, Hacettepe J. Math. Stat., 46 (2017), 767-789.
    [12] J. E. Contreras-Reyes, F. Kahrari, D. D. Cortés, On the modified skew-normal-Cauchy distribution: Properties, inference and applications, Commun. Stat. Theory Methods, (2020), 1-17.
    [13] I. W. Burr, Cumulative frequency functions, Ann. Math. Stat., 13 (1942), 215-232. doi: 10.1214/aoms/1177731607
    [14] R. B. Silva, G. M. Cordeiro, The Burr XII power series distributions: A new compounding family, Braz. J. Probab. Stat., 29 (2015), 565-589.
    [15] I. Elbatal, E. Altun, A. Z. Afify, G. Ozel, The generalized Burr XII power series distributions with properties and applications, Ann. Data Sci., 6 (2019), 571-597. doi: 10.1007/s40745-018-0171-2
    [16] G. M. Cordeiro, H. M. Yousof, T. G. Ramires, E. M. Ortega, The Burr XII system of densities: Properties, regression model and applications, J. Stat. Comput. Simul., 88 (2018), 432-456. doi: 10.1080/00949655.2017.1392524
    [17] H. Goual, H. M. Yousof, Validation of Burr XII inverse Rayleigh model via a modified chi-squared goodness-of-fit test, J. Appl. Stat., 47 (2020), 393-423. doi: 10.1080/02664763.2019.1639642
    [18] F. A. Bhatti, G. G. Hamedani, M. Ç. Korkmaz, W. Sheng, A. Ali, On the Burr XII-moment exponential distribution, Plos One, 16 (2021), e0246935. doi: 10.1371/journal.pone.0246935
    [19] A. Alzaatreh, M. Mansoor, M. H. Tahir, M. Zubair, S. Ali, The gamma half-Cauchy distribution: Properties and applications, Hacettepe J. Math. Stat., 45 (2016), 1143-1159.
    [20] B. Rooks, A. Schumacher, K. Cooray, The power Cauchy distribution: Derivation, description, and composite models, NSF-REU Program Reports, 2010.
    [21] M. H. Tahir, M. Zubair, G. M. Cordeiro, A. Alzaatreh, M. Mansoor, The Weibull-Power Cauchy distribution: Model, properties and applications, Hacettepe J. Math. Stat., 46 (2017), 767-789.
    [22] G. K. Bhattacharyya, R. A. Johnson, Estimation of reliability in a multicomponent stress-strength model, J. Am. Stat. Assoc., 69 (1974), 966-970. doi: 10.1080/01621459.1974.10480238
    [23] S. Kotz, C. D. Lai, M. Xie, On the effect of redundancy for systems with dependent components, IIE Trans, 35 (2003), 1103-1110. doi: 10.1080/714044440
    [24] W. Glänzel, A characterization theorem based on truncated moments and its application to some distribution families, In: P. Bauer, F. Konecny, W. Wertz, Mathematical Statistics and Probability Theory, Dordrecht: Springer, 1987.
    [25] W. Glänzel, Some consequences of a characterization theorem based on truncated moments, Statistics, 21 (1990), 613-618. doi: 10.1080/02331889008802273
    [26] R. C. H. Cheng, N. A. K. Amin, Maximum product of spacings estimation with application to the lognormal distribution, Math. Report, (1979), 791.
    [27] R. C. H. Cheng, N. A. K. Amin, Estimating parameters in continuous univariate distributions with a shifted origin, J. R. Stat. Soc. Ser. B, 45 (1983), 394-403.
    [28] B. Ranneby, The maximum spacing method. An estimation method related to the maximum likelihood method, Scand. J. Stat., 11 (1984), 93-112.
    [29] T. W. Anderson, D. A. Darling, Asymptotic theory of certain "goodness of fit" criteria based on stochastic processes, Ann. Math. Stat., 23 (1952), 193-212. doi: 10.1214/aoms/1177729437
    [30] G. Chen, N. Balakrishnan, A general purpose approximate goodness-of-fit test, J. Qual. Technol., 27 (1995), 154-161. doi: 10.1080/00224065.1995.11979578
    [31] F. Proschan, Theoretical explanation of observed decreasing failure rate, Technometrics, 5 (1963), 375-383. doi: 10.1080/00401706.1963.10490105
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2709) PDF downloads(197) Cited by(2)

Article outline

Figures and Tables

Figures(7)  /  Tables(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog