Citation: Azam Zaka, Ahmad Saeed Akhter, Riffat Jabeen. The new reflected power function distribution: Theory, simulation & application[J]. AIMS Mathematics, 2020, 5(5): 5031-5054. doi: 10.3934/math.2020323
[1] | C. Dallas, Characterization of Pareto and Power function distribution, Ann. I. Stat. Math., 28 (1976), 491-497. doi: 10.1007/BF02504764 |
[2] | M. Meniconi, D. M. Barry, The Power function distribution: A useful and simple distribution to assess electrical component reliability, Microelectron. Reliab., 36 (1996), 1207-1212. doi: 10.1016/0026-2714(95)00053-4 |
[3] | R. C. Gupta, P. L. Gupta, R. D. Gupta, Modeling failure time data by lehman alternatives, Commun. Stat. Theory Methods, 27 (1997), 887-904. |
[4] | R. D. Gupta, D. Kundu, Exponentiated exponential family: An alternative to Gamma and Weibull Distributions, Biom. J., 43 (2001), 117-130. doi: 10.1002/1521-4036(200102)43:1<117::AID-BIMJ117>3.0.CO;2-R |
[5] | S. Nadarajah, S. Kotz, The exponentiated type distributions, Acta Appl. Math., 92 (2006), 97-111. doi: 10.1007/s10440-006-9055-0 |
[6] | G. M. Cordeiro, E. M. M. Ortega, D. C. C. Cunh, The exponentiated generalized class of distributions, J. Data Sci., 11 (2013), 1-27. |
[7] | A. W. Marshall, I. Olkin, A new method for adding a parameter to a family of distributions with application to the Exponential and Weibull families, Biometrika, 84 (1997), 641-652. doi: 10.1093/biomet/84.3.641 |
[8] | N. Eugene, C. Lee, F. Famoye, The Beta-Normal distribution and its applications, Commun. Stat. Theory Methods, 31 (2002), 497-512. |
[9] | W. T. Shaw, I. R. Buckley, The alchemy of probability distributions: Beyond gram-charlier expansions, and a skew-kurtotic-Normal distribution from a rank transmutation map, arXiv preprint arXiv: 0901.0434, 2009. |
[10] | G. O. Silva, E. M. M. Ortega, G. M. Cordeiro, The beta modified Weibull distribution, Lifetime Data Anal., 16 (2010), 409-430. doi: 10.1007/s10985-010-9161-1 |
[11] | K. Zografos, N. Balakrishnan, On families of beta and generalized Gamma generated distributions and associated inference, Stat. Methodol., 6 (2009), 344-362. doi: 10.1016/j.stamet.2008.12.003 |
[12] | G. M. Cordeiro, M. De-Castro, A new family of generalized distributions, J. Stat. Comput. Simul., 81 (2011), 883-898. |
[13] | C. Alexander, G. M. Cordeiro, E. M. M. Ortega, et al. Generalized beta-generated distributions, Comput. Stat. Data Anal., 56 (2012), 1880-1897. |
[14] | L. M. Zea, R. B. Silva, M. Bourguignon, et al. The beta exponentiated Pareto distribution with application to bladder cancer susceptibility, Int. J. Stat. Probab., 1 (2012), 8-19. |
[15] | A. Alzaatreh, F. Famoye, C. Lee, A new method for generating families of continuous distributions, Metron, 71 (2013), 63-79. |
[16] | M. Alizadeh, G. M. Cordeiro, A. D. C. Nascimento, et al. Odd-Burr generalized family of distributions with some applications, J. Stat. Comput. Simul., 87 (2017), 367-389. |
[17] | G. M. Cordeiro, E. M. M. Ortega, B. V. Popovic, et al. The Lomax generator of distributions: Properties, manification process and regression model, Appl. Math. Comput., 247 (2014), 465-486. |
[18] | S. Nadarajah, G. M. Cordeiro, E. M. M. Ortega, The Zografos-Balakrishnan-G family of distributions: Mathematical properties and applications, Commun. Stat. Theory Methods, 44 (2015), 186-215. doi: 10.1080/03610926.2012.740127 |
[19] | G. Aryal, I. Elbatal, On the exponentiated generalized modified Weibull distribution, Commun. Stat. Appl. Methods, 22 (2015), 333-348. |
[20] | S. Cakmakyapan, G. Oze, The Lindley family of distributions: Properties and applications, Hacettepe J. Math. Stat., 46 (2016), 1113-1137. |
[21] | H. Haghbin, G. Ozel, M. Alizadeh, et al. A new generalized odd log-logistic family of distributions, Commun. Stat. Theory Methods, 46 (2017), 9897-9920. |
[22] | Z. Iqbal, A. Nawaz, N. Riaz, et al. Marshall and Olkin moment Exponential distribution, J. Issos, 4 (2018), 13-31. |
[23] | E. Krishna, K. K. Jose, T. Alice, et al. The Marshall-Olkin Fréchet distribution, Commun. Stat. Theory Methods, 42 (2013), 4091-4107. |
[24] | A. J. Lemonte, The beta log-logistic distribution, Braz. J. Probab. Stat., 24 (2012), 313-332. |
[25] | J. Rodrigues, G. M. Cordeiro, J. Bazan, The exponentiated generalized Lindley distribution, Asian Research J. Math., 5 (2017), 1-14. |
[26] | G. Ozel, M. Alizadeh, S. Cakmacyapan, et al. The odd log-logistic Lindley Poisson model for lifetime data, Commun. Stat. Simul. Comput., 46 (2017), 6513-6537. |
[27] | M. Alizadeh, M. H. Tahir, G. M. Cordeiro, et al. The Kumaraswamy Marshal-Olkin family of distributions, J. Egypt. Math. Soc., 23 (2015), 546-557. |
[28] | G. M. Cordeiro, M. Alizadeh, G. Ozel, et al. The generalized odd log-logistic family of distributions: Properties, regression models and applications, J. Stat. Comput. Simul., 87 (2017), 908-932. |
[29] | F. A. Bhatti, G. G. Hamedani, M. C. Korkmaz, et al. Burr III-Marshall and Olkin family: Development, properties, characterizations and applications, J. Stati. Distrib. Appl., 6 (2019), 12. |
[30] | M. A. Haq, G. G. Hamedani, M. Elgarhy, et al. Marshall-Olkin Power Lomax distribution: Properties and estimation based on complete and censored samples, Int. J. Stat. Probab., 9 (2020), 48-62. |
[31] | M. Tahir, M. Alizadeh, M. Mansoor, et al. The Weibull-Power function distribution with applications, Hacettepe J. Math. Stat., 45 (2014), 245-265. |
[32] | N. Shahzad, M. Asghar, Transmuted Power function distribution: A more flexible distribution, J. Stat. Manage. Syst., 19 (2016), 519-539. |
[33] | A. S. Hassan, S. M. Assar, The exponentiated Weibull-Power function distribution, J. Data Sci., 16 (2017), 589-614. |
[34] | M. Ibrahim, The Kumaraswamy Power function distribution, J. Stat. Appl. Probab., 6 (2017), 81-90. |
[35] | R. Usman, N. Bursa, O. Z. E. L. Gamze, Exponentiated transmuted Power function distribution: Theory and applications, Gazi Univ. J. Sci., 31 (2018), 660-675. |
[36] | M. A. Haq, R. M. Usman, N. Bursa, et al. McDonald's Power function distribution with theory and applications, Int. J. Stat. Econ., 19 (2018), 89-107. |
[37] | A. Zaka, A. S. Akhter, R. Jabeen, The exponentiated generalized Power function distribution: Theory and real life applications, Adv. Appl. Stat., 61 (2020), 33-63. |
[38] | A. C. Cohen, The Reflected Weibull distribution, Technometric, 15 (1973), 867- 873. |
[39] | R. Glaser, Bathtub and related failure rate characterizations, J. Am. Stat. Assoc., 75 (1980), 667-672. |
[40] | S. D. Dubey, Some percentile estimators for Weibull parameters, Technometrics, 9 (1967), 119-129. |
[41] | N. B. Marks, Estimation of Weibull parameters from common percentiles, J. Appl. Stat., 32 (2005), 17-24. |
[42] | P. Feigl, M. Zelen, Estimation of exponential survival probabilities with concomitant information, Biometrics, 21 (1965), 826-838. |
[43] | E. T. Lee, J. W. Wang, Statistical methods for survival data analysis, 3 Eds, Wiley: New York, 2003. |