Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js
Research article

The new reflected power function distribution: Theory, simulation & application

  • Received: 29 April 2020 Accepted: 08 June 2020 Published: 10 June 2020
  • MSC : 60E05

  • The aim of the paper is to propose a new Reflected Power function distribution (RPFD). We provide the various properties of the new model in detail such as moments, vitality function and order statistics. We characterize the RPFD based on conditional moments (Right and Left Truncated mean) and doubly truncated mean. We also study the shape of the new distribution to be applicable in many real life situations. We estimate the parameters for the proposed RPFD by using different methods such as maximum likelihood method, modified maximum likelihood method, percentile estimator and modified percentile estimator. The aim of the study is to increase the application of the Power function distribution (PFD). Using two different data sets from real life, we conclude that the RPFD perform better as compare to different competitor models already exist in the literature. We hope that the findings of this paper will be useful for researchers in different field of applied sciences.

    Citation: Azam Zaka, Ahmad Saeed Akhter, Riffat Jabeen. The new reflected power function distribution: Theory, simulation & application[J]. AIMS Mathematics, 2020, 5(5): 5031-5054. doi: 10.3934/math.2020323

    Related Papers:

    [1] Ayed. R. A. Alanzi, Muhammad Imran, M. H. Tahir, Christophe Chesneau, Farrukh Jamal, Saima Shakoor, Waqas Sami . Simulation analysis, properties and applications on a new Burr XII model based on the Bell-X functionalities. AIMS Mathematics, 2023, 8(3): 6970-7004. doi: 10.3934/math.2023352
    [2] Fiaz Ahmad Bhatti, G. G. Hamedani, Mashail M. Al Sobhi, Mustafa Ç. Korkmaz . On the Burr XII-Power Cauchy distribution: Properties and applications. AIMS Mathematics, 2021, 6(7): 7070-7092. doi: 10.3934/math.2021415
    [3] Naif Alotaibi, A. S. Al-Moisheer, Ibrahim Elbatal, Salem A. Alyami, Ahmed M. Gemeay, Ehab M. Almetwally . Bivariate step-stress accelerated life test for a new three-parameter model under progressive censored schemes with application in medical. AIMS Mathematics, 2024, 9(2): 3521-3558. doi: 10.3934/math.2024173
    [4] Tahani A. Abushal, Alaa H. Abdel-Hamid . Inference on a new distribution under progressive-stress accelerated life tests and progressive type-II censoring based on a series-parallel system. AIMS Mathematics, 2022, 7(1): 425-454. doi: 10.3934/math.2022028
    [5] Samah M. Ahmed, Abdelfattah Mustafa . Estimation of the coefficients of variation for inverse power Lomax distribution. AIMS Mathematics, 2024, 9(12): 33423-33441. doi: 10.3934/math.20241595
    [6] Abdulaziz S. Alghamdi, Muhammad Ahsan-ul-Haq, Ayesha Babar, Hassan M. Aljohani, Ahmed Z. Afify . The discrete power-Ailamujia distribution: properties, inference, and applications. AIMS Mathematics, 2022, 7(5): 8344-8360. doi: 10.3934/math.2022465
    [7] Veronica Kariuki, Anthony Wanjoya, Oscar Ngesa, Mahmoud M. Mansour, Enayat M. Abd Elrazik, Ahmed Z. Afify . The accelerated failure time regression model under the extended-exponential distribution with survival analysis. AIMS Mathematics, 2024, 9(6): 15610-15638. doi: 10.3934/math.2024754
    [8] Mohamed Said Mohamed, Haroon M. Barakat, Aned Al Mutairi, Manahil SidAhmed Mustafa . Further properties of Tsallis extropy and some of its related measures. AIMS Mathematics, 2023, 8(12): 28219-28245. doi: 10.3934/math.20231445
    [9] Qin Gong, Laijun Luo, Haiping Ren . Unit compound Rayleigh model: Statistical characteristics, estimation and application. AIMS Mathematics, 2024, 9(8): 22813-22841. doi: 10.3934/math.20241110
    [10] Juxia Xiao, Ping Yu, Zhongzhan Zhang . Weighted composite asymmetric Huber estimation for partial functional linear models. AIMS Mathematics, 2022, 7(5): 7657-7684. doi: 10.3934/math.2022430
  • The aim of the paper is to propose a new Reflected Power function distribution (RPFD). We provide the various properties of the new model in detail such as moments, vitality function and order statistics. We characterize the RPFD based on conditional moments (Right and Left Truncated mean) and doubly truncated mean. We also study the shape of the new distribution to be applicable in many real life situations. We estimate the parameters for the proposed RPFD by using different methods such as maximum likelihood method, modified maximum likelihood method, percentile estimator and modified percentile estimator. The aim of the study is to increase the application of the Power function distribution (PFD). Using two different data sets from real life, we conclude that the RPFD perform better as compare to different competitor models already exist in the literature. We hope that the findings of this paper will be useful for researchers in different field of applied sciences.


    In the field of reliability and engineering sciences, the researchers mostly prefer to use simple models to obtain failure rates over mathematically complex models. The inverse of Pareto distribution was given by Dallas [1] and named as Power function distribution (PFD). Afterwards Meniconi and Barry [2] preferred to use PFD on Exponential, Lognormal and Weibull distributions as a better fit for the failure rate data.

    In recent years, the generalization of the probability distribution has gained great attention. For example Gupta et al. [3], Gupta and Kundu [4], Nadarajah et al. [5] gave the generalization of many of the distributions from literature to exponentiated type distributions for being more flexible to fit to many data sets. Cordeiro et al. [6] introduced exponentiated generalized distributions which were then used by many authors for generalizing different distributions. To get more insight to generalized distributions, interested readers are advised to study Marshall and Olkin [7], Eugene et al. [8]. Shaw and Buckley [9], Silva et al. [10], Zografos and Balakrishnan [11], Cordeiro and de Castro [12], Alexander et al. [13], Zea et al. [14], Alzaatreh et al. [15,16], Cordeiro, Ortega, Popović, and Pescim [17], Nadarajah, Cordeiro and Ortega [18], Aryal and Elbatal [19], Cakmakyapan and Ozel [20], Haghbin et al. [21], Iqbal et al. [22], Karishna et al. [23], Lemonte et al. [24], Rodrigues et al. [25] and Ozel et al. [26]. Alizadeh et al. [27], Cordeiro et al. [28], Bhatti et al. [29] and Haq et al. [30].

    A lot of work is available in literature on the generalization of PFD for example Tahir et al. [31], Shahzad and Asghar [32], Hassan and Assar [33], Ibrahim [34], Usman et al. [35], Haq et al. [36] and Zaka et al. [37].

    In this paper, we suggest a new probability distribution which reflects the PFD by using Cohen [38]. The literature, we have studied up till now provide us the modifications of probability distributions by using some generators which include more complicated mathematical expressions. The idea behind the current work is to provide a simple probability distribution which provide more real life application by inducting only one new parameter which is called reflecting parameter. The detail is discussed under the following sections. We have derived some of the main structural properties and characterizations of this distribution. The application of this distribution has also been demonstrated with the help of a real life situation where this distribution may best perform.

    The probability density function (PDF) of PFD is given as follows

    g(y)=γyγ1βγ,0<y<β, and γ,β>0, (1)

    The cumulative density function (CDF) of PFD is

    G(y)=(yβ)γ. (2)

    Where γ, β are respectively the shape and scale parameters.

    Therefore, RPFD with the help of Cohen [38] technique by reflecting the classical PFD about variate axis aty=θx is,

    F(x)=1(θx)γβγ, (3)

    And

    f(x)=γ(θx)γ1βγ,θβ<x<θ, and β,θ,γ>0. (4)

    Where "θ" is the reflecting parameter that will reflect the distribution towards positive skewed to negative skewed or negative skewed to positive skewed. Also γ, β are the shape and scale parameters.

    The survival function, hazard rate function (HRF) and cumulative hazard rate function of RPFD are written as

    S(x)=(θx)γβγ, (5)
    H(x)=γθx, (6)
    CH(x)= log βγγ log (θx).

    We see the asymptotic behavior of the PDF, CDF, hazard and survival functions of RPFD as x → 0 and x → ∞.

    i. limx0f(x)=0,if θ=0,γ=0 and β>0.
    ii. limxf(x)=, possible values of θ,γ and β.
    iii. limx0F(x)=0,if θ=1,γ=1 and β=1.
    iv. limx0F(x)=1,if θ=0,γ=0 and β=1.
    v. limxF(x)=1, if 0θ,γ=0 and β1.
    vi. limx0S(x)=0,if θ=0,γ>0 and β>0.
    vii. limx0S(x)=,if θ0,γ>0 and β=0.
    viii. limx0S(x)=1,if θ0,γ=0 and β1.
    ix. limxS(x)=,if θ0,γ>0 and β1.
    x. limxS(x)=1,if θ0,γ=0 and β1.
    xi. limx0H(x)=0,if θ1,γ=0.
    xii. limxH(x)=0,if θ0,γ1.

    We use the conditions defined by Glaser [39] as

    η(x)=ˊf(x)f(x),
    η(x)=(γ1)(θx),
    ˊη(x)=(γ1)(θx)2.

    If x > 0, then ˊη(x)>0 under the following conditions

    ⅰ. If γ2, then ˊη(x)>0.

    ⅱ. If γ=1, then ˊη(x)=0.

    ⅲ. If γ<1 or γ=0, then ˊη(x)<0.

    The above conditions show that the hazard rate function of RFPD is increasing but if γ<1 or γ=0, then it will be decreasing function.

    The RPFD can be negative-skewed, positive-skewed, whereas the HRF can be J-shape, monotonically increasing and decreasing shapes. (See Figures 13).

    Figure 1.  PDF plots of RPFD.
    Figure 2.  CDF plots of RPFD.
    Figure 3.  HRF plots of RPFD.

    The rth moments about zero of any distribution is described below

    μr=θθβxrγ(θx)γ1βγdx,

    By solving we get

    μr=j=0γ(θ)γj1βγ(1)jГ(γ)Г(γj)j!{θr+j+1(θβ)r+j+1r+j+1}, (7)

    Figure 4 shows the behavior of moments under different parametric values for RPFD.

    Figure 4.  Plots of moments under different parametric values of RPFD.

    The moment generating function define the characteristic of a random variable. The moment generating function is defined as the linear combination of exponential generalized univariate distributions as

    Mo(t)=θθβetxγ(θx)γ1βγdx,

    If “X” follows RPFD, the moment generating function is derived as,

    Mo(t)=r=0(t)rr!j=0γθγj1βγ(1)jГ(γ)Г(γj)j!(θr+j+1(θβ)r+j+1r+j+1), (8)

    The random number are obtained from

    R=1(θx)γβγ, (9)

    Where “R" is the random numbers generated from Uniform distribution [0 1].

    After simplifying (9) for RPFD we get,

    x=θβ(1R)1γ.

    The inverse moments are obtained as

    μr=θθβxrγ(θx)γ1βγdx,

    We get inverse moments for RPFD as

    μr=j=0γ(θ)γj1βγ(1)jГ(γ)Г(γj)j!(θr+j+1(θβ)r+j+1r+j+1). (10)

    By definition, the mean residual function is given as

    e(x)=θθβS(t)S(x)dt,

    For RPFD, we get mean residual function as

    e(x)=θxγ+1. (11)

    The vitality function is obtained for RPFD as

    V(x)=1S(x)θxxf(x)dx,

    That is obtained as

    V(x)=j=0(1)jГ(γ)γθγ1jГ(γj)j!(θj+2xj+2j+2)(θx)γ. (12)

    The incomplete moments are given as

    μX|(α,β,γ)=Pθβxrf(x)dx,

    By simplifying for RPFD we get

    μX|(α,β,γ)=j=0(1)jГ(γ)γθγj1βγГ(γj)j!{pr+j+1(θβ)r+j+1r+j+1}. (13)

    The conditional moments are given as

    E[Xr|x>t]=1F(t)θtxrj=0tjhj+1(x)dx,

    The conditional moments for RPFD are obtained by using above expression as

    E[Xr|x>t]=j=0(1)jГ(γ)γθγj1F(t)βγГ(γj)j!{θr+j+1tr+j+1r+j+1}. (14)

    Let “X” be Reflected Power function Variable with Probability density function

    f(x)=γ(θx)γ1βγ,θβ<x<θ.

    And let F(x) be the survival function respectively. Then the random variable “X” has RPFD if and only if

    E(X|xt)=1F(t)βγ[t{θt}γ+(θβ)βγ{θt}γ+1γ+1+βγ+1γ+1].
    where E(X|xt) Conditional(Left Truncated) mean.

    Proof:

    Necessary part:

    E(Xr|xt)=1F(t)tθβxγ(θx)γ1βγdx,
    E(Xr|xt)=1F(t)βγ[t{θt}γ+(θβ)βγ(θt)γ+1γ+1+βγ+1γ+1], (15)

    Also Sufficient part

    E(Xr|xt)=1F(t)tθβxf(x)dx,
    E(X|xt)=tt0F(x)F(t)dx, (16)

    Equate (15) and (16), we get

    tF(t)t0F(x)dx=1βγ[t(θt)γ+(θβ)βγ(θt)γ+1γ+1+βγ+1γ+1],
    tf(t)+F(t)F(t)=1βγ[tγ(θt)γ1(θt)γ+(θt)γ],
    f(t)=γ(θt)γ1βγ,θβ<t<θ, and β,γ,θ>0.

    Let “X” be Reflected Power function Variable with Probability density function

    f(x)=γ(θx)γ1βγ,θβ<x<θ,

    And let F(x) be the survival function respectively. Then the random variable “X” has RPFD if and only if

    E(X|xt)=1F(t)βγ[t(θt)γ+(θt)γ+1γ+1].
    where E(X|xt)conditional(Right Truncated) mean.

    Proof:

    E(X|xt)=1F(t)θtxγ(θX)γ1βγdx,
    E(X|xt)=1F(t)βγ[t(θt)γ+(θt)γ+1γ+1], (17)

    Now sufficient part

    E(X|xt)=tθtF(x)F(t)dx, (18)

    Equate (17) and (18), we get

    tF(t)θtF(x)dx=1βγ[t(θt)γ+(θt)γ+1γ+1],
    (t(f(t))+F(t))+F(t)=1βγ[tγ(θt)γ1(1)+(θt)γ+(θt)γ(1)],
    tf(t)=tγ(θt)γ1βγ,f(t)=γ(θt)γ1βγ,θβ<t<θ, and β,θ>0.

    Let “X” be Reflected Power function Variable with Probability density function

    f(x)=γ(θx)γ1βγ,θβ<x<θ.

    And let F(x) be the survival function respectively. Then the random variable “X” has RPFD if and only if

    E(X|x<X<y)=1βγ{F(y)F(x)}[y(θy)γ+x(θx)γ(θy)γ+1γ+1+(θx)γ+1γ+1].
    where E(X|xXy):Doubly Truncated Mean.

    Proof:

    Necessary part:

    E(X|xXy)=1F(y)F(x)yxxγ(θx)γ1βγdx,
    E(X|xXy)=1βγ{F(y)F(x)}[y(θy)γ+x(θx)γ(θy)γ+1γ+1+(θx)γ+1γ+1] (19)

    Now Sufficient Part:

    E(X|xXy)=1{F(y)F(x)}yxxf(x)dx,
    E(X|xXy)=yF(y)xF(x)yxF(x)dxF(y)F(x), (20)

    Equate (19) and (20), we get

    yF(y)xF(x)yxF(x)dxF(y)F(x)=1βγ{F(y)F(x)}[y(θy)γ+x(θx)γ(θy)γ+1γ+1+(θx)γ+1γ+1].

    After differentiating the above equation

    yf(y)+F(y)F(y)=1βγ[yγ(θy)γ1(θy)γ+(θy)γ],
    f(y)=γ(θy)γ1βγ,θβ<y<θ, and β,γ,θ>0.

    Let x1, x2, ..., xn be a random sample of size n from the RPFD. The log-likelihood function for the RPFD is given by

    L(γ,β)=nln(γ)+(γ1)ni=1ln(θxi)nγln(β).

    The score vector is

    Uβ(γ,β)=nγβ, (21)
    Uγ(γ,β)=nγ+ni=1ln(θxi)nln(β), (22)

    The parameters of RPFD can be obtained by solving the above equations resulting from setting the two partial derivatives of L(γ, β) to zero. Since β does not exist, the likelihood function can be maximized by taking

    ˆβ=xn, (23)

    where xn is the maximum value in the data.

    ˆγ=(n(n ln(β)ni=1 ln(θxi))).

    In this modification of the MLM, the Eq (21) is replaced by the median of RPFD.

     x=θβ(0.5)1γ,

    By solving the above expression, we get

    ˆβ=θ˜x(0.5)1/γ ,
    nγ+ni=1ln(θxi)n ln(θ x(0.5)1γ)=0,
    ˆγ= (n(1+ ln(0.5))(n ln(θ˜x)ni=1 ln(θxi))).

    Dubey [40] proposed a percentile estimator of the shape parameter, based on any two sample percentiles. Marks [41] also estimated the parameters of Weibull distribution with the help of percentiles and named it as Common Percentile Method.

    Let x1,x2,x3,,xn be a random sample of size n drawn from Probability density function of Reflected Power function distribution. The cumulative distribution function of a Reflected Power function distribution with shape, scale and reflected parameters(β,γ and θ), respectively

    F(x)=1(θx)γβγ,

    By solving we get

    x=θβ(1R)1/γ. (24)

    Where R = F(x),

    Let P75 and P25 are the 75th and 25th Percentiles, therefore(24)becomes

    P75=θβ(1.75)1/γ, (25)
    P25=θβ(1.25)1/γ. (26)

    Solving the above equations, we get

    ˆγ= ln(1.751.25) ln(θP75θP25),
    and           ˆβ=(θP75)(1.75)1/ˆγ.
    generallyˆγ= ln(1H1L) ln(θPHθPL),
    and     ˆβ=(θPH)(1H)1/ˆγ.

    Where H = Maximum Percentage, L = Minimum Percentage and P = Percentile.

    In this modification of the percentile estimators, (25) is replaced by the Median of Reflected Power function distribution.

     x=θβ(0.5)1γ,
    ˆβ=θ˜x(0.5)1/γ  , (27)

    Also ˆβ= (θPH)(1H)1/γ ,

    Therefore

    (θPH)(1H)1/γ=θ x(0.5)1/γ,
    ˆγ=ln(0.51H)ln (θ˜xθPH),ˆβ=θ˜x(0.5)1/ˆγ .

    Where H = Maximum Percentage and P = Percentile.

    A simulation study is used in order to compare the performance of the proposed estimation methods. We carry out this comparison taking the samples of sizes as n = 40 and 100 with pairs of (β, γ) = {(1, 2), (2, 1) and (1.5, 1.5)}. We have generated random samples (using Monte Carlo Simulation) of different sizes by observing that if Ri is random number taking (0, 1), then xi=θβ(1Ri)1/γ is the random number generator from RPFD with (γ, β and θ) parameters. All results are based on 5000 replications. Such generated data have been used to obtain estimates of the unknown parameters. The results obtained from parameters estimation of the 3-parameters of RPFD using different sample sizes and different values of parameters with mean square error MSE.

    M.S.E\left(\widehat{\beta }\right) = E\left[{\left(\widehat{\beta }–\beta \right)}^{2}\right], M.S.E\left(\widehat{\gamma }\right) = E\left[{\left(\widehat{\gamma }–\gamma \right)}^{2}\right]\text{.}

    If we study the results of the Tables (14), in which sample sizes are (40 and 100) and the combinations of the values of ( {\rm{ \mathsf{ β} }} , {\rm{ \mathsf{ γ} }} ) = {(1, 2), (2, 1) and (1.5, 1.5)}. Then we get the results that P.E is the best for the estimation of {\rm{ \mathsf{ β} }} and {\rm{ \mathsf{ γ} }}. After P.E, the M.P.E and MMLM are best for the estimation of scale and shape parameters of the Reflected Power function distribution.

    Table 1.  Estimates for the parameters of RPFD with different estimation methods under the sample size 40 and \theta = 2 .
    Methods True Values Estimated Values M.S.E
    \beta \gamma {\hat{\beta }} {\hat{\gamma }} {\hat{\beta }} {\hat{\gamma }}
    MLM 1 2 1.8605 0.9009 0.745594 1.21558
    2 1 1.9515 1.060192 0.004528007 0.04585
    1.5 1.5 1.887127 1.143243 0.1558585 0.16375
    MMLM 1 2 1.006088 2.93567 0.03329484 295.313
    2 1 2.038784 1.222506 0.5796605 27.00332
    1.5 1.5 1.498582 2.008228 0.1275258 80.45536
    P.E 1 2 0.9875404 2.178675 0.003350733 0.3289041
    2 1 1.950996 1.09437 0.05049464 0.07982446
    1.5 1.5 1.476918 1.625356 0.0125727 0.1674232
    M.P.E 1 2 0.9888006 2.301893 0.01736244 0.7273792
    2 1 1.999309 1.150733 0.3069483 0.1901581
    1.5 1.5 1.492606 1.716947 0.07259521 0.41003

     | Show Table
    DownLoad: CSV
    Table 2.  Estimates for the parameters of RPFD with different estimation methods under the sample size 100 and \theta = 2 .
    Methods True Values Estimated Values M.S.E
    \beta \gamma {\hat{\beta }} {\hat{\gamma }} {\hat{\beta }} {\hat{\gamma }}
    MLM 1 2 1.911707 0.8737091 0.8332793 1.271054
    2 1 1.980318 1.021556 0.0007741486 0.01242771
    1.5 1.5 1.937788 1.090384 0.193427 0.1768533
    MMLM 1 2 0.9994136 2.189761 0.01358523 0.5419498
    2 1 2.021388 1.097434 0.2220572 0.1394513
    1.5 1.5 1.502983 1.64057 0.05312658 0.4238924
    P.E 1 2 0.9942939 2.064027 0.001284654 0.09483498
    2 1 1.97935 1.038889 0.02085466 0.02730554
    1.5 1.5 1.491543 1.546539 0.005078406 0.0575562
    M.P.E 1 2 0.9947556 2.124453 0.007408561 0.2137276
    2 1 2.008241 1.053431 0.1246356 0.05205558
    1.5 1.5 1.993461 1.586269 0.05174126 0.1175413

     | Show Table
    DownLoad: CSV
    Table 3.  Estimates for the parameters of Reflected Power function distribution with different estimation methods under the sample size 40 and \theta = 3 .
    Methods True Values Estimated Values M.S.E
    \beta \gamma {\hat{\beta }} {\hat{\gamma }} {\hat{\beta }} {\hat{\gamma }}
    MLM 1 2 2.860517 0.6471663 3.466684 1.831741
    2 1 2.951451 0.7297511 0.7297511 0.08111053
    1.5 1.5 2.884669 0.7645335 1.923084 0.5459775
    MMLM 1 2 0.9959269 2.965069 0.03265827 537.9536
    2 1 2.050816 1.334634 0.5815614 75.24864
    1.5 1.5 1.509755 1.938258 0.1358153 32.50174
    P.E 1 2 0.9885461 2.173664 0.003262685 0.3074944
    2 1 1.958414 1.086032 0.05149091 0.07893016
    1.5 1.5 1.473992 1.639258 0.01313542 0.1854989
    M.P.E 1 2 0.9900613 2.311168 0.01792263 0.7873923
    2 1 1.998593 1.147792 0.3185264 0.1839935
    1.5 1.5 1.486727 1.732373 0.07012046 0.4244317

     | Show Table
    DownLoad: CSV
    Table 4.  Estimates for the parameters of RPFD with different estimation methods under the sample size 100 and \theta = 3 .
    Methods True Values Estimated Values M.S.E
    \beta \gamma {\hat{\beta }} {\hat{\gamma }} {\hat{\beta }} {\hat{\gamma }}
    MLM 1 2 2.912034 0.6382958 3.658023 1.854838
    2 1 2.980348 0.7178598 0.9614713 0.08242887
    1.5 1.5 2.9371 0.7496401 2.067051 0.5648177
    MMLM 1 2 0.9977133 2.197954 0.01377068 0.5290005
    2 1 2.023109 1.096638 0.2262647 0.1675765
    1.5 1.5 1.501211 1.648838 0.054733 0.3114004
    P.E 1 2 0.9946443 2.075874 0.001316138 0.1044555
    2 1 1.979712 1.039048 0.02069052 0.02699896
    1.5 1.5 1.490577 1.55466 0.005306528 0.05965253
    M.P.E 1 2 0.9953407 2.123411 0.007335557 0.2220309
    2 1 2.004361 1.055047 0.1219972 0.05295546
    1.5 1.5 1.495992 1.582559 0.02916469 0.1177344

     | Show Table
    DownLoad: CSV

    We have taken two different situations from real life and showed the performance of our proposed probability distribution over other already existing probability distributions. The comparison of the probability distributions has been made in both data sets on the basis of Akaike information criterion (AIC), the correct Akaike information criterion (CAIC), Bayesian information criterion (BIC) and Hannan-Quinn information criterion (HQIC).

    Finally, using the above mentioned criteria’s, we have showed that the proposed RPFD perform better in both data as compared to different competitor models.

    Feigl and Zelen [42] analyzed the survival times (in weeks), of 33 patients suffering from a disease named as Acute Myelogenous Leukaemia. The survival time (in weeks) is given as; 65,156,100,134, 16,108,121, 4, 39,143, 56, 26, 22, 1, 1, 5, 65, 56, 65, 17, 7, 16, 22, 3, 4, 2, 3, 8, 4, 3, 30, 4, 43. We have compared our proposed distribution with Beta Modified Weibull (BMW) by Silva et al. [10], Exponentiated Generalized Modified Weibull (EGMW) by Aryal and Elbatal [19], Weibull Power function (WPF) by Tahir et al. [31], Transmuated Power Function Distribution (TPFD) by Shahzad and Asghar [32], Exponentiated Weibull Power Function Distribution (EWPFD) by Hassan and Assar [33], Kumaraswamy Power function distribution (KPFD) by Ibrahim [34], and Power function distribution (PFD).

    The TTT-plot is displayed in Figure 5, which indicates that the HRF associated with the data set has a decreasing shape, since the plot shows a first convex curvature. So, we can easily fit RPFD on the Acute Myelogenous Data.

    Figure 5.  TTT Plot for Acute Myelogenous Data.

    From Table 5 and Figure 6, it is clear that the proposed model RPFD is showing better results as compare to the other competitive models by providing smallest AIC, BIC, CAIC and HQIC for the given data.

    Table 5.  Statistics for Acute Myelogenous Data.
    Models AIC BIC CAIC HQIC
    RPFD 304.367 305.8328 304.5004 304.852
    EWPFD 305.852 313.335 308.074 308.374
    WPF 307.804 313.79 309.232 309.818
    EGMW 317.303 324.786 319.525 318.821
    BMW 318.967 326.449 321.189 321.484
    KPFD 329.734 335.72 331.162 331.748
    TPFD 335.131 339.62 335.959 336.642
    PFD 965.418 968.411 965.818 966.425

     | Show Table
    DownLoad: CSV
    Figure 6.  Estimated PDF and CDF curves for Acute Myelogenous Data.

    We have adopted the data set consisting the remission time of 128 bladder cancer patients to demonstrate the performance of our proposed Reflected power function distribution. These data were also studied by Zea et al. [14], Lee and Wang [43]. The remission times in months are given: 0.08, 0.20, 0.40, 0.50, 0.51, 0.81, 0.90, 1.05, 1.19, 1.26, 1.35, 1.40, 1.46, 1.76, 2.02, 2.02, 2.07, 2.09, 2.23, 2.26, 2.46, 2.54, 2.62, 2.64, 2.69, 2.69, 2.75, 2.83, 2.87, 3.02, 3.25, 3.31, 3.36, 3.36, 3.48, 3.52, 3.57, 3.64, 3.70, 3.82, 3.88, 4.18, 4.23, 4.26, 4.33, 4.34, 4.40, 4.50, 4.51, 4.87, 4.98, 5.06, 5.09, 5.17, 5.32, 5.32, 5.34, 5.41, 5.41, 5.49, 5.62, 5.71, 5.85, 6.25, 6.54, 6.76, 6.93, 6.94, 6.97, 7.09, 7.26, 7.28, 7.32, 7.39, 7.59, 7.62, 7.63, 7.66, 7.87, 7.93, 8.26, 8.37, 8.53, 8.65, 8.66, 9.02, 9.22, 9.47, 9.74, 10.06, 10.34, 10.66, 10.75, 11.25, 11.64, 11.79, 11.98, 12.02, 12.03, 12.07, 12.63, 13.11, 13.29, 13.80, 14.24, 14.76, 14.77, 14.83, 15.96, 16.62, 17.12, 17.14, 17.36, 18.10, 19.13, 20.28, 21.73, 22.69, 23.63, 25.74, 25.82, 26.31, 32.15, 34.26, 36.66, 43.01, 46.12, 79.05.

    We have compared our proposed Reflected power function distribution with the Beta Exponentiated Pareto distribution (BEPD) by Zea et al. [14], Marshall-Olkin Power Lomax Distribution (MOPLx) by Haq et al. [30] Kumaraswamy Power function distribution (KPFD) by Ibrahim [34], McDonald's Power function distribution (McPFD) by Haq et al. [36], and Power function distribution (PFD).

    The TTT-plot of the remission time(in months) for bladder cancer patients is exhibited in Figure 7, we may see that the Hazard rate function has little bit bathtub shape, So, we may easily fit RPFD on the bladder cancer data.

    Figure 7.  TTT Plot for Bladder Cancer Data.

    From Table 6 and Figure 8, we see that the RPFD provides better fit for the above data set as it provides minimum AIC, BIC, CAIC, HQIC.

    Table 6.  Statistics For Bladder Cancer Data.
    Models AIC BIC CAIC HQIC
    RPFD 810.3251 813.1693 810.3571 811.4807
    McPFD 811.5785 821.9553 811.9064 816.2008
    KPFD 814.0711 822.6037 814.2662 817.5378
    MOPLx 827.075 832.483 825.5162 847.3287
    BEPD 826.1318 837.5085 826.4596 830.7540
    PFD 942.4546 945.2988 942.4866 943.6102

     | Show Table
    DownLoad: CSV
    Figure 8.  Estimated PDF and CDF curves for Bladder Cancer Data.

    We propose and study the different properties of RPFD. This distribution has applications in many fields such as reliability, economics, actuaries and survival analysis. We study the several properties of the distribution as moments, survival function, hazard function, inverse moments, shanon entropy, conditional moments, Lorenz curve, incomplete moments and order statistics. We have also characterized the distribution by conditional moments (Right and Left Truncated mean) and doubly truncated mean (DTM). Different estimation methods have been used to estimate the parameters of RPFD including MLM, MMLM, P.E and M.P.E. We have used two real life data sets in order to show the performance of the proposed model over the already available probability models. It is hoped that the findings of this paper will be useful for researchers in different field of applied sciences.

    phh = c(); pll = c(); vhat = c(); dsv = c(); bhat = c(); dsbhat = c()

    n = 40 #sample size

    for(i in 1:5000){

    r < -runif(n)

    b < -1.5 #scale parameter

    v < -1.5 #shape parameter

    theta < -3 #reflecting parameter

    x < -theta-(b*((1-r)^(1/v)))

    vhat[i] < -(n/((n*(log(max(x))))-(sum(log(theta-x)))))

    dsv[i] < -((vhat[i]-v)^2)

    bhat[i] < -max(x)

    dsbhat[i] < -((bhat[i]-b)^2)

      }

    estv < -mean(vhat)

    estb < -mean(bhat)

    msev < -mean(dsv)

    mseb < -mean(dsbhat)

    phh = c(); pll = c(); vhat = c(); dsv = c(); bhat = c(); dsbhat = c()

    n = 40 #sample size

    for(i in 1:5000){

    r < -runif(n)

    b < -1.5 #scale parameter

    v < -1.5 #shape parameter

    theta < -3 #reflecting parameter

    x < -theta-(b*((1-r)^(1/v)))

    vhat[i] < -(n*(1+log(0.5)))/((n*(log(theta-median(x))))-sum(log(theta-x)))

    dsv[i] < -((vhat[i]-v)^2)

    bhat[i] < -(theta-median(x))/(0.5^(1/(vhat[i])))

    dsbhat[i] < -((bhat[i]-b)^2)

      }

    estb < -mean(bhat)

    estv < -mean(vhat)

    msev < -mean(dsv)

    mseb < -mean(dsbhat)

    phh = c(); pll = c(); vhat = c(); dsv = c(); bhat = c(); dsb = c()

    n = 40 #sample size

    h < -0.75 #maximum percentage

    l < -0.25 #minimum percentage

    for(i in 1:5000){

    r < -runif(n)

    b < -1.5 # scale parameter

    v < -1.5 # shape parameter

    theta < -3 #reflecting parameter

    x < -theta-(b*((1-r)^(1/v)))

    phh[i] < -(quantile(x)[4])

    pll[i] < -(quantile(x)[2])

    vhat[i] < -((log((1-h)/(1-l)))/(log((theta-phh[i])/(theta-pll[i]))))

    dsv[i] < -((vhat[i]-v)^2)

    bhat[i] < -(theta-(phh[i]))/((1-h)^(1/((vhat[i]))))

    dsb[i] < -((bhat[i]-b)^2)

      }

    estv < -mean(vhat)

    msev < -mean(dsv)

    estb < -mean(bhat)

    mseb < -mean(dsb)

    phh = c(); pll = c(); vhat = c(); dsv = c(); bhat = c(); dsb = c()

    n = 40 #sample size

    h < -0.75 #maximum percentage

    l < -0.25 #minimum percentage

    for(i in 1:5000){

    r < -runif(n)

    b < -1.5 #scale parameter

    v < -1.5 #shape parameter

    theta < -3 #reflecting parameter

    x < -theta-(b*((1-r)^(1/v)))

    phh[i] < -(quantile(x)[4])

    pll[i] < -(quantile(x)[2])

    vhat[i] < -((log((0.5)/(1-h)))/(log((theta-median(x))/(theta-phh[i]))))

    dsv[i] < -((vhat[i]-v)^2)

    bhat[i] < -(theta-(median(x)))/((0.5)^(1/((vhat[i]))))

    dsb[i] < -((bhat[i]-b)^2)

      }

    estv < -mean(vhat)

    msev < -mean(dsv)

    estb < -mean(bhat)

    mseb < -mean(dsb)

    Acute Myelogenous Data < -c(65,100,134, 16,108,121, 4, 39,143,

    56, 26, 22, 1, 1, 5, 65, 56, 65, 17, 7, 16, 22, 3, 4,

    2, 3, 8, 4, 3, 30, 4, 43)

    PDF_RPFD < - function(par, x){

    v < -par[1] #shape parameter

    theta < -156 #reflecting parameter

    b < -156 # scale parameter

    (theta - x)^(v - 1) * v/(b^v)

      }

    CDF_RPFD < - function(par, x){

    v < -par[1]

    theta < -156

    b < -156

    (1-(((theta-x)^v)/(b^v)))

      }

    goodness.fit(pdf = PDF_RPFD, cdf = CDF_RPFD,

    starts = c(1), data = Acute Myelogenous Data,

    method="CG", domain = c(0,156), mle = NULL)

    All the authors declare no conflict of interest.

    We are grateful to the anonymous reviewers for their valuable comments and suggestions in improving the manuscript.



    [1] C. Dallas, Characterization of Pareto and Power function distribution, Ann. I. Stat. Math., 28 (1976), 491-497. doi: 10.1007/BF02504764
    [2] M. Meniconi, D. M. Barry, The Power function distribution: A useful and simple distribution to assess electrical component reliability, Microelectron. Reliab., 36 (1996), 1207-1212. doi: 10.1016/0026-2714(95)00053-4
    [3] R. C. Gupta, P. L. Gupta, R. D. Gupta, Modeling failure time data by lehman alternatives, Commun. Stat. Theory Methods, 27 (1997), 887-904.
    [4] R. D. Gupta, D. Kundu, Exponentiated exponential family: An alternative to Gamma and Weibull Distributions, Biom. J., 43 (2001), 117-130. doi: 10.1002/1521-4036(200102)43:1<117::AID-BIMJ117>3.0.CO;2-R
    [5] S. Nadarajah, S. Kotz, The exponentiated type distributions, Acta Appl. Math., 92 (2006), 97-111. doi: 10.1007/s10440-006-9055-0
    [6] G. M. Cordeiro, E. M. M. Ortega, D. C. C. Cunh, The exponentiated generalized class of distributions, J. Data Sci., 11 (2013), 1-27.
    [7] A. W. Marshall, I. Olkin, A new method for adding a parameter to a family of distributions with application to the Exponential and Weibull families, Biometrika, 84 (1997), 641-652. doi: 10.1093/biomet/84.3.641
    [8] N. Eugene, C. Lee, F. Famoye, The Beta-Normal distribution and its applications, Commun. Stat. Theory Methods, 31 (2002), 497-512.
    [9] W. T. Shaw, I. R. Buckley, The alchemy of probability distributions: Beyond gram-charlier expansions, and a skew-kurtotic-Normal distribution from a rank transmutation map, arXiv preprint arXiv: 0901.0434, 2009.
    [10] G. O. Silva, E. M. M. Ortega, G. M. Cordeiro, The beta modified Weibull distribution, Lifetime Data Anal., 16 (2010), 409-430. doi: 10.1007/s10985-010-9161-1
    [11] K. Zografos, N. Balakrishnan, On families of beta and generalized Gamma generated distributions and associated inference, Stat. Methodol., 6 (2009), 344-362. doi: 10.1016/j.stamet.2008.12.003
    [12] G. M. Cordeiro, M. De-Castro, A new family of generalized distributions, J. Stat. Comput. Simul., 81 (2011), 883-898.
    [13] C. Alexander, G. M. Cordeiro, E. M. M. Ortega, et al. Generalized beta-generated distributions, Comput. Stat. Data Anal., 56 (2012), 1880-1897.
    [14] L. M. Zea, R. B. Silva, M. Bourguignon, et al. The beta exponentiated Pareto distribution with application to bladder cancer susceptibility, Int. J. Stat. Probab., 1 (2012), 8-19.
    [15] A. Alzaatreh, F. Famoye, C. Lee, A new method for generating families of continuous distributions, Metron, 71 (2013), 63-79.
    [16] M. Alizadeh, G. M. Cordeiro, A. D. C. Nascimento, et al. Odd-Burr generalized family of distributions with some applications, J. Stat. Comput. Simul., 87 (2017), 367-389.
    [17] G. M. Cordeiro, E. M. M. Ortega, B. V. Popovic, et al. The Lomax generator of distributions: Properties, manification process and regression model, Appl. Math. Comput., 247 (2014), 465-486.
    [18] S. Nadarajah, G. M. Cordeiro, E. M. M. Ortega, The Zografos-Balakrishnan-G family of distributions: Mathematical properties and applications, Commun. Stat. Theory Methods, 44 (2015), 186-215. doi: 10.1080/03610926.2012.740127
    [19] G. Aryal, I. Elbatal, On the exponentiated generalized modified Weibull distribution, Commun. Stat. Appl. Methods, 22 (2015), 333-348.
    [20] S. Cakmakyapan, G. Oze, The Lindley family of distributions: Properties and applications, Hacettepe J. Math. Stat., 46 (2016), 1113-1137.
    [21] H. Haghbin, G. Ozel, M. Alizadeh, et al. A new generalized odd log-logistic family of distributions, Commun. Stat. Theory Methods, 46 (2017), 9897-9920.
    [22] Z. Iqbal, A. Nawaz, N. Riaz, et al. Marshall and Olkin moment Exponential distribution, J. Issos, 4 (2018), 13-31.
    [23] E. Krishna, K. K. Jose, T. Alice, et al. The Marshall-Olkin Fréchet distribution, Commun. Stat. Theory Methods, 42 (2013), 4091-4107.
    [24] A. J. Lemonte, The beta log-logistic distribution, Braz. J. Probab. Stat., 24 (2012), 313-332.
    [25] J. Rodrigues, G. M. Cordeiro, J. Bazan, The exponentiated generalized Lindley distribution, Asian Research J. Math., 5 (2017), 1-14.
    [26] G. Ozel, M. Alizadeh, S. Cakmacyapan, et al. The odd log-logistic Lindley Poisson model for lifetime data, Commun. Stat. Simul. Comput., 46 (2017), 6513-6537.
    [27] M. Alizadeh, M. H. Tahir, G. M. Cordeiro, et al. The Kumaraswamy Marshal-Olkin family of distributions, J. Egypt. Math. Soc., 23 (2015), 546-557.
    [28] G. M. Cordeiro, M. Alizadeh, G. Ozel, et al. The generalized odd log-logistic family of distributions: Properties, regression models and applications, J. Stat. Comput. Simul., 87 (2017), 908-932.
    [29] F. A. Bhatti, G. G. Hamedani, M. C. Korkmaz, et al. Burr III-Marshall and Olkin family: Development, properties, characterizations and applications, J. Stati. Distrib. Appl., 6 (2019), 12.
    [30] M. A. Haq, G. G. Hamedani, M. Elgarhy, et al. Marshall-Olkin Power Lomax distribution: Properties and estimation based on complete and censored samples, Int. J. Stat. Probab., 9 (2020), 48-62.
    [31] M. Tahir, M. Alizadeh, M. Mansoor, et al. The Weibull-Power function distribution with applications, Hacettepe J. Math. Stat., 45 (2014), 245-265.
    [32] N. Shahzad, M. Asghar, Transmuted Power function distribution: A more flexible distribution, J. Stat. Manage. Syst., 19 (2016), 519-539.
    [33] A. S. Hassan, S. M. Assar, The exponentiated Weibull-Power function distribution, J. Data Sci., 16 (2017), 589-614.
    [34] M. Ibrahim, The Kumaraswamy Power function distribution, J. Stat. Appl. Probab., 6 (2017), 81-90.
    [35] R. Usman, N. Bursa, O. Z. E. L. Gamze, Exponentiated transmuted Power function distribution: Theory and applications, Gazi Univ. J. Sci., 31 (2018), 660-675.
    [36] M. A. Haq, R. M. Usman, N. Bursa, et al. McDonald's Power function distribution with theory and applications, Int. J. Stat. Econ., 19 (2018), 89-107.
    [37] A. Zaka, A. S. Akhter, R. Jabeen, The exponentiated generalized Power function distribution: Theory and real life applications, Adv. Appl. Stat., 61 (2020), 33-63.
    [38] A. C. Cohen, The Reflected Weibull distribution, Technometric, 15 (1973), 867- 873.
    [39] R. Glaser, Bathtub and related failure rate characterizations, J. Am. Stat. Assoc., 75 (1980), 667-672.
    [40] S. D. Dubey, Some percentile estimators for Weibull parameters, Technometrics, 9 (1967), 119-129.
    [41] N. B. Marks, Estimation of Weibull parameters from common percentiles, J. Appl. Stat., 32 (2005), 17-24.
    [42] P. Feigl, M. Zelen, Estimation of exponential survival probabilities with concomitant information, Biometrics, 21 (1965), 826-838.
    [43] E. T. Lee, J. W. Wang, Statistical methods for survival data analysis, 3 Eds, Wiley: New York, 2003.
  • This article has been cited by:

    1. Azam Zaka, Ahmad Saeed Akhter, Riffat Jabeen, Aamir Sanaullah, Control charts for the shape parameter of reflected power function distribution under classical estimators, 2021, 0748-8017, 10.1002/qre.2866
    2. Alya Al Mutairi, Muhammad Z. Iqbal, Muhammad Z. Arshad, Ahmed Z. Afify, Melike Kaplan, A New Class of the Power Function Distribution: Theory and Inference with an Application to Engineering Data, 2022, 2022, 2314-4785, 1, 10.1155/2022/1206254
    3. Muhammad Zafar Iqbal, Muhammad Zeshan Arshad, Gamze Özel, Oluwafemi Samson Balogun, A better approach to discuss medical science and engineering data with a modified Lehmann Type – II model, 2021, 10, 2046-1402, 823, 10.12688/f1000research.54305.1
    4. Luca Nanni, The product arbitrariness of generalised functions and its role in quantum field theory, 2022, 6, 2399-6528, 035003, 10.1088/2399-6528/ac5d07
    5. Azam Zaka, Riffat Jabeen, Kanwal Iqbal Khan, Error Detection and Pattern Prediction Through Phase II Process Monitoring, 2022, 70, 1546-2226, 4781, 10.32604/cmc.2022.020316
    6. Amna Mir, Umer Yasin, Salman Naeem Khan, Atifa Athar, Riffat Jabeen, Sehrish Aslam, Diabetic Retinopathy Detection Using Classical-Quantum Transfer Learning Approach and Probability Model, 2022, 71, 1546-2226, 3733, 10.32604/cmc.2022.022524
    7. Yang Liu, Majid Khan, Syed Masroor Anwar, Zahid Rasheed, Navid Feroze, Sanku Dey, Stress-Strength Reliability and Randomly Censored Model of Two-Parameter Power Function Distribution, 2022, 2022, 1563-5147, 1, 10.1155/2022/5509684
    8. Muhammad Ahsan-ul-Haq, Maha A. Aldahlan, Javeria Zafar, Héctor W. Gómez, Ahmed Z. Afify, Hisham A. Mahran, Qichun Zhang, A new cubic transmuted power-function distribution: Properties, inference, and applications, 2023, 18, 1932-6203, e0281419, 10.1371/journal.pone.0281419
    9. Emrah Altun, Mustafa Ç. Korkmaz, M. El-Morshedy, M. S. Eliwa, The extended gamma distribution with regression model and applications, 2020, 6, 2473-6988, 2418, 10.3934/math.2021147
    10. Abdulaziz S. Alghamdi, M. M. Abd El-Raouf, Exploring the Dynamics of COVID-19 with a Novel Family of Models, 2023, 11, 2227-7390, 1641, 10.3390/math11071641
    11. Riffat Jabeen, Mashhood Ahmad, Azam Zaka, Mahmoud M. Mansour, Abdussalam Aljadani, Enayat M. Abd Elrazik, Çetin Yildiz, A New Statistical Approach Based on the Access of Electricity Application with Some Modified Control Charts, 2024, 2024, 2314-4785, 1, 10.1155/2024/6584791
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4678) PDF downloads(413) Cited by(11)

Figures and Tables

Figures(8)  /  Tables(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog