Citation: Zhenyu Jin, Jianrong Wu. Ulam stability of two fuzzy number-valued functional equations[J]. AIMS Mathematics, 2020, 5(5): 5055-5062. doi: 10.3934/math.2020324
[1] | S. M. Ulam, Problems in Modern Mathematics, Science Editions, Wiley, New York, 1964. |
[2] | T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Jpn., 2 (1950), 64-66. |
[3] | J. Brzdęk, W. Fechner, M. S. Moslehian, et al. Recent developments of the conditional stability of the homomorphism equation, Banach J. Math. Anal., 9 (2015), 278-326. doi: 10.15352/bjma/09-3-20 |
[4] | J. Brzdęk, K. Ciepliński, A fixed point theorem in n-Banach spaces and Ulam stability, J. Math. Anal. Appl., 470 (2019), 632-646. doi: 10.1016/j.jmaa.2018.10.028 |
[5] | P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184 (1994), 431-436. doi: 10.1006/jmaa.1994.1211 |
[6] | S. M. Jung, Hyers-Ulam-Rassias stability of functional equations in nonlinear analysis, optimization and its applications, Springer, New York, 48 (2011). |
[7] | M. S. Moslehian, T. M. Rassias, Stability of functional equations in non-Archimedean spaces, Appl. Anal. Discrete Math., 1 (2007), 325-334. doi: 10.2298/AADM0702325M |
[8] | V. Govindan, S. Murthy, Solution and Hyers-Ulam stability of n-dimensional non-quadratic functional equation in fuzzy normed space using direct method, Mater. Today: Proc., 16 (2019), 384-391. |
[9] | T. M. Rassias, On a modified Hyers-Ulam sequence, J. Math. Anal. Appl., 158 (1991), 106-113. doi: 10.1016/0022-247X(91)90270-A |
[10] | S. M. Jung, D. Popa, T. M. Rassias, On the stability of the linear functional equation in a single variable on complete metric groups, J. Global Optim., 59 (2014), 165-171. doi: 10.1007/s10898-013-0083-9 |
[11] | E. Castillo, M. R. Ruiz-Cobo, Functional equations and modelling in science and engineering, Marcel Dekker, New York, 1992. |
[12] | I. K. Chang, G. Han, Fuzzy stability of a class of additive-quadratic functional equations, J. Comp. Anal. Appl., 23 (2017), 1043-1055. |
[13] | E. Gordjim, H. Khodaei, M. Kamyar, Stability of Cauchy-Jensen type functional equation in generalized fuzzy normed spaces, Comput. Math. Appl., 62 (2011), 2950-2960. doi: 10.1016/j.camwa.2011.07.072 |
[14] | A. K. Mirmostafaee, M. Mirzavaziri, M. S. Moslehian, Fuzzy stability of the Jensen functional equation, Fuzzy Sets Syst., 159 (2008), 730-738. doi: 10.1016/j.fss.2007.07.011 |
[15] | A. K. Mirmostafaee, M. S. Moslehian, Fuzzy versions of Hyers-Ulam-Rassias theorem, Fuzzy Sets Syst., 159 (2008), 720-729. doi: 10.1016/j.fss.2007.09.016 |
[16] | J. R. Wu, Z. Y. Jin, A note on Ulam stability of some fuzzy number-valued functional equations, Fuzzy Sets Syst., 375 (2019), 191-195. doi: 10.1016/j.fss.2018.10.018 |
[17] | J. Ban, Ergodic theorems for random compact sets and fuzzy variables in Banach spaces, Fuzzy Sets Syst., 44 (1991), 71-82. doi: 10.1016/0165-0114(91)90034-N |
[18] | J. R. Wu, X. N. Gen, The pseudo-convergence of measurable functions on set-valued fuzzy measure space, Soft Comput., 22 (2018), 4347-4351. doi: 10.1007/s00500-017-2877-z |
[19] | Y. Wu, J. R. Wu, Lusin's theorem for monotone set-valued measures on topological spaces, Fuzzy sets Syst., 364 (2019), 111-123. doi: 10.1016/j.fss.2018.06.012 |
[20] | A. Ebadian, I. Nikoufar, T. M. Rassias, et al. Stability of generalized derivations on Hilbert C*-modules associated with a pexiderized Cauchy-Jensen type functional equation, Acta Math. Sci., 32 (2012), 1226-1238. doi: 10.1016/S0252-9602(12)60094-0 |
[21] | G. Lu, C. Park, Hyers-Ulam stability of additive set-valued functional equations, Appl. Math. Lett., 24 (2011), 1312-1316. doi: 10.1016/j.aml.2011.02.024 |