Research article

Stability and domination exponentially in some graphs

  • Received: 25 December 2019 Accepted: 27 May 2020 Published: 11 June 2020
  • MSC : 05C69, 05C40, 68M10, 68R10

  • For a graph $G = (V, E)$ and the exponential dominating set $S\subseteq V(G)$ of $G$ such that $\sum_{u \in S}(1/2)^ {\overline{d}(u, v)-1}\geq 1 $, $\forall v\in V(G)$, where $\overline{d}(u, v)$ is the length of a shortest path in $ \langle V(G)-(S-\{u\}) \rangle $ if such a path exists, and $\infty$ otherwise, the minimum exponential domination number, $\gamma_{e}(G)$ is the smallest cardinality of $S$. The minimum exponential domination number can be decreased or increased by removal of some vertices from $G$. In this paper, we continue to study on exponential domination number and stability of some graphs. We consider $\gamma_{e}^{+}$ and $\gamma_{e}^{-}$ stability of the lollipop graph $L_{m, n}$, the comet graph $C_{m, n}$, the sunflower graph $SF_{n}$, the helm graph $H_{n}$, the diamond-necklace graph $N_{n}$, the diamond-bracelet graph $B_{n}$ and the diamond-chain graph $L_{n}$ to give us an idea about the resistance of these graphs.

    Citation: Betül ATAY ATAKUL. Stability and domination exponentially in some graphs[J]. AIMS Mathematics, 2020, 5(5): 5063-5075. doi: 10.3934/math.2020325

    Related Papers:

  • For a graph $G = (V, E)$ and the exponential dominating set $S\subseteq V(G)$ of $G$ such that $\sum_{u \in S}(1/2)^ {\overline{d}(u, v)-1}\geq 1 $, $\forall v\in V(G)$, where $\overline{d}(u, v)$ is the length of a shortest path in $ \langle V(G)-(S-\{u\}) \rangle $ if such a path exists, and $\infty$ otherwise, the minimum exponential domination number, $\gamma_{e}(G)$ is the smallest cardinality of $S$. The minimum exponential domination number can be decreased or increased by removal of some vertices from $G$. In this paper, we continue to study on exponential domination number and stability of some graphs. We consider $\gamma_{e}^{+}$ and $\gamma_{e}^{-}$ stability of the lollipop graph $L_{m, n}$, the comet graph $C_{m, n}$, the sunflower graph $SF_{n}$, the helm graph $H_{n}$, the diamond-necklace graph $N_{n}$, the diamond-bracelet graph $B_{n}$ and the diamond-chain graph $L_{n}$ to give us an idea about the resistance of these graphs.


    加载中


    [1] F. Harary, Graph Theory, In: Addition-Wesley Publishing Co., Reading, MA/Menlo Park, CA/London, 1969.
    [2] N. Hartsfield, G. Ringel, Pearls in Graph Theory, In: Academic Press, INC, 1990.
    [3] D. B. West, Introduction to Graph Theory, In: Pearson Education (Second Edition), 2001.
    [4] T. W. Haynes, S. T. Hedeniemi, P. J. Slater, Fundamentals of Domination in Graphs, In: Marcel Dekker, Inc, New York, 1998.
    [5] M. A. Henning, Domination in Graphs: A survey. Cong. Number., In: G. Chartrand and M. Jacobson, editors, Surveys in Graph Theory, Vol. 116, 1996, 139-172.
    [6] P. Dankelmann, D. Day, D. Erwin, et al. Domination with exponential decay, Discrete Math., 309 (2009), 5877-5883. doi: 10.1016/j.disc.2008.06.040
    [7] A. Aytaç, B. A. Atakul, Exponential domination critical and stability in some graphs, Int. J. Found. Comput. Sci., 30 (2019), 781-791. doi: 10.1142/S0129054119500217
    [8] A. Aytaç, B. Atay, On exponential domination of some Graphs, Nonlinear Dyn. Syst. Theory, 16 (2016), 12-19.
    [9] A. Aytaç, B. A. Atakul, Exponential domination of tree related graphs, TWMS J. App. Eng. Math., 9 (2019), 186-197.
    [10] S. R. Ramachandra, N. D. Soner, Strong domination critical and stability in graphs, J. Como. Math. Sci., 1 (2010), 294-299.
    [11] M. Ebrahimi, K. Ebadi, Weak domination critical and stability in graphs, Int. J. Contemp. Math. Sci., 6 (2011), 337-344.
    [12] J. Jonasson, Lollipop graphs are extremal for commute times, Random Struct. Algorithms, March, 16 (2000), 131-142. doi: 10.1002/(SICI)1098-2418(200003)16:2<131::AID-RSA1>3.0.CO;2-3
    [13] M. Cygan, M. Pilipczuk, R. Skrekovski, Relation between Randic index and average distance of trees, Commun. Math. Comput. Chem., 66 (2011), 605-612.
    [14] J. A. Gallian, A dynamic survey of graph labeling, Elect. J. Comb., 15 (2016), DS6.
    [15] W. D. Wallis, Magic Graph, In: Birkhäuser, Boston, Basel, Berlin, 2001.
    [16] M. A. Henning, A. J. Marcon, Semitotal domination in claw-free cubic graphs, Ann. Comb., 20 (2016), 799-813. doi: 10.1007/s00026-016-0331-z
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3396) PDF downloads(216) Cited by(0)

Article outline

Figures and Tables

Figures(8)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog