One important area of statistical theory and its applications to bivariate data modeling is the construction of families of bivariate distributions with specified marginals. This motivates the proposal of a bivariate distribution employing the Farlie-Gumbel-Morgenstern (FGM) copula and Epanechnikov exponential (EP-EX) marginal distribution, denoted by EP-EX-FGM. The EP-EX distribution is a complementing distribution, not a rival, to the exponential (EX) distribution. Its simple function shape and dependence on a single scale parameter make it an ideal choice for marginals in the suggested new bivariate distribution. The statistical properties of the EP-EX-FGM model are examined, including product moments, coefficient of correlation between the internal variables, moment generating function, conditional distribution, concomitants of order statistics (OSs), mean residual life function, and vitality function. In addition, we calculated reliability and information measures including the hazard function, reversed hazard function, positive quadrant dependence feature, bivariate extropy, bivariate weighted extropy, and bivariate cumulative residual extropy. Estimating model parameters is accomplished by utilizing maximum likelihood, asymptotic confidence intervals, and Bayesian approaches. Finally, the advantage of EP-EX-FGM over the bivariate Weibull FGM distribution, bivariate EX-FGM distribution, and bivariate generalized EX-FGM distribution is illustrated using actual data sets.
Citation: H. M. Barakat, M. A. Alawady, I. A. Husseiny, M. Nagy, A. H. Mansi, M. O. Mohamed. Bivariate Epanechnikov-exponential distribution: statistical properties, reliability measures, and applications to computer science data[J]. AIMS Mathematics, 2024, 9(11): 32299-32327. doi: 10.3934/math.20241550
One important area of statistical theory and its applications to bivariate data modeling is the construction of families of bivariate distributions with specified marginals. This motivates the proposal of a bivariate distribution employing the Farlie-Gumbel-Morgenstern (FGM) copula and Epanechnikov exponential (EP-EX) marginal distribution, denoted by EP-EX-FGM. The EP-EX distribution is a complementing distribution, not a rival, to the exponential (EX) distribution. Its simple function shape and dependence on a single scale parameter make it an ideal choice for marginals in the suggested new bivariate distribution. The statistical properties of the EP-EX-FGM model are examined, including product moments, coefficient of correlation between the internal variables, moment generating function, conditional distribution, concomitants of order statistics (OSs), mean residual life function, and vitality function. In addition, we calculated reliability and information measures including the hazard function, reversed hazard function, positive quadrant dependence feature, bivariate extropy, bivariate weighted extropy, and bivariate cumulative residual extropy. Estimating model parameters is accomplished by utilizing maximum likelihood, asymptotic confidence intervals, and Bayesian approaches. Finally, the advantage of EP-EX-FGM over the bivariate Weibull FGM distribution, bivariate EX-FGM distribution, and bivariate generalized EX-FGM distribution is illustrated using actual data sets.
[1] | M. A. Abd Elgawad, H. M. Barakat, M. A. Alawady, D. A. Abd El-Rahman, I. A. Husseiny, A. F. Hashem, et al., Extropy and some of its more recent related measures for concomitants of K-record values in an extended FGM family, Mathematics, 11 (2023), 4934. https://doi.org/10.3390/math11244934 doi: 10.3390/math11244934 |
[2] | M. A. Abd Elgawad, H. M. Barakat, M. A. Alawady, Concomitants of generalized order statistics under the generalization of Farlie-Gumbel-Morgenstern- type bivariate distributions, Bull. Iran. Math. Soc., 47 (2021), 1045–1068. https://doi.org/10.1007/s41980-020-00427-0 doi: 10.1007/s41980-020-00427-0 |
[3] | H. H. Ahmad, E. M. Almetwally, D. A. Ramadan, Investigating the relationship between processor and memory reliability in data science: a bivariate model approach, Mathematics, 11 (2023), 2142. http://doi.org/10.3390/math11092142 doi: 10.3390/math11092142 |
[4] | E. M. Almetwally, H. Z. Muhammed, On a bivariate Frechet distribution, J. Stat. Appl. Probab., 9 (2020), 71–91. http://doi.org/10.18576/jsap/090108 doi: 10.18576/jsap/090108 |
[5] | E. M. Almetwally, H. Z. Muhammed, E. S. A. El-Sherpieny, Bivariate Weibull distribution: properties and different methods of estimation, Ann. Data Sci., 7 (2020), 163–193. https://doi.org/10.1007/s40745-019-00197-5 doi: 10.1007/s40745-019-00197-5 |
[6] | A. Alkhazaalh, L. Al-Zoubi, Epanechnikov-exponential distribution: properties and applications, General Math., 29 (2021), 13–29. https://doi.org/10.2478/gm-2021-0002 doi: 10.2478/gm-2021-0002 |
[7] | N. Balakrishnan, F. Buono, M. Longobardi, On weighted extropies, Commun. Stat.-Theory Meth., 51 (2022), 6250–6267. https://doi.org/10.1080/03610926.2020.1860222 doi: 10.1080/03610926.2020.1860222 |
[8] | H. M. Barakat, E. M. Nigm, I. A. Husseiny, Measures of information in order statistics and their concomitants for the single iterated Farlie-Gumbel-Morgenstern bivariate distribution, Math. Popul. Stud., 28 (2021), 154–175. https://doi.org/10.1080/08898480.2020.1767926 doi: 10.1080/08898480.2020.1767926 |
[9] | H. M. Barakat, M. A. Alawady, I. A. Husseiny, M. A. Abd Elgawad, A more flexible counterpart of a Haung-Kotzs copula-type, CR Acad. Bulg. Sci., 75 (2022), 952–958. https://doi.org/10.7546/CRABS.2022.07.02 doi: 10.7546/CRABS.2022.07.02 |
[10] | H. M. Barakat, E. M. Nigm, M. A. Alawady, I. A. Husseiny, Concomitants of order statistics and record values from generalization of FGM bivariate-generalized exponential distribution, J. Stat. Theory Appl., 18 (2019), 309–322. https://doi.org/10.2991/jsta.d.190822.001 doi: 10.2991/jsta.d.190822.001 |
[11] | A. P. Basu, Bivariate failure rate, J. Am. Stat. Assoc., 66 (1971), 103–104. https://doi.org/10.1080/01621459.1971.10482228 doi: 10.1080/01621459.1971.10482228 |
[12] | H. A. David, H. N. Nagaraja, Concomitants of order statistics, Bull. Int. Stat. Inst., 45 (1973), 295–300. |
[13] | S. Dey, S. Singh, Y. M. Tripathi, A. Asgharzadeh, Estimation and prediction for a progressively censored generalized inverted exponential distribution, Stat. Methodol., 32 (2016), 185–202. https://doi.org/10.1016/j.stamet.2016.05.007 doi: 10.1016/j.stamet.2016.05.007 |
[14] | D. J. G. Farlie, The performance of some correlation coefficients for a general bivariate distribution, Biometrika, 47 (1960), 307–323. https://doi.org/10.2307/2333302 doi: 10.2307/2333302 |
[15] | A. Fayomi, E. M. Almetwally, M. E. Qura, A novel bivariate Lomax-G family of distributions: properties, inference, and applications to environmental, medical, and computer science data, AIMS Math., 8 (2023), 17539–17584. https://doi.org/10.3934/math.2023896 doi: 10.3934/math.2023896 |
[16] | G. Grover, A. Sabharwal, J. Mittal, Application of multivariate and bivariate normal distributions to estimate duration of diabetes, Int. J. Stat. Appl., 4 (2014), 46–57. |
[17] | F. M. Guess, F. Proschan, Mean residual life: theory and applications, In: Handbook of statistics, 7 (1988), 215–224. https://doi.org/10.1016/S0169-7161(88)07014-2 |
[18] | R. D. Gupta, D. Kundu, Generalized exponential distributions: statistical inferences, J. Stat. Theory Appl., 1 (2002), 101–118. |
[19] | A. Hamdy, E. M. Almetwally, Bayesian and non-Bayesian inference for the generalized power akshaya distribution with application in medical, Comput. J. Math. Stat. Sci., 2 (2023), 31–51. |
[20] | I. A. Husseiny, A. H. Syam, The extropy of concomitants of generalized order statistics from Huang-Kotz-Morgenstern bivariate distribution, J. Math., 2022 (2022), 6385998. https://doi.org/10.1155/2022/6385998 doi: 10.1155/2022/6385998 |
[21] | I. A. Husseiny, H. M. Barakat, G. M. Mansour, M. A. Alawady, Information measures in record and their concomitants arising from Sarmanov family of bivariate distributions, J. Comput. Appl. Math., 408 (2022), 114120. https://doi.org/10.1016/j.cam.2022.114120 doi: 10.1016/j.cam.2022.114120 |
[22] | I. Iordanov, N. Chervenov, Copulas on Sobolev spaces, CR Acad. Bulg. Sci., 68 (2015), 11–19. |
[23] | S. M. A. Jahanshahi, H. Zarei, A. H. Khammar, On cumulative residual extropy, Probab. Eng. Inf. Sci., 34 (2020), 605–625. https://doi.org/10.1017/S0269964819000196 doi: 10.1017/S0269964819000196 |
[24] | H. Joe, N. Chervenov, Multivariate models and dependence concepts, New York: Chapman and Hall/CRC, 1997. https://doi.org/10.1201/9780367803896 |
[25] | N. L. Johnson, S. Kotz, A vector multivariate hazard rate, J. Multivariate Anal., 5 (1975), 53–66. https://doi.org/10.1016/0047-259X(75)90055-X doi: 10.1016/0047-259X(75)90055-X |
[26] | X. Jia, D. Wang, P. Jiang, B. Guo, Inference on the reliability of Weibull distribution with multiply type-I censored data, Reliab. Eng. Syst. Safe., 150 (2016), 171–181. https://doi.org/10.1016/j.ress.2016.01.025 doi: 10.1016/j.ress.2016.01.025 |
[27] | S. Kotz, D. N. Shanbhag, Some new approaches to probability distributions, Adv. Appl. Probab., 12 (1980), 903–921. https://doi.org/10.2307/1426748 doi: 10.2307/1426748 |
[28] | J. Kupka, S. Loo, The hazard and vitality measures of ageing, J. Appl. Probab., 26 (1989), 532–542. https://doi.org/10.2307/3214411 doi: 10.2307/3214411 |
[29] | F. Lad, G. Sanfilippo, G. Agro, Extropy: complementary dual of entropy, Statist. Sci., 30 (2015), 40–58. https://doi.org/10.1214/14-STS430 doi: 10.1214/14-STS430 |
[30] | E. L. Lehmann, Some concepts of dependence, Ann. Math. Statist., 37 (1966), 1137–1153. https://doi.org/10.1214/aoms/1177699260 doi: 10.1214/aoms/1177699260 |
[31] | D. Morgenstern, Einfache beispiele zweidimensionaler verteilungen, Mitt. Math. Stat., 8 (1956), 234–235. |
[32] | M. Nagy, H. M. Barakat, M. A. Alawady, I. A. Husseiny, A. F. Alrasheedi, T. S. Taher, et al., Inference and other aspects for $q$-Weibull distribution via generalized order statistics with applications to medical datasets, AIMS Math., 9 (2024), 8311–8338. https://doi.org/10.3934/math.2024404 doi: 10.3934/math.2024404 |
[33] | R. B. Nelsen, An introduction to copulas, 2 Eds., Springer-Verlag, New York, 2006. https://doi.org/10.1007/0-387-28678-0 |
[34] | R. P. Oliveira, J. A. Achcar, J. Mazucheli, W. Bertoli, A new class of bivariate Lindley distributions based on stress and shock models and some of their reliability properties, Reliab. Eng. Syst. Safe., 211 (2021), 107528. https://doi.org/10.1016/j.ress.2021.107528 doi: 10.1016/j.ress.2021.107528 |
[35] | P. G. Sankaran, N. U. Nair, On bivariate vitality functions, Proceeding of National Symposium on Distribution Theory, 1991. |
[36] | J. Scaria, N. U. Nair, Distribution of extremes of rth concomitant from the Morgenstern family, Stat. Pap., 49 (2008), 109–119. https://doi.org/10.1007/s00362-006-0365-0 doi: 10.1007/s00362-006-0365-0 |
[37] | W. R. Schucany, W. C. Parr, J. E. Boyer, Correlation structure in Farlie-Gumbel-Morgenstern distributions, Biometrika, 65 (1978), 650–653. https://doi.org/10.2307/2335922 doi: 10.2307/2335922 |
[38] | D. N. Shanbag, S. Kotz, Some new approaches to multivariate probability distributions, J. Multivariate Anal., 22 (1987), 189–211. https://doi.org/10.1016/0047-259X(87)90085-6 doi: 10.1016/0047-259X(87)90085-6 |
[39] | A. Sklar, Random variables, joint distributions, and copulas, Kybernetica, 9 (1973), 449–460. |
[40] | N. Sreelakshmi, An introduction to copula-based bivariate reliability concepts, Commun. Stat.-Theory Meth., 47 (2018), 996–1012. https://doi.org/10.1080/03610926.2017.1316396 doi: 10.1080/03610926.2017.1316396 |
[41] | J. L. Teugels, Some representations of the multivariate Bernoulli and binomial distributions, J. Multivariate Anal., 32 (1990), 256–268. https://doi.org/10.1016/0047-259X(90)90084-U doi: 10.1016/0047-259X(90)90084-U |
[42] | V. S. Vaidyanathan, A. Sharon Varghese, Morgenstern type bivariate Lindley distribution, Stat. Optim. Inf. Comp., 4 (2016), 132–146. https://doi.org/10.19139/soic.v4i2.183 doi: 10.19139/soic.v4i2.183 |