Research article

Bayesian and non-Bayesian estimation of some entropy measures for a Weibull distribution

  • Received: 13 August 2024 Revised: 02 November 2024 Accepted: 07 November 2024 Published: 19 November 2024
  • MSC : 62F15, 62F30, 94A17

  • Entropy measures have been employed in various applications as a helpful indicator of information content. This study considered the estimation of Shannon entropy, $ \zeta $-entropy, Arimoto entropy, and Havrda and Charvat entropy measures for the Weibull distribution. The classical and Bayesian estimators for the suggested entropy measures were derived using generalized Type Ⅱ hybrid censoring data. Based on symmetric and asymmetric loss functions, Bayesian estimators of entropy measurements were developed. Asymptotic confidence intervals with the help of the delta method and the highest posterior density intervals of entropy measures were constructed. The effectiveness of the point and interval estimators was evaluated through a Monte Carlo simulation study and an application with actual data sets. Overall, the study's results indicate that with longer termination times, both maximum likelihood and Bayesian entropy estimates were effective. Furthermore, Bayesian entropy estimates using the linear exponential loss function tended to outperform those using other loss functions in the majority of scenarios. In conclusion, the analysis results from real-world examples aligned with the simulated data. Drawing insights from the analysis of glass fiber, we can assert that this research holds practical applications in reliability engineering and financial analysis.

    Citation: Amal S. Hassan, Najwan Alsadat, Oluwafemi Samson Balogun, Baria A. Helmy. Bayesian and non-Bayesian estimation of some entropy measures for a Weibull distribution[J]. AIMS Mathematics, 2024, 9(11): 32646-32673. doi: 10.3934/math.20241563

    Related Papers:

  • Entropy measures have been employed in various applications as a helpful indicator of information content. This study considered the estimation of Shannon entropy, $ \zeta $-entropy, Arimoto entropy, and Havrda and Charvat entropy measures for the Weibull distribution. The classical and Bayesian estimators for the suggested entropy measures were derived using generalized Type Ⅱ hybrid censoring data. Based on symmetric and asymmetric loss functions, Bayesian estimators of entropy measurements were developed. Asymptotic confidence intervals with the help of the delta method and the highest posterior density intervals of entropy measures were constructed. The effectiveness of the point and interval estimators was evaluated through a Monte Carlo simulation study and an application with actual data sets. Overall, the study's results indicate that with longer termination times, both maximum likelihood and Bayesian entropy estimates were effective. Furthermore, Bayesian entropy estimates using the linear exponential loss function tended to outperform those using other loss functions in the majority of scenarios. In conclusion, the analysis results from real-world examples aligned with the simulated data. Drawing insights from the analysis of glass fiber, we can assert that this research holds practical applications in reliability engineering and financial analysis.



    加载中


    [1] D. P. Murthy, M. Xie, R. Jiang, Weibull models, Hoboken: John Wiley & Sons, 2004.
    [2] I. Hussain, A. Haider, Z. Ullah, M. Russo, G. M. Casolino, B. Azeem, Comparative analysis of eight numerical methods using Weibull distribution to estimate wind power density for coastal areas in Pakistan, Energies, 16 (2023), 1515. https://doi.org/10.3390/en16031515 doi: 10.3390/en16031515
    [3] M. A. Safari, N. Masseran, M. H. Majid, Wind energy potential assessment using Weibull distribution with various numerical estimation methods: a case study in Mersing and Port Dickson, Malaysia, Theor. Appl. Climatol., 148 (2022), 1085–1110. https://doi.org/10.1007/s00704-022-03990-0 doi: 10.1007/s00704-022-03990-0
    [4] S. B. Habeeb, F. K. Abdullah, R. N. Shalan, A. S. Hassan, E. M. Almetwally, F. M. Alghamdi, et al., Comparison of some Bayesian estimation methods for type-Ⅰ generalized extreme value distribution with simulation, Alex. Eng. J., 98 (2024), 356–363. https://doi.org/10.1016/j.aej.2024.04 doi: 10.1016/j.aej.2024.04
    [5] A. S. Hassan, F. F. Nagy, H. Z. Muhammed, M. S. Saad, Estimation of multi-component stress-strength reliability following Weibull distribution based on upper record values, J. Taibah. Univ. Sci., 14 (2020), 244–253. https://doi.org/10.1080/16583655.2020.1721751 doi: 10.1080/16583655.2020.1721751
    [6] E. Cramer, C. Bagh, Minimum and maximum information censoring plans in progressive censoring, Commun. Stat. Theory Meth., 40 (2011), 2511–2527. https://doi.org/10.1080/03610926.2010.489176 doi: 10.1080/03610926.2010.489176
    [7] Y. Cho, H. Sun, K. Lee, Estimating the entropy of a Weibull distribution under generalized progressive hybrid censoring, Entropy, 17 (2015), 102–122. https://doi.org/10.3390/e17010102 doi: 10.3390/e17010102
    [8] A. S. Hassan, A. N. Zaky, Estimation of entropy for inverse Weibull distribution under multiple censored data, J. Taibah. Univ. Sci., 13 (2019), 331–337. https://doi.org/10.1080/16583655.2019.1576493 doi: 10.1080/16583655.2019.1576493
    [9] M. Chacko, P. S. Asha, Estimation of entropy for Weibull distribution based on record values, J. Stat. Theory Appl., 20 (2021), 279–288. https://doi.org/10.2991/jsta.d.210610.001 doi: 10.2991/jsta.d.210610.001
    [10] A. Childs, B. Chandrasekar, N. Balakrishnan, D. Kundu, Exact likelihood inference based on Type-Ⅰ and Type-Ⅱ hybrid censored samples from the exponential distribution, Ann. Inst. Stat. Math., 55 (2003), 319–330. https://doi.org/10.1007/BF02530502 doi: 10.1007/BF02530502
    [11] B. Chandrasekar, A. Childs, N. Balakrishnan, Exact likelihood inference for the exponential distribution under generalized Type‐Ⅰ and Type‐Ⅱ hybrid censoring, Nav. Res. Logist., 51 (2004), 994–1004. https://doi.org/10.1002/nav.20038 doi: 10.1002/nav.20038
    [12] A. S. Hassan, R. A. Mousa, M. H. Abu-Moussa, Bayesian analysis of generalized inverted exponential distribution based on generalized progressive hybrid censoring competing risks data, Ann. Data Sci., 11 (2024), 1225–1264. https://doi.org/10.1007/s40745-023-00488-y doi: 10.1007/s40745-023-00488-y
    [13] S. Dutta, H. K. T. Ng, S. Kayal, Inference for a general family of inverted exponentiated distributions under unified hybrid censoring with partially observed competing risks data, J. Comput. Appl. Math., 422 (2023), 114934. https://doi.org/10.1016/j.cam.2022.114934 doi: 10.1016/j.cam.2022.114934
    [14] S. A. Lone, H. Panahi, S. Anwar, S. Shahab, Inference of reliability model with burr type Ⅻ distribution under two sample balanced progressive censored samples, Phys. Scripta, 99 (2024), 025019. https://doi.org/10.1088/1402-4896/ad1c29 doi: 10.1088/1402-4896/ad1c29
    [15] H. Cui, Y. Ding, The convergence of the Rényi entropy of the normalized sums of IID random variables, Stat. Prob. Lett., 80 (2010), 1167–1173. https://doi.org/10.1016/j.spl.2010.03.012 doi: 10.1016/j.spl.2010.03.012
    [16] S. B. Kang, Y. S. Cho, J. T. Han, J. Kim, An estimation of the entropy for a double exponential distribution based on multiply Type-Ⅱ censored samples, Entropy, 14 (2012), 161–173. https://doi.org/10.3390/e14020161 doi: 10.3390/e14020161
    [17] Y. Cho, H. Sun, K. Lee, An estimation of the entropy for a Rayleigh distribution based on doubly-generalized Type-Ⅱ hybrid censored samples, Entropy, 16 (2014), 3655–3669. https://doi.org/10.3390/e16073655 doi: 10.3390/e16073655
    [18] Y. Cho, H. Sun, K. Lee, Estimating the entropy of a Weibull distribution under generalized progressive hybrid censoring, Entropy, 17 (2015), 102–122. https://doi.org/10.3390/e17010102 doi: 10.3390/e17010102
    [19] A. A. Ahmadini, A. S. Hassan, A. N. Zaky, S. S. Alshqaq, Bayesian inference of dynamic cumulative residual entropy from Pareto Ⅱ distribution with application to COVID-19, AIMS Math., 6 (2020), 2196–2216. https://doi.org/10.3934/math.2021133 doi: 10.3934/math.2021133
    [20] A. A. Al-Babtain, A. S. Hassan, A. N. Zaky, I. Elbatal, M. Elgarhy, Dynamic cumulative residual Rényi entropy for Lomax distribution: Bayesian and non-Bayesian methods, AIMS Math., 6 (2021), 3889–3914. https://doi.org/10.3934/math.2021231 doi: 10.3934/math.2021231
    [21] A. S. Hassan, A. N. Zaky, Entropy Bayesian estimation for Lomax distribution based on record, Thail. Stat., 19 (2021), 95–114.
    [22] A. I. Al-Omari, A. S. Hassan, H. F. Nagy, A. R. Al-Anzi, L. Alzoubi, Entropy Bayesian analysis for the generalized inverse exponential distribution based on URRSS, Comput. Mater. Contin., 69 (2021), 3795–3811. https://doi.org/10.32604/cmc.2021.019061 doi: 10.32604/cmc.2021.019061
    [23] B. A. Helmy, A. S. Hassan, A. K. El-Kholy, R. A. Bantan, M. Elgarhy, Analysis of information measures using generalized type-Ⅰ hybrid censored data, AIMS Math., 8 (2023), 20283–20304. https://doi.org/10.3934/math.20231034 doi: 10.3934/math.20231034
    [24] B. A. Helmy, A. S. Hassan, A. K. El-Kholy, Analysis of uncertainty measure using unified hybrid censored data with applications, J. Taibah. Univ. Sci., 15 (2021), 1130–1143. https://doi.org/10.1080/16583655.2021.2022901 doi: 10.1080/16583655.2021.2022901
    [25] A. S. Hassan, E. A. Elsherpieny, R. E. Mohamed, Estimation of information measures for power-function distribution in the presence of outliers and their applications, J. Inform. Commun. Technol., 21 (2022), 1–25. https://doi.org/10.32890/jict2022.21.1.1 doi: 10.32890/jict2022.21.1.1
    [26] R. A. Bantan, M. Elgarhy, C. Chesneau, F. Jamal, Estimation of entropy for inverse Lomax distribution under multiple censored data, Entropy, 22 (2020), 601. https://doi.org/10.3390/e22060601 doi: 10.3390/e22060601
    [27] A. A. Al-Babtain, I. Elbatal, C. Chesneau, M. Elgarhy, Estimation of different types of entropies for the Kumaraswamy distribution, PLoS One, 16 (2021), e0249027. https://doi.org/10.1371/journal.pone.0249027 doi: 10.1371/journal.pone.0249027
    [28] C. Tsallis, Possible generalization of Boltzmann-Gibbs statistics, J. Stat. Phys., 52 (1988), 479–487. https://doi.org/10.1007/BF01016429 doi: 10.1007/BF01016429
    [29] S. Arimoto, Information-theoretical considerations on estimation problems, Inform. Control, 19 (1971), 181–194. https://doi.org/10.1016/S0019-9958(71)90065-9 doi: 10.1016/S0019-9958(71)90065-9
    [30] J. Havrda, F. Charvát, Quantification method of classification processes. Concept of structural $ a $-entropy, Kybernetika, 3 (1967), 30–35.
    [31] A. C. Cohen, Maximum likelihood estimation in the Weibull distribution based on complete and censored samples, Technometrics, 7 (1965), 579–588.
    [32] W. H. Greene, Econometric analysis, 4 Eds, New York: Prentice-Hall, 2000.
    [33] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, E.Teller, Equation of state calculations by fast computing machines, J. Chem. Phys., 21 (1953), 1087–1092. https://doi.org/10.1063/1.1699114 doi: 10.1063/1.1699114
    [34] M. H. Chen, Q. M. Shao, Monte Carlo estimation of Bayesian credible and HPD intervals, J. Comput. Graph Stat., 8 (1999), 690–992. https://doi.org/10.2307/1390921 doi: 10.2307/1390921
    [35] M. Alizadeh, S. Rezaei, S. F. Bagheri, On the estimation for the Weibull distribution, Ann. Data Sci., 2 (2015), 373–390. https://doi.org/10.1007/s40745-015-0046-8 doi: 10.1007/s40745-015-0046-8
    [36] P. Congdon, Applied Bayesian modelling, Hoboken: John Wiley and Son, 2014.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(93) PDF downloads(25) Cited by(0)

Article outline

Figures and Tables

Figures(8)  /  Tables(10)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog